Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/gmmu/pd_cache.c
Scott Long d864904a49 gpu: nvgpu: mm: misra 12.1 fixes
MISRA Advisory Rule states that the precedence of operators within
expressions should be made explicit.

This change removes the Advisory Rule 12.1 violations from mm code.

Jira NVGPU-3178

Change-Id: I51c53c3200530c8fb2b958d9d7d77b9366d9a202
Signed-off-by: Scott Long <scottl@nvidia.com>
Reviewed-on: http://git-master.nvidia.com/r/c/linux-nvgpu/+/2276837
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Adeel Raza <araza@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-12-15 14:10:29 -06:00

483 lines
12 KiB
C

/*
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/list.h>
#include <nvgpu/log2.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/enabled.h>
#include <nvgpu/static_analysis.h>
#include "pd_cache_priv.h"
static inline struct nvgpu_pd_mem_entry *
nvgpu_pd_mem_entry_from_list_entry(struct nvgpu_list_node *node)
{
return (struct nvgpu_pd_mem_entry *)
((uintptr_t)node -
offsetof(struct nvgpu_pd_mem_entry, list_entry));
};
static inline struct nvgpu_pd_mem_entry *
nvgpu_pd_mem_entry_from_tree_entry(struct nvgpu_rbtree_node *node)
{
return (struct nvgpu_pd_mem_entry *)
((uintptr_t)node -
offsetof(struct nvgpu_pd_mem_entry, tree_entry));
};
static u32 nvgpu_pd_cache_nr(u32 bytes)
{
unsigned long tmp = ilog2((unsigned long)bytes >>
((unsigned long)NVGPU_PD_CACHE_MIN_SHIFT - 1UL));
nvgpu_assert(tmp <= U32_MAX);
return (u32)tmp;
}
static u32 nvgpu_pd_cache_get_nr_entries(struct nvgpu_pd_mem_entry *pentry)
{
return PAGE_SIZE / pentry->pd_size;
}
/*
* Return the _physical_ address of a page directory.
*/
u64 nvgpu_pd_gpu_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
{
u64 page_addr;
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
page_addr = nvgpu_mem_get_phys_addr(g, pd->mem);
} else {
page_addr = nvgpu_mem_get_addr(g, pd->mem);
}
return nvgpu_safe_add_u64(page_addr, U64(pd->mem_offs));
}
u32 nvgpu_pd_offset_from_index(const struct gk20a_mmu_level *l, u32 pd_idx)
{
return nvgpu_safe_mult_u32(pd_idx, l->entry_size) / U32(sizeof(u32));
}
void nvgpu_pd_write(struct gk20a *g, struct nvgpu_gmmu_pd *pd,
size_t w, u32 data)
{
u64 tmp_offset = nvgpu_safe_add_u64((pd->mem_offs / sizeof(u32)), w);
nvgpu_mem_wr32(g, pd->mem,
nvgpu_safe_cast_u64_to_u32(tmp_offset),
data);
}
int nvgpu_pd_cache_init(struct gk20a *g)
{
struct nvgpu_pd_cache *cache;
u32 i;
/*
* This gets called from finalize_poweron() so we need to make sure we
* don't reinit the pd_cache over and over.
*/
if (g->mm.pd_cache != NULL) {
return 0;
}
cache = nvgpu_kzalloc(g, sizeof(*cache));
if (cache == NULL) {
nvgpu_err(g, "Failed to alloc pd_cache!");
return -ENOMEM;
}
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
nvgpu_init_list_node(&cache->full[i]);
nvgpu_init_list_node(&cache->partial[i]);
}
cache->mem_tree = NULL;
nvgpu_mutex_init(&cache->lock);
g->mm.pd_cache = cache;
pd_dbg(g, "PD cache initialized!");
return 0;
}
void nvgpu_pd_cache_fini(struct gk20a *g)
{
u32 i;
struct nvgpu_pd_cache *cache = g->mm.pd_cache;
if (cache == NULL) {
return;
}
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
nvgpu_assert(nvgpu_list_empty(&cache->full[i]));
nvgpu_assert(nvgpu_list_empty(&cache->partial[i]));
}
nvgpu_kfree(g, g->mm.pd_cache);
g->mm.pd_cache = NULL;
}
/*
* This is the simple pass-through for greater than page or page sized PDs.
*
* Note: this does not need the cache lock since it does not modify any of the
* PD cache data structures.
*/
static int nvgpu_pd_cache_alloc_direct(struct gk20a *g,
struct nvgpu_gmmu_pd *pd, u32 bytes)
{
int err;
unsigned long flags = 0;
pd_dbg(g, "PD-Alloc [D] %u bytes", bytes);
pd->mem = nvgpu_kzalloc(g, sizeof(*pd->mem));
if (pd->mem == NULL) {
nvgpu_err(g, "OOM allocating nvgpu_mem struct!");
return -ENOMEM;
}
/*
* If bytes == PAGE_SIZE then it's impossible to get a discontiguous DMA
* allocation. Some DMA implementations may, despite this fact, still
* use the contiguous pool for page sized allocations. As such only
* request explicitly contiguous allocs if the page directory is larger
* than the page size. Also, of course, this is all only revelant for
* GPUs not using an IOMMU. If there is an IOMMU DMA allocs are always
* going to be virtually contiguous and we don't have to force the
* underlying allocations to be physically contiguous as well.
*/
if (!nvgpu_iommuable(g) && (bytes > PAGE_SIZE)) {
flags = NVGPU_DMA_PHYSICALLY_ADDRESSED;
}
err = nvgpu_dma_alloc_flags(g, flags, bytes, pd->mem);
if (err != 0) {
nvgpu_err(g, "OOM allocating page directory!");
nvgpu_kfree(g, pd->mem);
return -ENOMEM;
}
pd->cached = false;
pd->mem_offs = 0;
return 0;
}
/*
* Make a new nvgpu_pd_cache_entry and allocate a PD from it. Update the passed
* pd to reflect this allocation.
*/
static int nvgpu_pd_cache_alloc_new(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd,
u32 bytes)
{
struct nvgpu_pd_mem_entry *pentry;
pd_dbg(g, "PD-Alloc [C] New: offs=0");
pentry = nvgpu_kzalloc(g, sizeof(*pentry));
if (pentry == NULL) {
nvgpu_err(g, "OOM allocating pentry!");
return -ENOMEM;
}
if (nvgpu_dma_alloc(g, PAGE_SIZE, &pentry->mem) != 0) {
nvgpu_kfree(g, pentry);
nvgpu_err(g, "Unable to DMA alloc!");
return -ENOMEM;
}
pentry->pd_size = bytes;
nvgpu_list_add(&pentry->list_entry,
&cache->partial[nvgpu_pd_cache_nr(bytes)]);
/*
* This allocates the very first PD table in the set of tables in this
* nvgpu_pd_mem_entry.
*/
nvgpu_set_bit(0U, pentry->alloc_map);
pentry->allocs = 1;
/*
* Now update the nvgpu_gmmu_pd to reflect this allocation.
*/
pd->mem = &pentry->mem;
pd->mem_offs = 0;
pd->cached = true;
pentry->tree_entry.key_start = (u64)(uintptr_t)&pentry->mem;
nvgpu_rbtree_insert(&pentry->tree_entry, &cache->mem_tree);
return 0;
}
static int nvgpu_pd_cache_alloc_from_partial(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry,
struct nvgpu_gmmu_pd *pd)
{
u32 bit_offs;
u32 mem_offs;
u32 nr_bits = nvgpu_pd_cache_get_nr_entries(pentry);
/*
* Find and allocate an open PD.
*/
bit_offs = nvgpu_safe_cast_u64_to_u32(
find_first_zero_bit(pentry->alloc_map, nr_bits));
mem_offs = nvgpu_safe_mult_u32(bit_offs, pentry->pd_size);
pd_dbg(g, "PD-Alloc [C] Partial: offs=%u nr_bits=%d src=0x%p",
bit_offs, nr_bits, pentry);
/* Bit map full. Somethings wrong. */
nvgpu_assert(bit_offs < nr_bits);
nvgpu_set_bit(bit_offs, pentry->alloc_map);
pentry->allocs = nvgpu_safe_add_u32(pentry->allocs, 1U);
/*
* First update the pd.
*/
pd->mem = &pentry->mem;
pd->mem_offs = mem_offs;
pd->cached = true;
/*
* Now make sure the pentry is in the correct list (full vs partial).
*/
if (pentry->allocs >= nr_bits) {
pd_dbg(g, "Adding pentry to full list!");
nvgpu_list_del(&pentry->list_entry);
nvgpu_list_add(&pentry->list_entry,
&cache->full[nvgpu_pd_cache_nr(pentry->pd_size)]);
}
return 0;
}
/*
* Get a partially full nvgpu_pd_mem_entry. Returns NULL if there is no partial
* nvgpu_pd_mem_entry's.
*/
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_get_partial(
struct nvgpu_pd_cache *cache, u32 bytes)
{
struct nvgpu_list_node *list =
&cache->partial[nvgpu_pd_cache_nr(bytes)];
if (nvgpu_list_empty(list)) {
return NULL;
}
return nvgpu_list_first_entry(list,
nvgpu_pd_mem_entry,
list_entry);
}
/*
* Allocate memory from an nvgpu_mem for the page directory.
*/
static int nvgpu_pd_cache_alloc(struct gk20a *g, struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd, u32 bytes)
{
struct nvgpu_pd_mem_entry *pentry;
int err;
bool bytes_valid;
pd_dbg(g, "PD-Alloc [C] %u bytes", bytes);
bytes_valid = bytes >= NVGPU_PD_CACHE_MIN;
if (bytes_valid) {
bytes_valid = (bytes & nvgpu_safe_sub_u32(bytes, 1U)) == 0U;
}
if (!bytes_valid) {
pd_dbg(g, "PD-Alloc [C] Invalid (bytes=%u)!", bytes);
return -EINVAL;
}
nvgpu_assert(bytes < PAGE_SIZE);
pentry = nvgpu_pd_cache_get_partial(cache, bytes);
if (pentry == NULL) {
err = nvgpu_pd_cache_alloc_new(g, cache, pd, bytes);
} else {
err = nvgpu_pd_cache_alloc_from_partial(g, cache, pentry, pd);
}
if (err != 0) {
nvgpu_err(g, "PD-Alloc [C] Failed!");
}
return err;
}
/*
* Allocate the DMA memory for a page directory. This handles the necessary PD
* cache logistics. Since on Parker and later GPUs some of the page directories
* are smaller than a page packing these PDs together saves a lot of memory.
*/
int nvgpu_pd_alloc(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd, u32 bytes)
{
struct gk20a *g = gk20a_from_vm(vm);
int err;
/*
* Simple case: PD is bigger than a page so just do a regular DMA
* alloc.
*/
if (bytes >= PAGE_SIZE) {
err = nvgpu_pd_cache_alloc_direct(g, pd, bytes);
if (err != 0) {
return err;
}
pd->pd_size = bytes;
return 0;
}
if (g->mm.pd_cache == NULL) {
nvgpu_do_assert();
return -ENOMEM;
}
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
err = nvgpu_pd_cache_alloc(g, g->mm.pd_cache, pd, bytes);
if (err == 0) {
pd->pd_size = bytes;
}
nvgpu_mutex_release(&g->mm.pd_cache->lock);
return err;
}
static void nvgpu_pd_cache_free_direct(struct gk20a *g,
struct nvgpu_gmmu_pd *pd)
{
pd_dbg(g, "PD-Free [D] 0x%p", pd->mem);
if (pd->mem == NULL) {
return;
}
nvgpu_dma_free(g, pd->mem);
nvgpu_kfree(g, pd->mem);
pd->mem = NULL;
}
static void nvgpu_pd_cache_free_mem_entry(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry)
{
nvgpu_dma_free(g, &pentry->mem);
nvgpu_list_del(&pentry->list_entry);
nvgpu_rbtree_unlink(&pentry->tree_entry, &cache->mem_tree);
nvgpu_kfree(g, pentry);
}
static void nvgpu_pd_cache_do_free(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry,
struct nvgpu_gmmu_pd *pd)
{
u32 bit = pd->mem_offs / pentry->pd_size;
/* Mark entry as free. */
nvgpu_clear_bit(bit, pentry->alloc_map);
pentry->allocs = nvgpu_safe_sub_u32(pentry->allocs, 1U);
if (pentry->allocs > 0U) {
/*
* Partially full still. If it was already on the partial list
* this just re-adds it.
*/
nvgpu_list_del(&pentry->list_entry);
nvgpu_list_add(&pentry->list_entry,
&cache->partial[nvgpu_pd_cache_nr(pentry->pd_size)]);
} else {
/* Empty now so free it. */
nvgpu_pd_cache_free_mem_entry(g, cache, pentry);
}
pd->mem = NULL;
}
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_look_up(
struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd)
{
struct nvgpu_rbtree_node *node = NULL;
nvgpu_rbtree_search((u64)(uintptr_t)pd->mem, &node,
cache->mem_tree);
if (node == NULL) {
return NULL;
}
return nvgpu_pd_mem_entry_from_tree_entry(node);
}
static void nvgpu_pd_cache_free(struct gk20a *g, struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd)
{
struct nvgpu_pd_mem_entry *pentry;
pd_dbg(g, "PD-Free [C] 0x%p", pd->mem);
pentry = nvgpu_pd_cache_look_up(cache, pd);
if (pentry == NULL) {
nvgpu_do_assert_print(g, "Attempting to free non-existent pd");
return;
}
nvgpu_pd_cache_do_free(g, cache, pentry, pd);
}
void nvgpu_pd_free(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd)
{
struct gk20a *g = gk20a_from_vm(vm);
/*
* Simple case: just DMA free.
*/
if (!pd->cached) {
return nvgpu_pd_cache_free_direct(g, pd);
}
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
nvgpu_pd_cache_free(g, g->mm.pd_cache, pd);
nvgpu_mutex_release(&g->mm.pd_cache->lock);
}