Files
linux-nvgpu/drivers/gpu/nvgpu/hal/fifo/tsg_gv11b_fusa.c
Sagar Kamble 693305c0fd gpu: nvgpu: subcontext add/remove support
Subcontext PDBs and valid mask in the instance blocks of the channels
in various subcontexts has to be updated when new subcontext is
created or a subcontext is removed.

Replayable fault state is cached in the channel structure. Replayable
fault state for subcontext is set based on first channel's bind
parameter. It was earlier programmed in function channel_setup_ramfc.

init_inst_block_core is updated to setup TSG level pdb map and mask.

Added new hal gv11b_channel_bind to enable the subcontext on channel
bind.

Bug 3677982

Change-Id: I58156c5b3ab6309b6a4b8e72b0e798d6a39c1bee
Signed-off-by: Sagar Kamble <skamble@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2719994
Reviewed-by: Ankur Kishore <ankkishore@nvidia.com>
GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
2022-09-08 21:00:20 -07:00

367 lines
10 KiB
C

/*
* Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/channel.h>
#include <nvgpu/engines.h>
#include <nvgpu/runlist.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/tsg.h>
#include <nvgpu/tsg_subctx.h>
#include <nvgpu/dma.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/static_analysis.h>
#include "hal/fifo/tsg_gv11b.h"
/* can be removed after runque support is added */
#define GR_RUNQUE 0U /* pbdma 0 */
#define ASYNC_CE_RUNQUE 2U /* pbdma 2 */
/* TSG enable sequence applicable for Volta and onwards */
void gv11b_tsg_enable(struct nvgpu_tsg *tsg)
{
struct gk20a *g = tsg->g;
struct nvgpu_channel *ch;
struct nvgpu_channel *last_ch = NULL;
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list, nvgpu_channel, ch_entry) {
g->ops.channel.enable(ch);
last_ch = ch;
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
if (last_ch != NULL) {
g->ops.usermode.ring_doorbell(last_ch);
}
}
void gv11b_tsg_unbind_channel_check_eng_faulted(struct nvgpu_tsg *tsg,
struct nvgpu_channel *ch,
struct nvgpu_channel_hw_state *hw_state)
{
struct gk20a *g = tsg->g;
struct nvgpu_mem *mem;
/*
* If channel has FAULTED set, clear the CE method buffer
* if saved out channel is same as faulted channel
*/
if (!hw_state->eng_faulted || (tsg->eng_method_buffers == NULL)) {
return;
}
/*
* CE method buffer format :
* DWord0 = method count
* DWord1 = channel id
*
* It is sufficient to write 0 to method count to invalidate
*/
mem = &tsg->eng_method_buffers[ASYNC_CE_RUNQUE];
if (ch->chid == nvgpu_mem_rd32(g, mem, 1)) {
nvgpu_mem_wr32(g, mem, 0, 0);
}
}
void gv11b_tsg_bind_channel_eng_method_buffers(struct nvgpu_tsg *tsg,
struct nvgpu_channel *ch)
{
struct gk20a *g = tsg->g;
u64 gpu_va;
nvgpu_assert(tsg->runlist != NULL);
if (tsg->eng_method_buffers == NULL) {
nvgpu_log_info(g, "eng method buffer NULL");
return;
}
if (tsg->runlist->id == nvgpu_engine_get_fast_ce_runlist_id(g)) {
gpu_va = tsg->eng_method_buffers[ASYNC_CE_RUNQUE].gpu_va;
} else {
gpu_va = tsg->eng_method_buffers[GR_RUNQUE].gpu_va;
}
g->ops.ramin.set_eng_method_buffer(g, &ch->inst_block, gpu_va);
}
int gv11b_tsg_init_eng_method_buffers(struct gk20a *g, struct nvgpu_tsg *tsg)
{
struct vm_gk20a *vm = g->mm.bar2.vm;
int err = 0;
int i;
unsigned int runque, buffer_size;
unsigned int num_pbdma = nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_PBDMA);
if (tsg->eng_method_buffers != NULL) {
nvgpu_warn(g, "eng method buffers already allocated");
return 0;
}
buffer_size = nvgpu_safe_add_u32(nvgpu_safe_mult_u32((9U + 1U + 3U),
g->ops.ce.get_num_pce(g)), 2U);
buffer_size = nvgpu_safe_mult_u32((27U * 5U), buffer_size);
buffer_size = PAGE_ALIGN(buffer_size);
nvgpu_log_info(g, "method buffer size in bytes %d", buffer_size);
tsg->eng_method_buffers = nvgpu_kzalloc(g,
num_pbdma * sizeof(struct nvgpu_mem));
if (tsg->eng_method_buffers == NULL) {
nvgpu_err(g, "could not alloc eng method buffers");
return -ENOMEM;
}
for (runque = 0; runque < num_pbdma; runque++) {
err = nvgpu_dma_alloc_map_sys(vm, buffer_size,
&tsg->eng_method_buffers[runque]);
if (err != 0) {
nvgpu_err(g, "alloc eng method buffers, runque=%d",
runque);
goto clean_up;
}
}
nvgpu_log_info(g, "eng method buffers allocated");
return 0;
clean_up:
for (i = ((int)runque - 1); i >= 0; i--) {
nvgpu_dma_unmap_free(vm, &tsg->eng_method_buffers[i]);
}
nvgpu_kfree(g, tsg->eng_method_buffers);
tsg->eng_method_buffers = NULL;
return -ENOMEM;
}
void gv11b_tsg_deinit_eng_method_buffers(struct gk20a *g,
struct nvgpu_tsg *tsg)
{
struct vm_gk20a *vm = g->mm.bar2.vm;
unsigned int runque;
if (tsg->eng_method_buffers == NULL) {
return;
}
for (runque = 0;
runque < nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_PBDMA);
runque++) {
nvgpu_dma_unmap_free(vm, &tsg->eng_method_buffers[runque]);
}
nvgpu_kfree(g, tsg->eng_method_buffers);
tsg->eng_method_buffers = NULL;
nvgpu_log_info(g, "eng method buffers de-allocated");
}
int gv11b_tsg_init_subctx_state(struct gk20a *g, struct nvgpu_tsg *tsg)
{
u32 max_subctx_count;
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_TSG_SUBCONTEXTS)) {
return 0;
}
max_subctx_count = g->ops.gr.init.get_max_subctx_count();
/*
* Allocate an array of subctx PDB configuration values for all supported
* subcontexts. For each subctx, there will be two registers to be
* configured, ram_in_sc_page_dir_base_lo_w(i) and
* ram_in_sc_page_dir_base_hi_w(i) in the instance block for the channels
* belonging to this TSG. Two more unused registers follow these for each
* subcontext. Same PDB table/array is programmed in the instance block
* of all the channels.
*
* As the subcontexts are bound to the TSG, their configurations register
* values are added to the array and corresponding bit is set in the
* valid_subctxs bitmask. And as the subcontexts are unbound from
* the TSG, their configurations register values are added to the
* array and corresponding bit is set in the valid_subctxs bitmask.
*/
tsg->subctx_pdb_map = nvgpu_kzalloc(g, max_subctx_count * sizeof(u32) * 4U);
if (tsg->subctx_pdb_map == NULL) {
nvgpu_err(g, "subctx_pdb_map alloc failed");
return -ENOMEM;
}
g->ops.ramin.init_subctx_pdb_map(g, tsg->subctx_pdb_map);
tsg->valid_subctxs = nvgpu_kzalloc(g,
BITS_TO_LONGS(max_subctx_count) *
sizeof(unsigned long));
if (tsg->valid_subctxs == NULL) {
nvgpu_err(g, "valid_subctxs bitmap alloc failed");
nvgpu_kfree(g, tsg->subctx_pdb_map);
tsg->subctx_pdb_map = NULL;
return -ENOMEM;
}
return 0;
}
void gv11b_tsg_deinit_subctx_state(struct gk20a *g, struct nvgpu_tsg *tsg)
{
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_TSG_SUBCONTEXTS)) {
return;
}
nvgpu_kfree(g, tsg->subctx_pdb_map);
tsg->subctx_pdb_map = NULL;
nvgpu_kfree(g, tsg->valid_subctxs);
tsg->valid_subctxs = NULL;
}
static void gv11b_tsg_update_inst_blocks_subctxs(struct nvgpu_tsg *tsg)
{
struct gk20a *g = tsg->g;
struct nvgpu_channel *ch;
nvgpu_list_for_each_entry(ch, &tsg->ch_list, nvgpu_channel, ch_entry) {
g->ops.ramin.init_subctx_pdb(g, &ch->inst_block,
tsg->subctx_pdb_map);
g->ops.ramin.init_subctx_mask(g, &ch->inst_block,
tsg->valid_subctxs);
}
}
static void gv11b_tsg_update_subctxs(struct nvgpu_tsg *tsg, u32 subctx_id,
struct vm_gk20a *vm, bool replayable, bool add)
{
struct gk20a *g = tsg->g;
if (add) {
g->ops.ramin.set_subctx_pdb_info(g, subctx_id, vm->pdb.mem,
replayable, true, tsg->subctx_pdb_map);
nvgpu_set_bit(subctx_id, tsg->valid_subctxs);
} else {
g->ops.ramin.set_subctx_pdb_info(g, subctx_id, NULL,
false, false, tsg->subctx_pdb_map);
nvgpu_clear_bit(subctx_id, tsg->valid_subctxs);
}
gv11b_tsg_update_inst_blocks_subctxs(tsg);
}
static void gv11b_tsg_add_new_subctx_channel_hw(struct nvgpu_channel *ch,
bool replayable)
{
struct nvgpu_tsg *tsg = nvgpu_tsg_from_ch(ch);
struct nvgpu_tsg_subctx *subctx = ch->subctx;
struct vm_gk20a *vm = nvgpu_tsg_subctx_get_vm(subctx);
u32 subctx_id = nvgpu_tsg_subctx_get_id(subctx);
nvgpu_tsg_subctx_set_replayable(subctx, replayable);
gv11b_tsg_update_subctxs(tsg, subctx_id, vm, replayable, true);
}
static void gv11b_tsg_add_existing_subctx_channel_hw(struct nvgpu_channel *ch,
bool replayable)
{
struct nvgpu_tsg *tsg = nvgpu_tsg_from_ch(ch);
struct nvgpu_tsg_subctx *subctx = ch->subctx;
struct gk20a *g = ch->g;
if (nvgpu_tsg_subctx_get_replayable(subctx) != replayable) {
nvgpu_err(g, "subctx replayable mismatch. ignoring.");
}
g->ops.ramin.init_subctx_pdb(g, &ch->inst_block, tsg->subctx_pdb_map);
g->ops.ramin.init_subctx_mask(g, &ch->inst_block, tsg->valid_subctxs);
}
int gv11b_tsg_add_subctx_channel_hw(struct nvgpu_channel *ch, bool replayable)
{
struct nvgpu_tsg *tsg = nvgpu_tsg_from_ch(ch);
struct gk20a *g = tsg->g;
int err;
nvgpu_log(g, gpu_dbg_fn, " ");
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_TSG_SUBCONTEXTS)) {
return 0;
}
/*
* Add new subcontext to the TSG. Sequence for this is below:
* 1. Disable TSG.
* 2. Preempt TSG.
* 3. Program subctx PDBs in instance blocks of all channels in
* the TSG.
* 4. Enable TSG.
* This sequence is executed acquiring TSG level lock ctx_init_lock.
* to synchronize with channels from other subcontexts.
* ctx_init_lock is reused here. It is originally there for
* synchronizing the GR context initialization by various
* channels in the TSG.
*/
nvgpu_mutex_acquire(&tsg->ctx_init_lock);
g->ops.tsg.disable(tsg);
err = g->ops.fifo.preempt_tsg(g, tsg);
if (err != 0) {
g->ops.tsg.enable(tsg);
nvgpu_mutex_release(&tsg->ctx_init_lock);
nvgpu_err(g, "preempt failed %d", err);
return err;
}
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
if (!nvgpu_test_bit(ch->subctx_id, tsg->valid_subctxs)) {
gv11b_tsg_add_new_subctx_channel_hw(ch, replayable);
} else {
gv11b_tsg_add_existing_subctx_channel_hw(ch, replayable);
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
g->ops.tsg.enable(tsg);
nvgpu_mutex_release(&tsg->ctx_init_lock);
nvgpu_log(g, gpu_dbg_fn, "done");
return 0;
}
void gv11b_tsg_remove_subctx_channel_hw(struct nvgpu_channel *ch)
{
struct nvgpu_tsg *tsg = nvgpu_tsg_from_ch(ch);
struct gk20a *g = tsg->g;
u32 subctx_id;
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_TSG_SUBCONTEXTS)) {
return;
}
subctx_id = nvgpu_tsg_subctx_get_id(ch->subctx);
gv11b_tsg_update_subctxs(tsg, subctx_id, NULL, false, false);
}