Files
linux-nvgpu/drivers/gpu/nvgpu/common/linux/dma.c
Alex Waterman 72f40c211e gpu: nvgpu: page align DMA allocs
Explicitly page align DMA memory allocations. Non-page aligned
DMA allocs can lead to nvgpu_mem structs that have a size that's
not page aligned. Those allocs, in some cases, can cause vGPU
maps to return an error.

More generally DMA allocs in Linux are never going to not be
page aligned both in size and address. So might as well page align
the alloc size to make code else where in the driver more simple.

To imlpement this an aligned_size field has been added to struct
nvgpu_mem. This field has the real page aligned size of the
allocation. The original size is still saved in size.

Change-Id: Ie08cfc4f39d5f97db84a54b8e314ad1fa53b72be
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1547902
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
2017-09-12 15:54:46 -07:00

515 lines
12 KiB
C

/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/dma-attrs.h>
#include <linux/dma-mapping.h>
#include <linux/version.h>
#include <nvgpu/dma.h>
#include <nvgpu/lock.h>
#include <nvgpu/bug.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/enabled.h>
#include <nvgpu/linux/dma.h>
#include "gk20a/gk20a.h"
#include "gk20a/platform_gk20a.h"
#include "os_linux.h"
#if defined(CONFIG_GK20A_VIDMEM)
static u64 __nvgpu_dma_alloc(struct nvgpu_allocator *allocator, dma_addr_t at,
size_t size)
{
u64 addr = 0;
if (at)
addr = nvgpu_alloc_fixed(allocator, at, size, 0);
else
addr = nvgpu_alloc(allocator, size);
return addr;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
static void nvgpu_dma_flags_to_attrs(unsigned long *attrs,
unsigned long flags)
#define ATTR_ARG(x) *x
#else
static void nvgpu_dma_flags_to_attrs(struct dma_attrs *attrs,
unsigned long flags)
#define ATTR_ARG(x) x
#endif
{
if (flags & NVGPU_DMA_NO_KERNEL_MAPPING)
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, ATTR_ARG(attrs));
if (flags & NVGPU_DMA_FORCE_CONTIGUOUS)
dma_set_attr(DMA_ATTR_FORCE_CONTIGUOUS, ATTR_ARG(attrs));
if (flags & NVGPU_DMA_READ_ONLY)
dma_set_attr(DMA_ATTR_READ_ONLY, ATTR_ARG(attrs));
#undef ATTR_ARG
}
int nvgpu_dma_alloc(struct gk20a *g, size_t size, struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_flags(g, 0, size, mem);
}
int nvgpu_dma_alloc_flags(struct gk20a *g, unsigned long flags, size_t size,
struct nvgpu_mem *mem)
{
if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFIED_MEMORY)) {
/*
* Force the no-kernel-mapping flag on because we don't support
* the lack of it for vidmem - the user should not care when
* using nvgpu_gmmu_alloc_map and it's vidmem, or if there's a
* difference, the user should use the flag explicitly anyway.
*
* Incoming flags are ignored here, since bits other than the
* no-kernel-mapping flag are ignored by the vidmem mapping
* functions anyway.
*/
int err = nvgpu_dma_alloc_flags_vid(g,
NVGPU_DMA_NO_KERNEL_MAPPING,
size, mem);
if (!err)
return 0;
/*
* Fall back to sysmem (which may then also fail) in case
* vidmem is exhausted.
*/
}
return nvgpu_dma_alloc_flags_sys(g, flags, size, mem);
}
int nvgpu_dma_alloc_sys(struct gk20a *g, size_t size, struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_flags_sys(g, 0, size, mem);
}
int nvgpu_dma_alloc_flags_sys(struct gk20a *g, unsigned long flags,
size_t size, struct nvgpu_mem *mem)
{
struct device *d = dev_from_gk20a(g);
int err;
dma_addr_t iova;
gk20a_dbg_fn("");
/*
* Save the old size but for actual allocation purposes the size is
* going to be page aligned.
*/
mem->size = size;
size = PAGE_ALIGN(size);
if (flags) {
DEFINE_DMA_ATTRS(dma_attrs);
nvgpu_dma_flags_to_attrs(&dma_attrs, flags);
if (flags & NVGPU_DMA_NO_KERNEL_MAPPING) {
mem->priv.pages = dma_alloc_attrs(d,
size, &iova, GFP_KERNEL,
__DMA_ATTR(dma_attrs));
if (!mem->priv.pages)
return -ENOMEM;
} else {
mem->cpu_va = dma_alloc_attrs(d,
size, &iova, GFP_KERNEL,
__DMA_ATTR(dma_attrs));
if (!mem->cpu_va)
return -ENOMEM;
}
} else {
mem->cpu_va = dma_alloc_coherent(d, size, &iova, GFP_KERNEL);
if (!mem->cpu_va)
return -ENOMEM;
}
if (flags & NVGPU_DMA_NO_KERNEL_MAPPING)
err = nvgpu_get_sgtable_from_pages(g, &mem->priv.sgt,
mem->priv.pages,
iova, size);
else {
err = nvgpu_get_sgtable(g, &mem->priv.sgt, mem->cpu_va,
iova, size);
memset(mem->cpu_va, 0, size);
}
if (err)
goto fail_free;
mem->aligned_size = size;
mem->aperture = APERTURE_SYSMEM;
mem->priv.flags = flags;
gk20a_dbg_fn("done");
return 0;
fail_free:
dma_free_coherent(d, size, mem->cpu_va, iova);
mem->cpu_va = NULL;
mem->priv.sgt = NULL;
return err;
}
int nvgpu_dma_alloc_vid(struct gk20a *g, size_t size, struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_flags_vid(g,
NVGPU_DMA_NO_KERNEL_MAPPING, size, mem);
}
int nvgpu_dma_alloc_flags_vid(struct gk20a *g, unsigned long flags,
size_t size, struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_flags_vid_at(g, flags, size, mem, 0);
}
int nvgpu_dma_alloc_flags_vid_at(struct gk20a *g, unsigned long flags,
size_t size, struct nvgpu_mem *mem, dma_addr_t at)
{
#if defined(CONFIG_GK20A_VIDMEM)
u64 addr;
int err;
struct nvgpu_allocator *vidmem_alloc = g->mm.vidmem.cleared ?
&g->mm.vidmem.allocator :
&g->mm.vidmem.bootstrap_allocator;
int before_pending;
gk20a_dbg_fn("");
mem->size = size;
size = PAGE_ALIGN(size);
if (!nvgpu_alloc_initialized(&g->mm.vidmem.allocator))
return -ENOSYS;
/*
* Our own allocator doesn't have any flags yet, and we can't
* kernel-map these, so require explicit flags.
*/
WARN_ON(flags != NVGPU_DMA_NO_KERNEL_MAPPING);
nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex);
before_pending = atomic64_read(&g->mm.vidmem.bytes_pending.atomic_var);
addr = __nvgpu_dma_alloc(vidmem_alloc, at, size);
nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex);
if (!addr) {
/*
* If memory is known to be freed soon, let the user know that
* it may be available after a while.
*/
if (before_pending)
return -EAGAIN;
else
return -ENOMEM;
}
if (at)
mem->mem_flags |= NVGPU_MEM_FLAG_FIXED;
mem->priv.sgt = nvgpu_kzalloc(g, sizeof(struct sg_table));
if (!mem->priv.sgt) {
err = -ENOMEM;
goto fail_physfree;
}
err = sg_alloc_table(mem->priv.sgt, 1, GFP_KERNEL);
if (err)
goto fail_kfree;
set_vidmem_page_alloc(mem->priv.sgt->sgl, addr);
sg_set_page(mem->priv.sgt->sgl, NULL, size, 0);
mem->aligned_size = size;
mem->aperture = APERTURE_VIDMEM;
mem->allocator = vidmem_alloc;
mem->priv.flags = flags;
nvgpu_init_list_node(&mem->clear_list_entry);
gk20a_dbg_fn("done at 0x%llx size %zu", addr, size);
return 0;
fail_kfree:
nvgpu_kfree(g, mem->priv.sgt);
fail_physfree:
nvgpu_free(&g->mm.vidmem.allocator, addr);
return err;
#else
return -ENOSYS;
#endif
}
int nvgpu_dma_alloc_map(struct vm_gk20a *vm, size_t size,
struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_map_flags(vm, 0, size, mem);
}
int nvgpu_dma_alloc_map_flags(struct vm_gk20a *vm, unsigned long flags,
size_t size, struct nvgpu_mem *mem)
{
if (!nvgpu_is_enabled(gk20a_from_vm(vm), NVGPU_MM_UNIFIED_MEMORY)) {
/*
* Force the no-kernel-mapping flag on because we don't support
* the lack of it for vidmem - the user should not care when
* using nvgpu_dma_alloc_map and it's vidmem, or if there's a
* difference, the user should use the flag explicitly anyway.
*/
int err = nvgpu_dma_alloc_map_flags_vid(vm,
flags | NVGPU_DMA_NO_KERNEL_MAPPING,
size, mem);
if (!err)
return 0;
/*
* Fall back to sysmem (which may then also fail) in case
* vidmem is exhausted.
*/
}
return nvgpu_dma_alloc_map_flags_sys(vm, flags, size, mem);
}
int nvgpu_dma_alloc_map_sys(struct vm_gk20a *vm, size_t size,
struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_map_flags_sys(vm, 0, size, mem);
}
int nvgpu_dma_alloc_map_flags_sys(struct vm_gk20a *vm, unsigned long flags,
size_t size, struct nvgpu_mem *mem)
{
int err = nvgpu_dma_alloc_flags_sys(vm->mm->g, flags, size, mem);
if (err)
return err;
mem->gpu_va = nvgpu_gmmu_map(vm, mem, size, 0,
gk20a_mem_flag_none, false,
mem->aperture);
if (!mem->gpu_va) {
err = -ENOMEM;
goto fail_free;
}
return 0;
fail_free:
nvgpu_dma_free(vm->mm->g, mem);
return err;
}
int nvgpu_dma_alloc_map_vid(struct vm_gk20a *vm, size_t size,
struct nvgpu_mem *mem)
{
return nvgpu_dma_alloc_map_flags_vid(vm,
NVGPU_DMA_NO_KERNEL_MAPPING, size, mem);
}
int nvgpu_dma_alloc_map_flags_vid(struct vm_gk20a *vm, unsigned long flags,
size_t size, struct nvgpu_mem *mem)
{
int err = nvgpu_dma_alloc_flags_vid(vm->mm->g, flags, size, mem);
if (err)
return err;
mem->gpu_va = nvgpu_gmmu_map(vm, mem, size, 0,
gk20a_mem_flag_none, false,
mem->aperture);
if (!mem->gpu_va) {
err = -ENOMEM;
goto fail_free;
}
return 0;
fail_free:
nvgpu_dma_free(vm->mm->g, mem);
return err;
}
static void nvgpu_dma_free_sys(struct gk20a *g, struct nvgpu_mem *mem)
{
struct device *d = dev_from_gk20a(g);
if (!(mem->mem_flags & NVGPU_MEM_FLAG_SHADOW_COPY) &&
!(mem->mem_flags & __NVGPU_MEM_FLAG_NO_DMA) &&
(mem->cpu_va || mem->priv.pages)) {
if (mem->priv.flags) {
DEFINE_DMA_ATTRS(dma_attrs);
nvgpu_dma_flags_to_attrs(&dma_attrs, mem->priv.flags);
if (mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING) {
dma_free_attrs(d, mem->aligned_size, mem->priv.pages,
sg_dma_address(mem->priv.sgt->sgl),
__DMA_ATTR(dma_attrs));
} else {
dma_free_attrs(d, mem->aligned_size, mem->cpu_va,
sg_dma_address(mem->priv.sgt->sgl),
__DMA_ATTR(dma_attrs));
}
} else {
dma_free_coherent(d, mem->aligned_size, mem->cpu_va,
sg_dma_address(mem->priv.sgt->sgl));
}
mem->cpu_va = NULL;
mem->priv.pages = NULL;
}
/*
* When this flag is set we expect that pages is still populated but not
* by the DMA API.
*/
if (mem->mem_flags & __NVGPU_MEM_FLAG_NO_DMA)
nvgpu_kfree(g, mem->priv.pages);
if (mem->priv.sgt)
nvgpu_free_sgtable(g, &mem->priv.sgt);
mem->size = 0;
mem->aligned_size = 0;
mem->aperture = APERTURE_INVALID;
}
static void nvgpu_dma_free_vid(struct gk20a *g, struct nvgpu_mem *mem)
{
#if defined(CONFIG_GK20A_VIDMEM)
bool was_empty;
/* Sanity check - only this supported when allocating. */
WARN_ON(mem->priv.flags != NVGPU_DMA_NO_KERNEL_MAPPING);
if (mem->mem_flags & NVGPU_MEM_FLAG_USER_MEM) {
nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex);
was_empty = nvgpu_list_empty(&g->mm.vidmem.clear_list_head);
nvgpu_list_add_tail(&mem->clear_list_entry,
&g->mm.vidmem.clear_list_head);
atomic64_add(mem->aligned_size,
&g->mm.vidmem.bytes_pending.atomic_var);
nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex);
if (was_empty) {
cancel_work_sync(&g->mm.vidmem.clear_mem_worker);
schedule_work(&g->mm.vidmem.clear_mem_worker);
}
} else {
nvgpu_memset(g, mem, 0, 0, mem->aligned_size);
nvgpu_free(mem->allocator,
(u64)get_vidmem_page_alloc(mem->priv.sgt->sgl));
nvgpu_free_sgtable(g, &mem->priv.sgt);
mem->size = 0;
mem->aligned_size = 0;
mem->aperture = APERTURE_INVALID;
}
#endif
}
void nvgpu_dma_free(struct gk20a *g, struct nvgpu_mem *mem)
{
switch (mem->aperture) {
case APERTURE_SYSMEM:
return nvgpu_dma_free_sys(g, mem);
case APERTURE_VIDMEM:
return nvgpu_dma_free_vid(g, mem);
default:
break; /* like free() on "null" memory */
}
}
void nvgpu_dma_unmap_free(struct vm_gk20a *vm, struct nvgpu_mem *mem)
{
if (mem->gpu_va)
nvgpu_gmmu_unmap(vm, mem, mem->gpu_va);
mem->gpu_va = 0;
nvgpu_dma_free(vm->mm->g, mem);
}
int nvgpu_get_sgtable(struct gk20a *g, struct sg_table **sgt,
void *cpuva, u64 iova, size_t size)
{
int err = 0;
struct sg_table *tbl;
tbl = nvgpu_kzalloc(g, sizeof(struct sg_table));
if (!tbl) {
err = -ENOMEM;
goto fail;
}
err = dma_get_sgtable(dev_from_gk20a(g), tbl, cpuva, iova, size);
if (err)
goto fail;
sg_dma_address(tbl->sgl) = iova;
*sgt = tbl;
return 0;
fail:
if (tbl)
nvgpu_kfree(g, tbl);
return err;
}
int nvgpu_get_sgtable_from_pages(struct gk20a *g, struct sg_table **sgt,
struct page **pages, u64 iova, size_t size)
{
int err = 0;
struct sg_table *tbl;
tbl = nvgpu_kzalloc(g, sizeof(struct sg_table));
if (!tbl) {
err = -ENOMEM;
goto fail;
}
err = sg_alloc_table_from_pages(tbl, pages,
DIV_ROUND_UP(size, PAGE_SIZE),
0, size, GFP_KERNEL);
if (err)
goto fail;
sg_dma_address(tbl->sgl) = iova;
*sgt = tbl;
return 0;
fail:
if (tbl)
nvgpu_kfree(g, tbl);
return err;
}
void nvgpu_free_sgtable(struct gk20a *g, struct sg_table **sgt)
{
sg_free_table(*sgt);
nvgpu_kfree(g, *sgt);
*sgt = NULL;
}