Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/nvgpu_mem.c
Alex Waterman c49e9e4bcd gpu: nvgpu: split the nvgpu_sgt unit from nvgpu_mem
Split the nvgpu_sgt code out from the nvgpu_mem code. Although the
two chunks of code are related the SGT code is distinct and as
such should be its own unit. To do this a new source file has been
added - nvgpu_sgt.c - which contains all the nvgpu_sgt common APIs.
These are the facade APIs to abstract the actual details of how any
given nvgpu_sgt is actually implemented.

An abstract unit - nvgpu_sgt_os - was also defined. This unit
exists solely for the nvgpu_sgt unit to call so that the OS
specific nvgpu_sgt_os_create_from_mem() API can be moved from the
common nvgpu_sgt unit. Note this also updates the name of what the
OS specific units are expected to call. Common code may still use
the generic nvgpu_sgt_create_from_mem() API.

JIRA NVGPU-1391

Change-Id: I37f5b2bbf9f84c0fb6bc296c3e04ea13518bd4d0
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1946012
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-11-29 03:15:17 -08:00

223 lines
6.0 KiB
C

/*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/kmem.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/dma.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/string.h>
/*
* Make sure to use the right coherency aperture if you use this function! This
* will not add any checks. If you want to simply use the default coherency then
* use nvgpu_aperture_mask().
*/
u32 nvgpu_aperture_mask_coh(struct gk20a *g, enum nvgpu_aperture aperture,
u32 sysmem_mask, u32 sysmem_coh_mask,
u32 vidmem_mask)
{
/*
* Some iGPUs treat sysmem (i.e SoC DRAM) as vidmem. In these cases the
* "sysmem" aperture should really be translated to VIDMEM.
*/
if (!nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)) {
aperture = APERTURE_VIDMEM;
}
switch (aperture) {
case APERTURE_SYSMEM_COH:
return sysmem_coh_mask;
case APERTURE_SYSMEM:
return sysmem_mask;
case APERTURE_VIDMEM:
return vidmem_mask;
case APERTURE_INVALID:
WARN_ON("Bad aperture");
}
return 0;
}
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask)
{
enum nvgpu_aperture ap = mem->aperture;
/*
* Handle the coherent aperture: ideally most of the driver is not
* aware of the difference between coherent and non-coherent sysmem so
* we add this translation step here.
*/
if (nvgpu_is_enabled(g, NVGPU_USE_COHERENT_SYSMEM) &&
ap == APERTURE_SYSMEM) {
ap = APERTURE_SYSMEM_COH;
}
return nvgpu_aperture_mask_coh(g, ap,
sysmem_mask,
sysmem_coh_mask,
vidmem_mask);
}
bool nvgpu_aperture_is_sysmem(enum nvgpu_aperture ap)
{
return ap == APERTURE_SYSMEM_COH || ap == APERTURE_SYSMEM;
}
bool nvgpu_mem_is_sysmem(struct nvgpu_mem *mem)
{
return nvgpu_aperture_is_sysmem(mem->aperture);
}
u64 nvgpu_mem_iommu_translate(struct gk20a *g, u64 phys)
{
/* ensure it is not vidmem allocation */
WARN_ON(nvgpu_addr_is_vidmem_page_alloc(phys));
if (nvgpu_iommuable(g) && g->ops.mm.get_iommu_bit != NULL) {
return phys | 1ULL << g->ops.mm.get_iommu_bit(g);
}
return phys;
}
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
{
u32 data = 0;
if (mem->aperture == APERTURE_SYSMEM) {
u32 *ptr = mem->cpu_va;
WARN_ON(ptr == NULL);
data = ptr[w];
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_rd_n(g, mem, w * sizeof(u32), sizeof(u32), &data);
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
return data;
}
u64 nvgpu_mem_rd32_pair(struct gk20a *g, struct nvgpu_mem *mem, u32 lo, u32 hi)
{
u64 lo_data = U64(nvgpu_mem_rd32(g, mem, lo));
u64 hi_data = U64(nvgpu_mem_rd32(g, mem, hi));
return lo_data | (hi_data << 32ULL);
}
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
{
WARN_ON((offset & 3U) != 0U);
return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
}
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
u32 offset, void *dest, u32 size)
{
WARN_ON((offset & 3U) != 0U);
WARN_ON((size & 3U) != 0U);
if (mem->aperture == APERTURE_SYSMEM) {
u8 *src = (u8 *)mem->cpu_va + offset;
WARN_ON(mem->cpu_va == NULL);
nvgpu_memcpy((u8 *)dest, src, size);
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_rd_n(g, mem, offset, size, dest);
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
{
if (mem->aperture == APERTURE_SYSMEM) {
u32 *ptr = mem->cpu_va;
WARN_ON(ptr == NULL);
ptr[w] = data;
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_wr_n(g, mem, w * sizeof(u32), sizeof(u32), &data);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
{
WARN_ON((offset & 3U) != 0U);
nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
}
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
void *src, u32 size)
{
WARN_ON((offset & 3U) != 0U);
WARN_ON((size & 3U) != 0U);
if (mem->aperture == APERTURE_SYSMEM) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(mem->cpu_va == NULL);
nvgpu_memcpy(dest, (u8 *)src, size);
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_wr_n(g, mem, offset, size, src);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
u32 c, u32 size)
{
WARN_ON((offset & 3U) != 0U);
WARN_ON((size & 3U) != 0U);
WARN_ON((c & ~0xffU) != 0U);
c &= 0xffU;
if (mem->aperture == APERTURE_SYSMEM) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(mem->cpu_va == NULL);
(void) memset(dest, c, size);
} else if (mem->aperture == APERTURE_VIDMEM) {
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
nvgpu_pramin_memset(g, mem, offset, size, repeat_value);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}