Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/page_allocator.c
Deepak Nibade 6090a8a7ee gpu: nvgpu: move debugfs code to linux module
Since all debugfs code is Linux specific, remove
it from common code and move it to Linux module

Debugfs code is now divided into below
module specific files :

common/linux/debug.c
common/linux/debug_cde.c
common/linux/debug_ce.c
common/linux/debug_fifo.c
common/linux/debug_gr.c
common/linux/debug_mm.c
common/linux/debug_allocator.c
common/linux/debug_kmem.c
common/linux/debug_pmu.c
common/linux/debug_sched.c

Add corresponding header files for above modules too
And compile all of above files only if CONFIG_DEBUG_FS is set

Some more details of the changes made

- Move and rename gk20a/debug_gk20a.c to common/linux/debug.c
- Move and rename gk20a/debug_gk20a.h to include/nvgpu/debug.h

- Remove gm20b/debug_gm20b.c and gm20b/debug_gm20b.h and call
  gk20a_init_debug_ops() directly from gm20b_init_hal()

- Update all debug APIs to receive struct gk20a as parameter
  instead of receiving struct device pointer
- Update API gk20a_dmabuf_get_state() to receive struct gk20a
  pointer instead of struct device

- Include <nvgpu/debug.h> explicitly in all files where debug
  operations are used
- Remove "gk20a/platform_gk20a.h" include from HAL files
  which no longer need this include

- Add new API gk20a_debug_deinit() to deinitialize debugfs
  and call it from gk20a_remove()
- Move API gk20a_debug_dump_all_channel_status_ramfc() to
  gk20a/fifo_gk20a.c

Jira NVGPU-62

Change-Id: I076975d3d7f669bdbe9212fa33d98529377feeb6
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: http://git-master/r/1488902
Reviewed-by: svccoveritychecker <svccoveritychecker@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Bharat Nihalani <bnihalani@nvidia.com>
2017-06-02 06:53:35 -07:00

941 lines
24 KiB
C

/*
* Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <nvgpu/bitops.h>
#include <nvgpu/allocator.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/kmem.h>
#include <nvgpu/bug.h>
#include <nvgpu/log2.h>
#include "buddy_allocator_priv.h"
#define palloc_dbg(a, fmt, arg...) \
alloc_dbg(palloc_owner(a), fmt, ##arg)
/*
* Since some Linux headers are still leaked into common code this is necessary
* for some builds.
*/
#ifdef PAGE_SIZE
#undef PAGE_SIZE
#undef PAGE_ALIGN
#endif
/*
* VIDMEM page size is 4k.
*/
#define PAGE_SIZE 0x1000
#define PAGE_ALIGN(addr) ((addr + (PAGE_SIZE - 1)) & \
((typeof(addr)) ~(PAGE_SIZE - 1)))
/*
* Handle the book-keeping for these operations.
*/
static inline void add_slab_page_to_empty(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
BUG_ON(page->state != SP_NONE);
nvgpu_list_add(&page->list_entry, &slab->empty);
slab->nr_empty++;
page->state = SP_EMPTY;
}
static inline void add_slab_page_to_partial(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
BUG_ON(page->state != SP_NONE);
nvgpu_list_add(&page->list_entry, &slab->partial);
slab->nr_partial++;
page->state = SP_PARTIAL;
}
static inline void add_slab_page_to_full(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
BUG_ON(page->state != SP_NONE);
nvgpu_list_add(&page->list_entry, &slab->full);
slab->nr_full++;
page->state = SP_FULL;
}
static inline void del_slab_page_from_empty(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
nvgpu_list_del(&page->list_entry);
slab->nr_empty--;
page->state = SP_NONE;
}
static inline void del_slab_page_from_partial(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
nvgpu_list_del(&page->list_entry);
slab->nr_partial--;
page->state = SP_NONE;
}
static inline void del_slab_page_from_full(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
nvgpu_list_del(&page->list_entry);
slab->nr_full--;
page->state = SP_NONE;
}
static u64 nvgpu_page_alloc_length(struct nvgpu_allocator *a)
{
struct nvgpu_page_allocator *va = a->priv;
return nvgpu_alloc_length(&va->source_allocator);
}
static u64 nvgpu_page_alloc_base(struct nvgpu_allocator *a)
{
struct nvgpu_page_allocator *va = a->priv;
return nvgpu_alloc_base(&va->source_allocator);
}
static int nvgpu_page_alloc_inited(struct nvgpu_allocator *a)
{
struct nvgpu_page_allocator *va = a->priv;
return nvgpu_alloc_initialized(&va->source_allocator);
}
static u64 nvgpu_page_alloc_end(struct nvgpu_allocator *a)
{
struct nvgpu_page_allocator *va = a->priv;
return nvgpu_alloc_end(&va->source_allocator);
}
static u64 nvgpu_page_alloc_space(struct nvgpu_allocator *a)
{
struct nvgpu_page_allocator *va = a->priv;
return nvgpu_alloc_space(&va->source_allocator);
}
static int nvgpu_page_reserve_co(struct nvgpu_allocator *a,
struct nvgpu_alloc_carveout *co)
{
struct nvgpu_page_allocator *va = a->priv;
return nvgpu_alloc_reserve_carveout(&va->source_allocator, co);
}
static void nvgpu_page_release_co(struct nvgpu_allocator *a,
struct nvgpu_alloc_carveout *co)
{
struct nvgpu_page_allocator *va = a->priv;
nvgpu_alloc_release_carveout(&va->source_allocator, co);
}
static void __nvgpu_free_pages(struct nvgpu_page_allocator *a,
struct nvgpu_page_alloc *alloc,
bool free_buddy_alloc)
{
struct page_alloc_chunk *chunk;
while (!nvgpu_list_empty(&alloc->alloc_chunks)) {
chunk = nvgpu_list_first_entry(&alloc->alloc_chunks,
page_alloc_chunk,
list_entry);
nvgpu_list_del(&chunk->list_entry);
if (free_buddy_alloc)
nvgpu_free(&a->source_allocator, chunk->base);
nvgpu_kmem_cache_free(a->chunk_cache, chunk);
}
nvgpu_kmem_cache_free(a->alloc_cache, alloc);
}
static int __insert_page_alloc(struct nvgpu_page_allocator *a,
struct nvgpu_page_alloc *alloc)
{
alloc->tree_entry.key_start = alloc->base;
alloc->tree_entry.key_end = alloc->base + alloc->length;
nvgpu_rbtree_insert(&alloc->tree_entry, &a->allocs);
return 0;
}
static struct nvgpu_page_alloc *__find_page_alloc(
struct nvgpu_page_allocator *a,
u64 addr)
{
struct nvgpu_page_alloc *alloc;
struct nvgpu_rbtree_node *node = NULL;
nvgpu_rbtree_search(addr, &node, a->allocs);
if (!node)
return NULL;
alloc = nvgpu_page_alloc_from_rbtree_node(node);
nvgpu_rbtree_unlink(node, &a->allocs);
return alloc;
}
static struct page_alloc_slab_page *alloc_slab_page(
struct nvgpu_page_allocator *a,
struct page_alloc_slab *slab)
{
struct page_alloc_slab_page *slab_page;
slab_page = nvgpu_kmem_cache_alloc(a->slab_page_cache);
if (!slab_page) {
palloc_dbg(a, "OOM: unable to alloc slab_page struct!\n");
return NULL;
}
memset(slab_page, 0, sizeof(*slab_page));
slab_page->page_addr = nvgpu_alloc(&a->source_allocator, a->page_size);
if (!slab_page->page_addr) {
nvgpu_kmem_cache_free(a->slab_page_cache, slab_page);
palloc_dbg(a, "OOM: vidmem is full!\n");
return NULL;
}
nvgpu_init_list_node(&slab_page->list_entry);
slab_page->slab_size = slab->slab_size;
slab_page->nr_objects = (u32)a->page_size / slab->slab_size;
slab_page->nr_objects_alloced = 0;
slab_page->owner = slab;
slab_page->state = SP_NONE;
a->pages_alloced++;
palloc_dbg(a, "Allocated new slab page @ 0x%012llx size=%u\n",
slab_page->page_addr, slab_page->slab_size);
return slab_page;
}
static void free_slab_page(struct nvgpu_page_allocator *a,
struct page_alloc_slab_page *slab_page)
{
palloc_dbg(a, "Freeing slab page @ 0x%012llx\n", slab_page->page_addr);
BUG_ON((slab_page->state != SP_NONE && slab_page->state != SP_EMPTY) ||
slab_page->nr_objects_alloced != 0 ||
slab_page->bitmap != 0);
nvgpu_free(&a->source_allocator, slab_page->page_addr);
a->pages_freed++;
nvgpu_kmem_cache_free(a->slab_page_cache, slab_page);
}
/*
* This expects @alloc to have 1 empty page_alloc_chunk already added to the
* alloc_chunks list.
*/
static int __do_slab_alloc(struct nvgpu_page_allocator *a,
struct page_alloc_slab *slab,
struct nvgpu_page_alloc *alloc)
{
struct page_alloc_slab_page *slab_page = NULL;
struct page_alloc_chunk *chunk;
unsigned long offs;
/*
* Check the partial and empty lists to see if we have some space
* readily available. Take the slab_page out of what ever list it
* was in since it may be put back into a different list later.
*/
if (!nvgpu_list_empty(&slab->partial)) {
slab_page = nvgpu_list_first_entry(&slab->partial,
page_alloc_slab_page,
list_entry);
del_slab_page_from_partial(slab, slab_page);
} else if (!nvgpu_list_empty(&slab->empty)) {
slab_page = nvgpu_list_first_entry(&slab->empty,
page_alloc_slab_page,
list_entry);
del_slab_page_from_empty(slab, slab_page);
}
if (!slab_page) {
slab_page = alloc_slab_page(a, slab);
if (!slab_page)
return -ENOMEM;
}
/*
* We now have a slab_page. Do the alloc.
*/
offs = bitmap_find_next_zero_area(&slab_page->bitmap,
slab_page->nr_objects,
0, 1, 0);
if (offs >= slab_page->nr_objects) {
WARN(1, "Empty/partial slab with no free objects?");
/* Add the buggy page to the full list... This isn't ideal. */
add_slab_page_to_full(slab, slab_page);
return -ENOMEM;
}
bitmap_set(&slab_page->bitmap, offs, 1);
slab_page->nr_objects_alloced++;
if (slab_page->nr_objects_alloced < slab_page->nr_objects)
add_slab_page_to_partial(slab, slab_page);
else if (slab_page->nr_objects_alloced == slab_page->nr_objects)
add_slab_page_to_full(slab, slab_page);
else
BUG(); /* Should be impossible to hit this. */
/*
* Handle building the nvgpu_page_alloc struct. We expect one
* page_alloc_chunk to be present.
*/
alloc->slab_page = slab_page;
alloc->nr_chunks = 1;
alloc->length = slab_page->slab_size;
alloc->base = slab_page->page_addr + (offs * slab_page->slab_size);
chunk = nvgpu_list_first_entry(&alloc->alloc_chunks,
page_alloc_chunk, list_entry);
chunk->base = alloc->base;
chunk->length = alloc->length;
return 0;
}
/*
* Allocate from a slab instead of directly from the page allocator.
*/
static struct nvgpu_page_alloc *__nvgpu_alloc_slab(
struct nvgpu_page_allocator *a, u64 len)
{
int err, slab_nr;
struct page_alloc_slab *slab;
struct nvgpu_page_alloc *alloc = NULL;
struct page_alloc_chunk *chunk = NULL;
/*
* Align the length to a page and then divide by the page size (4k for
* this code). ilog2() of that then gets us the correct slab to use.
*/
slab_nr = (int)ilog2(PAGE_ALIGN(len) >> 12);
slab = &a->slabs[slab_nr];
alloc = nvgpu_kmem_cache_alloc(a->alloc_cache);
if (!alloc) {
palloc_dbg(a, "OOM: could not alloc page_alloc struct!\n");
goto fail;
}
chunk = nvgpu_kmem_cache_alloc(a->chunk_cache);
if (!chunk) {
palloc_dbg(a, "OOM: could not alloc alloc_chunk struct!\n");
goto fail;
}
nvgpu_init_list_node(&alloc->alloc_chunks);
nvgpu_list_add(&chunk->list_entry, &alloc->alloc_chunks);
err = __do_slab_alloc(a, slab, alloc);
if (err)
goto fail;
palloc_dbg(a, "Alloc 0x%04llx sr=%d id=0x%010llx [slab]\n",
len, slab_nr, alloc->base);
a->nr_slab_allocs++;
return alloc;
fail:
if (alloc)
nvgpu_kmem_cache_free(a->alloc_cache, alloc);
if (chunk)
nvgpu_kmem_cache_free(a->chunk_cache, chunk);
return NULL;
}
static void __nvgpu_free_slab(struct nvgpu_page_allocator *a,
struct nvgpu_page_alloc *alloc)
{
struct page_alloc_slab_page *slab_page = alloc->slab_page;
struct page_alloc_slab *slab = slab_page->owner;
enum slab_page_state new_state;
int offs;
offs = (u32)(alloc->base - slab_page->page_addr) / slab_page->slab_size;
bitmap_clear(&slab_page->bitmap, offs, 1);
slab_page->nr_objects_alloced--;
if (slab_page->nr_objects_alloced == 0)
new_state = SP_EMPTY;
else
new_state = SP_PARTIAL;
/*
* Need to migrate the page to a different list.
*/
if (new_state != slab_page->state) {
/* Delete - can't be in empty. */
if (slab_page->state == SP_PARTIAL)
del_slab_page_from_partial(slab, slab_page);
else
del_slab_page_from_full(slab, slab_page);
/* And add. */
if (new_state == SP_EMPTY) {
if (nvgpu_list_empty(&slab->empty))
add_slab_page_to_empty(slab, slab_page);
else
free_slab_page(a, slab_page);
} else {
add_slab_page_to_partial(slab, slab_page);
}
}
/*
* Now handle the page_alloc.
*/
__nvgpu_free_pages(a, alloc, false);
a->nr_slab_frees++;
return;
}
/*
* Allocate physical pages. Since the underlying allocator is a buddy allocator
* the returned pages are always contiguous. However, since there could be
* fragmentation in the space this allocator will collate smaller non-contiguous
* allocations together if necessary.
*/
static struct nvgpu_page_alloc *__do_nvgpu_alloc_pages(
struct nvgpu_page_allocator *a, u64 pages)
{
struct nvgpu_page_alloc *alloc;
struct page_alloc_chunk *c;
u64 max_chunk_len = pages << a->page_shift;
int i = 0;
alloc = nvgpu_kmem_cache_alloc(a->alloc_cache);
if (!alloc)
goto fail;
memset(alloc, 0, sizeof(*alloc));
nvgpu_init_list_node(&alloc->alloc_chunks);
alloc->length = pages << a->page_shift;
while (pages) {
u64 chunk_addr = 0;
u64 chunk_pages = (u64)1 << __fls(pages);
u64 chunk_len = chunk_pages << a->page_shift;
/*
* Take care of the possibility that the allocation must be
* contiguous. If this is not the first iteration then that
* means the first iteration failed to alloc the entire
* requested size. The buddy allocator guarantees any given
* single alloc is contiguous.
*/
if (a->flags & GPU_ALLOC_FORCE_CONTIG && i != 0)
goto fail_cleanup;
if (chunk_len > max_chunk_len)
chunk_len = max_chunk_len;
/*
* Keep attempting to allocate in smaller chunks until the alloc
* either succeeds or is smaller than the page_size of the
* allocator (i.e the allocator is OOM).
*/
do {
chunk_addr = nvgpu_alloc(&a->source_allocator,
chunk_len);
/* Divide by 2 and try again */
if (!chunk_addr) {
palloc_dbg(a, "balloc failed: 0x%llx\n",
chunk_len);
chunk_len >>= 1;
max_chunk_len = chunk_len;
}
} while (!chunk_addr && chunk_len >= a->page_size);
chunk_pages = chunk_len >> a->page_shift;
if (!chunk_addr) {
palloc_dbg(a, "bailing @ 0x%llx\n", chunk_len);
goto fail_cleanup;
}
c = nvgpu_kmem_cache_alloc(a->chunk_cache);
if (!c) {
nvgpu_free(&a->source_allocator, chunk_addr);
goto fail_cleanup;
}
pages -= chunk_pages;
c->base = chunk_addr;
c->length = chunk_len;
nvgpu_list_add(&c->list_entry, &alloc->alloc_chunks);
i++;
}
alloc->nr_chunks = i;
c = nvgpu_list_first_entry(&alloc->alloc_chunks,
page_alloc_chunk, list_entry);
alloc->base = c->base;
return alloc;
fail_cleanup:
while (!nvgpu_list_empty(&alloc->alloc_chunks)) {
c = nvgpu_list_first_entry(&alloc->alloc_chunks,
page_alloc_chunk, list_entry);
nvgpu_list_del(&c->list_entry);
nvgpu_free(&a->source_allocator, c->base);
nvgpu_kmem_cache_free(a->chunk_cache, c);
}
nvgpu_kmem_cache_free(a->alloc_cache, alloc);
fail:
return NULL;
}
static struct nvgpu_page_alloc *__nvgpu_alloc_pages(
struct nvgpu_page_allocator *a, u64 len)
{
struct nvgpu_page_alloc *alloc = NULL;
struct page_alloc_chunk *c;
u64 pages;
int i = 0;
pages = ALIGN(len, a->page_size) >> a->page_shift;
alloc = __do_nvgpu_alloc_pages(a, pages);
if (!alloc) {
palloc_dbg(a, "Alloc 0x%llx (%llu) (failed)\n",
pages << a->page_shift, pages);
return NULL;
}
palloc_dbg(a, "Alloc 0x%llx (%llu) id=0x%010llx\n",
pages << a->page_shift, pages, alloc->base);
nvgpu_list_for_each_entry(c, &alloc->alloc_chunks,
page_alloc_chunk, list_entry) {
palloc_dbg(a, " Chunk %2d: 0x%010llx + 0x%llx\n",
i++, c->base, c->length);
}
return alloc;
}
/*
* Allocate enough pages to satisfy @len. Page size is determined at
* initialization of the allocator.
*
* The return is actually a pointer to a struct nvgpu_page_alloc pointer. This
* is because it doesn't make a lot of sense to return the address of the first
* page in the list of pages (since they could be discontiguous). This has
* precedent in the dma_alloc APIs, though, it's really just an annoying
* artifact of the fact that the nvgpu_alloc() API requires a u64 return type.
*/
static u64 nvgpu_page_alloc(struct nvgpu_allocator *__a, u64 len)
{
struct nvgpu_page_allocator *a = page_allocator(__a);
struct nvgpu_page_alloc *alloc = NULL;
u64 real_len;
/*
* If we want contig pages we have to round up to a power of two. It's
* easier to do that here than in the buddy allocator.
*/
real_len = a->flags & GPU_ALLOC_FORCE_CONTIG ?
roundup_pow_of_two(len) : len;
alloc_lock(__a);
if (a->flags & GPU_ALLOC_4K_VIDMEM_PAGES &&
real_len <= (a->page_size / 2))
alloc = __nvgpu_alloc_slab(a, real_len);
else
alloc = __nvgpu_alloc_pages(a, real_len);
if (!alloc) {
alloc_unlock(__a);
return 0;
}
__insert_page_alloc(a, alloc);
a->nr_allocs++;
if (real_len > a->page_size / 2)
a->pages_alloced += alloc->length >> a->page_shift;
alloc_unlock(__a);
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER)
return alloc->base;
else
return (u64) (uintptr_t) alloc;
}
/*
* Note: this will remove the nvgpu_page_alloc struct from the RB tree
* if it's found.
*/
static void nvgpu_page_free(struct nvgpu_allocator *__a, u64 base)
{
struct nvgpu_page_allocator *a = page_allocator(__a);
struct nvgpu_page_alloc *alloc;
alloc_lock(__a);
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER)
alloc = __find_page_alloc(a, base);
else
alloc = __find_page_alloc(a,
((struct nvgpu_page_alloc *)(uintptr_t)base)->base);
if (!alloc) {
palloc_dbg(a, "Hrm, found no alloc?\n");
goto done;
}
a->nr_frees++;
palloc_dbg(a, "Free 0x%llx id=0x%010llx\n",
alloc->length, alloc->base);
/*
* Frees *alloc.
*/
if (alloc->slab_page) {
__nvgpu_free_slab(a, alloc);
} else {
a->pages_freed += (alloc->length >> a->page_shift);
__nvgpu_free_pages(a, alloc, true);
}
done:
alloc_unlock(__a);
}
static struct nvgpu_page_alloc *__nvgpu_alloc_pages_fixed(
struct nvgpu_page_allocator *a, u64 base, u64 length, u32 unused)
{
struct nvgpu_page_alloc *alloc;
struct page_alloc_chunk *c;
alloc = nvgpu_kmem_cache_alloc(a->alloc_cache);
c = nvgpu_kmem_cache_alloc(a->chunk_cache);
if (!alloc || !c)
goto fail;
alloc->base = nvgpu_alloc_fixed(&a->source_allocator, base, length, 0);
if (!alloc->base) {
WARN(1, "nvgpu: failed to fixed alloc pages @ 0x%010llx", base);
goto fail;
}
alloc->nr_chunks = 1;
alloc->length = length;
nvgpu_init_list_node(&alloc->alloc_chunks);
c->base = alloc->base;
c->length = length;
nvgpu_list_add(&c->list_entry, &alloc->alloc_chunks);
return alloc;
fail:
if (c)
nvgpu_kmem_cache_free(a->chunk_cache, c);
if (alloc)
nvgpu_kmem_cache_free(a->alloc_cache, alloc);
return NULL;
}
/*
* @page_size is ignored.
*/
static u64 nvgpu_page_alloc_fixed(struct nvgpu_allocator *__a,
u64 base, u64 len, u32 page_size)
{
struct nvgpu_page_allocator *a = page_allocator(__a);
struct nvgpu_page_alloc *alloc = NULL;
struct page_alloc_chunk *c;
u64 aligned_len, pages;
int i = 0;
aligned_len = ALIGN(len, a->page_size);
pages = aligned_len >> a->page_shift;
alloc_lock(__a);
alloc = __nvgpu_alloc_pages_fixed(a, base, aligned_len, 0);
if (!alloc) {
alloc_unlock(__a);
return 0;
}
__insert_page_alloc(a, alloc);
alloc_unlock(__a);
palloc_dbg(a, "Alloc [fixed] @ 0x%010llx + 0x%llx (%llu)\n",
alloc->base, aligned_len, pages);
nvgpu_list_for_each_entry(c, &alloc->alloc_chunks,
page_alloc_chunk, list_entry) {
palloc_dbg(a, " Chunk %2d: 0x%010llx + 0x%llx\n",
i++, c->base, c->length);
}
a->nr_fixed_allocs++;
a->pages_alloced += pages;
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER)
return alloc->base;
else
return (u64) (uintptr_t) alloc;
}
static void nvgpu_page_free_fixed(struct nvgpu_allocator *__a,
u64 base, u64 len)
{
struct nvgpu_page_allocator *a = page_allocator(__a);
struct nvgpu_page_alloc *alloc;
alloc_lock(__a);
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER) {
alloc = __find_page_alloc(a, base);
if (!alloc)
goto done;
} else {
alloc = (struct nvgpu_page_alloc *) (uintptr_t) base;
}
palloc_dbg(a, "Free [fixed] 0x%010llx + 0x%llx\n",
alloc->base, alloc->length);
a->nr_fixed_frees++;
a->pages_freed += (alloc->length >> a->page_shift);
/*
* This works for the time being since the buddy allocator
* uses the same free function for both fixed and regular
* allocs. This would have to be updated if the underlying
* allocator were to change.
*/
__nvgpu_free_pages(a, alloc, true);
done:
alloc_unlock(__a);
}
static void nvgpu_page_allocator_destroy(struct nvgpu_allocator *__a)
{
struct nvgpu_page_allocator *a = page_allocator(__a);
alloc_lock(__a);
nvgpu_kfree(nvgpu_alloc_to_gpu(__a), a);
__a->priv = NULL;
alloc_unlock(__a);
}
#ifdef CONFIG_DEBUG_FS
static void nvgpu_page_print_stats(struct nvgpu_allocator *__a,
struct seq_file *s, int lock)
{
struct nvgpu_page_allocator *a = page_allocator(__a);
int i;
if (lock)
alloc_lock(__a);
__alloc_pstat(s, __a, "Page allocator:\n");
__alloc_pstat(s, __a, " allocs %lld\n", a->nr_allocs);
__alloc_pstat(s, __a, " frees %lld\n", a->nr_frees);
__alloc_pstat(s, __a, " fixed_allocs %lld\n", a->nr_fixed_allocs);
__alloc_pstat(s, __a, " fixed_frees %lld\n", a->nr_fixed_frees);
__alloc_pstat(s, __a, " slab_allocs %lld\n", a->nr_slab_allocs);
__alloc_pstat(s, __a, " slab_frees %lld\n", a->nr_slab_frees);
__alloc_pstat(s, __a, " pages alloced %lld\n", a->pages_alloced);
__alloc_pstat(s, __a, " pages freed %lld\n", a->pages_freed);
__alloc_pstat(s, __a, "\n");
/*
* Slab info.
*/
if (a->flags & GPU_ALLOC_4K_VIDMEM_PAGES) {
__alloc_pstat(s, __a, "Slabs:\n");
__alloc_pstat(s, __a, " size empty partial full\n");
__alloc_pstat(s, __a, " ---- ----- ------- ----\n");
for (i = 0; i < a->nr_slabs; i++) {
struct page_alloc_slab *slab = &a->slabs[i];
__alloc_pstat(s, __a, " %-9u %-9d %-9u %u\n",
slab->slab_size,
slab->nr_empty, slab->nr_partial,
slab->nr_full);
}
__alloc_pstat(s, __a, "\n");
}
__alloc_pstat(s, __a, "Source alloc: %s\n",
a->source_allocator.name);
nvgpu_alloc_print_stats(&a->source_allocator, s, lock);
if (lock)
alloc_unlock(__a);
}
#endif
static const struct nvgpu_allocator_ops page_ops = {
.alloc = nvgpu_page_alloc,
.free = nvgpu_page_free,
.alloc_fixed = nvgpu_page_alloc_fixed,
.free_fixed = nvgpu_page_free_fixed,
.reserve_carveout = nvgpu_page_reserve_co,
.release_carveout = nvgpu_page_release_co,
.base = nvgpu_page_alloc_base,
.length = nvgpu_page_alloc_length,
.end = nvgpu_page_alloc_end,
.inited = nvgpu_page_alloc_inited,
.space = nvgpu_page_alloc_space,
.fini = nvgpu_page_allocator_destroy,
#ifdef CONFIG_DEBUG_FS
.print_stats = nvgpu_page_print_stats,
#endif
};
/*
* nr_slabs is computed as follows: divide page_size by 4096 to get number of
* 4k pages in page_size. Then take the base 2 log of that to get number of
* slabs. For 64k page_size that works on like:
*
* 1024*64 / 1024*4 = 16
* ilog2(16) = 4
*
* That gives buckets of 1, 2, 4, and 8 pages (i.e 4k, 8k, 16k, 32k).
*/
static int nvgpu_page_alloc_init_slabs(struct nvgpu_page_allocator *a)
{
size_t nr_slabs = ilog2(a->page_size >> 12);
unsigned int i;
a->slabs = nvgpu_kcalloc(nvgpu_alloc_to_gpu(a->owner),
nr_slabs,
sizeof(struct page_alloc_slab));
if (!a->slabs)
return -ENOMEM;
a->nr_slabs = nr_slabs;
for (i = 0; i < nr_slabs; i++) {
struct page_alloc_slab *slab = &a->slabs[i];
slab->slab_size = SZ_4K * (1 << i);
nvgpu_init_list_node(&slab->empty);
nvgpu_init_list_node(&slab->partial);
nvgpu_init_list_node(&slab->full);
slab->nr_empty = 0;
slab->nr_partial = 0;
slab->nr_full = 0;
}
return 0;
}
int nvgpu_page_allocator_init(struct gk20a *g, struct nvgpu_allocator *__a,
const char *name, u64 base, u64 length,
u64 blk_size, u64 flags)
{
struct nvgpu_page_allocator *a;
char buddy_name[sizeof(__a->name)];
int err;
if (blk_size < SZ_4K)
return -EINVAL;
a = nvgpu_kzalloc(g, sizeof(struct nvgpu_page_allocator));
if (!a)
return -ENOMEM;
err = __nvgpu_alloc_common_init(__a, g, name, a, false, &page_ops);
if (err)
goto fail;
a->alloc_cache = nvgpu_kmem_cache_create(g,
sizeof(struct nvgpu_page_alloc));
a->chunk_cache = nvgpu_kmem_cache_create(g,
sizeof(struct page_alloc_chunk));
a->slab_page_cache = nvgpu_kmem_cache_create(g,
sizeof(struct page_alloc_slab_page));
if (!a->alloc_cache || !a->chunk_cache || !a->slab_page_cache) {
err = -ENOMEM;
goto fail;
}
a->base = base;
a->length = length;
a->page_size = blk_size;
a->page_shift = __ffs(blk_size);
a->allocs = NULL;
a->owner = __a;
a->flags = flags;
if (flags & GPU_ALLOC_4K_VIDMEM_PAGES && blk_size > SZ_4K) {
err = nvgpu_page_alloc_init_slabs(a);
if (err)
goto fail;
}
snprintf(buddy_name, sizeof(buddy_name), "%s-src", name);
err = nvgpu_buddy_allocator_init(g, &a->source_allocator, buddy_name,
base, length, blk_size, 0);
if (err)
goto fail;
#ifdef CONFIG_DEBUG_FS
nvgpu_init_alloc_debug(g, __a);
#endif
palloc_dbg(a, "New allocator: type page\n");
palloc_dbg(a, " base 0x%llx\n", a->base);
palloc_dbg(a, " size 0x%llx\n", a->length);
palloc_dbg(a, " page_size 0x%llx\n", a->page_size);
palloc_dbg(a, " flags 0x%llx\n", a->flags);
palloc_dbg(a, " slabs: %d\n", a->nr_slabs);
return 0;
fail:
if (a->alloc_cache)
nvgpu_kmem_cache_destroy(a->alloc_cache);
if (a->chunk_cache)
nvgpu_kmem_cache_destroy(a->chunk_cache);
if (a->slab_page_cache)
nvgpu_kmem_cache_destroy(a->slab_page_cache);
nvgpu_kfree(g, a);
return err;
}