Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/vm.c
Martin Radev 81d95456b9 gpu: nvgpu: Rename PLATFORM_ATOMIC to SYSTEM_COHERENT
To support current and future usecases, it would be
beneficial to select the SYSTEM_COHERENT aperture explicitly.

The benefits are:
- platform atomic code is cleaned-up.
- userspace can select the SYSTEM_COHERENT aperture for any
  specific usecases.

Bug 3959027

Change-Id: I6489ebe87fa75cc760930277bad5e0cacca80eb6
Signed-off-by: Martin Radev <mradev@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2864177
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: Seema Khowala <seemaj@nvidia.com>
GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
2023-04-21 11:31:53 -07:00

607 lines
16 KiB
C

/*
* Copyright (c) 2017-2023, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/dma-buf.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <uapi/linux/nvgpu.h>
#include <nvgpu/log.h>
#include<nvgpu/log2.h>
#include <nvgpu/lock.h>
#include <nvgpu/rbtree.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/nvgpu_sgt.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/utils.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/linux/vm.h>
#include <nvgpu/linux/nvgpu_mem.h>
#include "platform_gk20a.h"
#include "os_linux.h"
#include "dmabuf_priv.h"
#include "dmabuf_vidmem.h"
#define dev_from_vm(vm) dev_from_gk20a(vm->mm->g)
static int nvgpu_vm_translate_linux_flags(struct gk20a *g, u32 flags, u32 *out_core_flags)
{
u32 core_flags = 0;
u32 consumed_flags = 0;
u32 map_access_bitmask =
(BIT32(NVGPU_AS_MAP_BUFFER_FLAGS_ACCESS_BITMASK_SIZE) - 1U) <<
NVGPU_AS_MAP_BUFFER_FLAGS_ACCESS_BITMASK_OFFSET;
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) != 0U) {
core_flags |= NVGPU_VM_MAP_FIXED_OFFSET;
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_CACHEABLE) != 0U) {
core_flags |= NVGPU_VM_MAP_CACHEABLE;
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_CACHEABLE;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_IO_COHERENT) != 0U) {
core_flags |= NVGPU_VM_MAP_IO_COHERENT;
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_IO_COHERENT;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_UNMAPPED_PTE) != 0U) {
core_flags |= NVGPU_VM_MAP_UNMAPPED_PTE;
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_UNMAPPED_PTE;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_L3_ALLOC) != 0U) {
/* Consume the flag even if the core flag cannot be set */
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_L3_ALLOC;
if (!nvgpu_is_enabled(g, NVGPU_DISABLE_L3_SUPPORT))
core_flags |= NVGPU_VM_MAP_L3_ALLOC;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_TEGRA_RAW) != 0U) {
core_flags |= NVGPU_VM_MAP_TEGRA_RAW;
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_TEGRA_RAW;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_SYSTEM_COHERENT) != 0U) {
core_flags |= NVGPU_VM_MAP_SYSTEM_COHERENT;
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_SYSTEM_COHERENT;
}
if ((flags & NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS) != 0U) {
nvgpu_warn(g, "Ignoring deprecated flag: "
"NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS");
consumed_flags |= NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS;
}
/* copy the map access bitfield from flags */
core_flags |= (flags & map_access_bitmask);
consumed_flags |= (flags & map_access_bitmask);
if (consumed_flags != flags) {
nvgpu_err(g, "Extra flags: 0x%x", consumed_flags ^ flags);
return -EINVAL;
}
*out_core_flags = core_flags;
return 0;
}
static int nvgpu_vm_translate_map_access(struct gk20a *g, u32 flags,
u32 *map_access)
{
*map_access = (flags >> NVGPU_AS_MAP_BUFFER_FLAGS_ACCESS_BITMASK_OFFSET) &
(BIT32(NVGPU_AS_MAP_BUFFER_FLAGS_ACCESS_BITMASK_SIZE) - 1U);
if (*map_access > NVGPU_AS_MAP_BUFFER_ACCESS_READ_WRITE) {
nvgpu_err(g, "Invalid map access specified %u", *map_access);
return -EINVAL;
}
return 0;
}
static struct nvgpu_mapped_buf *nvgpu_vm_find_mapped_buf_reverse(
struct vm_gk20a *vm, struct dma_buf *dmabuf, s16 kind)
{
struct nvgpu_rbtree_node *node = NULL;
struct nvgpu_rbtree_node *root = vm->mapped_buffers;
nvgpu_rbtree_enum_start(0, &node, root);
while (node) {
struct nvgpu_mapped_buf *mapped_buffer =
mapped_buffer_from_rbtree_node(node);
if (mapped_buffer->os_priv.dmabuf == dmabuf &&
mapped_buffer->kind == kind)
return mapped_buffer;
nvgpu_rbtree_enum_next(&node, node);
}
return NULL;
}
int nvgpu_vm_find_buf(struct vm_gk20a *vm, u64 gpu_va,
struct dma_buf **dmabuf,
u64 *offset)
{
struct nvgpu_mapped_buf *mapped_buffer;
struct gk20a *g = gk20a_from_vm(vm);
nvgpu_log_fn(g, "gpu_va=0x%llx", gpu_va);
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
mapped_buffer = nvgpu_vm_find_mapped_buf_range(vm, gpu_va);
if (!mapped_buffer) {
nvgpu_mutex_release(&vm->update_gmmu_lock);
return -EINVAL;
}
*dmabuf = mapped_buffer->os_priv.dmabuf;
*offset = gpu_va - mapped_buffer->addr;
nvgpu_mutex_release(&vm->update_gmmu_lock);
return 0;
}
u64 nvgpu_os_buf_get_size(struct nvgpu_os_buffer *os_buf)
{
return os_buf->dmabuf->size;
}
/*
* vm->update_gmmu_lock must be held. This checks to see if we already have
* mapped the passed buffer into this VM. If so, just return the existing
* mapping address.
*/
struct nvgpu_mapped_buf *nvgpu_vm_find_mapping(struct vm_gk20a *vm,
struct nvgpu_os_buffer *os_buf,
u64 map_addr,
u32 flags,
s16 kind)
{
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_mapped_buf *mapped_buffer = NULL;
if (flags & NVGPU_VM_MAP_FIXED_OFFSET) {
mapped_buffer = nvgpu_vm_find_mapped_buf(vm, map_addr);
if (!mapped_buffer)
return NULL;
if (mapped_buffer->os_priv.dmabuf != os_buf->dmabuf ||
mapped_buffer->kind != kind)
return NULL;
} else {
mapped_buffer =
nvgpu_vm_find_mapped_buf_reverse(vm,
os_buf->dmabuf,
kind);
if (!mapped_buffer)
return NULL;
}
if (mapped_buffer->flags != flags)
return NULL;
nvgpu_log(g, gpu_dbg_map,
"gv: 0x%04x_%08x + 0x%-7zu "
"[dma: 0x%010llx, pa: 0x%010llx] "
"pgsz=%-3dKb as=%-2d "
"flags=0x%x apt=%s (reused)",
u64_hi32(mapped_buffer->addr), u64_lo32(mapped_buffer->addr),
os_buf->dmabuf->size,
(u64)sg_dma_address(mapped_buffer->os_priv.sgt->sgl),
(u64)sg_phys(mapped_buffer->os_priv.sgt->sgl),
vm->gmmu_page_sizes[mapped_buffer->pgsz_idx] >> 10,
vm_aspace_id(vm),
mapped_buffer->flags,
nvgpu_aperture_str(gk20a_dmabuf_aperture(g, os_buf->dmabuf)));
/*
* If we find the mapping here then that means we have mapped it already
* and the prior pin and get must be undone.
* The SGT is reused in the case of the dmabuf supporting drvdata. When
* the dmabuf doesn't support drvdata, prior SGT is unpinned as the
* new SGT was pinned at the beginning of the current map call.
*/
nvgpu_mm_unpin(os_buf->dev, os_buf->dmabuf,
mapped_buffer->os_priv.attachment,
mapped_buffer->os_priv.sgt);
dma_buf_put(os_buf->dmabuf);
return mapped_buffer;
}
static int nvgpu_convert_fmode_to_gmmu_rw_attr(struct gk20a *g, fmode_t mode,
enum gk20a_mem_rw_flag *rw_attr)
{
fmode_t fmode_rw_flag = mode & (FMODE_READ | FMODE_PREAD |
FMODE_WRITE | FMODE_PWRITE);
int ret = 0;
if (!fmode_rw_flag) {
return -EINVAL;
}
switch (fmode_rw_flag) {
case FMODE_READ:
case FMODE_PREAD:
case (FMODE_READ | FMODE_PREAD):
*rw_attr = gk20a_mem_flag_read_only;
break;
case FMODE_WRITE:
case FMODE_PWRITE:
case (FMODE_WRITE | FMODE_PWRITE):
ret = -EINVAL;
break;
default:
*rw_attr = gk20a_mem_flag_none;
break;
}
return ret;
}
int nvgpu_vm_map_linux(struct vm_gk20a *vm,
struct dma_buf *dmabuf,
u64 map_addr,
u32 map_access_requested,
u32 flags,
u32 page_size,
s16 compr_kind,
s16 incompr_kind,
u64 buffer_offset,
u64 mapping_size,
struct vm_gk20a_mapping_batch *batch,
u64 *gpu_va)
{
enum gk20a_mem_rw_flag buffer_rw_mode = gk20a_mem_flag_none;
struct gk20a *g = gk20a_from_vm(vm);
struct device *dev = dev_from_gk20a(g);
struct nvgpu_os_buffer os_buf;
struct sg_table *sgt;
struct nvgpu_sgt *nvgpu_sgt = NULL;
struct nvgpu_mapped_buf *mapped_buffer = NULL;
struct dma_buf_attachment *attachment;
enum nvgpu_aperture buffer_aperture;
int err = 0;
nvgpu_log(g, gpu_dbg_map, "dmabuf file mode: 0x%x mapping flags: 0x%x",
dmabuf->file->f_mode, flags);
err = nvgpu_convert_fmode_to_gmmu_rw_attr(g, dmabuf->file->f_mode,
&buffer_rw_mode);
if (err != 0) {
nvgpu_err(g, "dmabuf file mode 0x%x not supported for GMMU map",
dmabuf->file->f_mode);
return err;
}
sgt = nvgpu_mm_pin(dev, dmabuf, &attachment,
(buffer_rw_mode == gk20a_mem_flag_read_only) ||
(map_access_requested == NVGPU_VM_MAP_ACCESS_READ_ONLY) ?
DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
if (IS_ERR(sgt)) {
nvgpu_warn(g, "Failed to pin dma_buf!");
return PTR_ERR(sgt);
}
os_buf.dmabuf = dmabuf;
os_buf.attachment = attachment;
os_buf.dev = dev;
buffer_aperture = gk20a_dmabuf_aperture(g, dmabuf);
if (buffer_aperture == APERTURE_INVALID) {
err = -EINVAL;
goto clean_up;
}
if ((flags & NVGPU_VM_MAP_SYSTEM_COHERENT) != 0U) {
if (buffer_aperture == APERTURE_VIDMEM) {
nvgpu_err(g, "Vidmem buffers cannot be mapped into the SYSTEM_COHERENT aperture");
err = -EINVAL;
goto clean_up;
}
buffer_aperture = APERTURE_SYSMEM_COH;
}
nvgpu_sgt = nvgpu_linux_sgt_create(g, sgt);
if (!nvgpu_sgt) {
err = -ENOMEM;
goto clean_up;
}
err = nvgpu_vm_map(vm,
&os_buf,
nvgpu_sgt,
map_addr,
mapping_size,
buffer_offset,
buffer_rw_mode,
map_access_requested,
flags,
compr_kind,
incompr_kind,
batch,
buffer_aperture,
&mapped_buffer);
nvgpu_sgt_free(g, nvgpu_sgt);
if (err != 0) {
goto clean_up;
}
mapped_buffer->os_priv.dmabuf = dmabuf;
mapped_buffer->os_priv.attachment = attachment;
mapped_buffer->os_priv.sgt = sgt;
*gpu_va = mapped_buffer->addr;
return 0;
clean_up:
nvgpu_mm_unpin(dev, dmabuf, attachment, sgt);
return err;
}
int nvgpu_vm_map_buffer(struct vm_gk20a *vm,
int dmabuf_fd,
u64 *map_addr,
u32 flags, /*NVGPU_AS_MAP_BUFFER_FLAGS_*/
u32 page_size,
s16 compr_kind,
s16 incompr_kind,
u64 buffer_offset,
u64 mapping_size,
struct vm_gk20a_mapping_batch *batch)
{
struct gk20a *g = gk20a_from_vm(vm);
struct dma_buf *dmabuf;
u32 map_access;
u32 core_flags;
u64 ret_va;
int err = 0;
/* get ref to the mem handle (released on unmap_locked) */
dmabuf = dma_buf_get(dmabuf_fd);
if (IS_ERR(dmabuf)) {
nvgpu_warn(g, "%s: fd %d is not a dmabuf",
__func__, dmabuf_fd);
return PTR_ERR(dmabuf);
}
/*
* For regular maps we do not accept either an input address or a
* buffer_offset.
*/
if (!(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) &&
(buffer_offset || *map_addr)) {
nvgpu_err(g,
"Regular map with addr/buf offset is not supported!");
dma_buf_put(dmabuf);
return -EINVAL;
}
/*
* Map size is always buffer size for non fixed mappings. As such map
* size should be left as zero by userspace for non-fixed maps.
*/
if (mapping_size && !(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)) {
nvgpu_err(g, "map_size && non-fixed-mapping!");
dma_buf_put(dmabuf);
return -EINVAL;
}
/* verify that we're not overflowing the buffer, i.e.
* (buffer_offset + mapping_size) > dmabuf->size.
*
* Since buffer_offset + mapping_size could overflow, first check
* that mapping size < dmabuf_size, at which point we can subtract
* mapping_size from both sides for the final comparison.
*/
if ((mapping_size > dmabuf->size) ||
(buffer_offset > (dmabuf->size - mapping_size))) {
nvgpu_err(g,
"buf size %llx < (offset(%llx) + map_size(%llx))",
(u64)dmabuf->size, buffer_offset, mapping_size);
dma_buf_put(dmabuf);
return -EINVAL;
}
err = nvgpu_vm_translate_map_access(g, flags, &map_access);
if (err != 0) {
nvgpu_err(g, "map access translation failed");
dma_buf_put(dmabuf);
return -EINVAL;
}
if (((flags & NVGPU_AS_MAP_BUFFER_FLAGS_TEGRA_RAW) != 0U) &&
!nvgpu_is_enabled(g, NVGPU_SUPPORT_TEGRA_RAW)) {
nvgpu_err(g, "TEGRA_RAW requested when not supported.");
dma_buf_put(dmabuf);
return -EINVAL;
}
err = nvgpu_vm_translate_linux_flags(g, flags, &core_flags);
if (err < 0) {
dma_buf_put(dmabuf);
return err;
}
err = nvgpu_vm_map_linux(vm, dmabuf, *map_addr, map_access,
core_flags,
page_size,
compr_kind, incompr_kind,
buffer_offset,
mapping_size,
batch,
&ret_va);
if (!err)
*map_addr = ret_va;
else
dma_buf_put(dmabuf);
return err;
}
int nvgpu_vm_mapping_modify(struct vm_gk20a *vm,
s16 compr_kind,
s16 incompr_kind,
u64 map_address,
u64 buffer_offset,
u64 buffer_size)
{
struct gk20a *g = gk20a_from_vm(vm);
int ret = -EINVAL;
struct nvgpu_mapped_buf *mapped_buffer;
struct nvgpu_sgt *nvgpu_sgt = NULL;
u32 pgsz_idx;
u32 page_size;
s16 kind = NV_KIND_INVALID;
u64 ctag_offset = 0UL;
#ifdef CONFIG_NVGPU_COMPRESSION
u64 compression_page_size;
#endif
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
mapped_buffer = nvgpu_vm_find_mapped_buf(vm, map_address);
if (mapped_buffer == NULL) {
nvgpu_err(g, "no buffer at map_address 0x%llx", map_address);
goto out;
}
nvgpu_assert(mapped_buffer->addr == map_address);
pgsz_idx = mapped_buffer->pgsz_idx;
page_size = vm->gmmu_page_sizes[pgsz_idx];
if (buffer_offset & (page_size - 1)) {
nvgpu_err(g, "buffer_offset 0x%llx not page aligned",
buffer_offset);
goto out;
}
if (buffer_size & (page_size - 1)) {
nvgpu_err(g, "buffer_size 0x%llx not page aligned",
buffer_size);
goto out;
}
if ((buffer_size > mapped_buffer->size) ||
((mapped_buffer->size - buffer_size) < buffer_offset)) {
nvgpu_err(g,
"buffer end exceeds buffer size. 0x%llx + 0x%llx > 0x%llx",
buffer_offset, buffer_size, mapped_buffer->size);
goto out;
}
if (compr_kind == NV_KIND_INVALID && incompr_kind == NV_KIND_INVALID) {
nvgpu_err(g, "both compr_kind and incompr_kind are invalid\n");
goto out;
}
/*
* Fall back is the incompressible kind.
*/
kind = incompr_kind;
/*
* If we support compression and there's a compressible kind, use it.
*/
#ifdef CONFIG_NVGPU_COMPRESSION
if (mapped_buffer->ctag_offset != 0) {
if (compr_kind == NV_KIND_INVALID) {
kind = incompr_kind;
} else {
kind = compr_kind;
}
}
#endif
/*
* If we don't support compression you still need to have a valid kind
* specified.
*/
if (kind == NV_KIND_INVALID) {
nvgpu_err(g, "invalid incompr_kind specified");
goto out;
}
nvgpu_sgt = nvgpu_linux_sgt_create(g, mapped_buffer->os_priv.sgt);
if (!nvgpu_sgt) {
ret = -ENOMEM;
goto out;
}
#ifdef CONFIG_NVGPU_COMPRESSION
ctag_offset = mapped_buffer->ctag_offset;
compression_page_size = g->ops.fb.compression_page_size(g);
nvgpu_assert(compression_page_size > 0ULL);
ctag_offset += (u32)(buffer_offset >>
nvgpu_ilog2(compression_page_size));
#endif
if (g->ops.mm.gmmu.map(vm,
map_address + buffer_offset,
nvgpu_sgt,
buffer_offset,
buffer_size,
pgsz_idx,
kind,
ctag_offset,
mapped_buffer->flags,
mapped_buffer->rw_flag,
false /* not clear_ctags */,
false /* not sparse */,
false /* not priv */,
NULL /* no mapping_batch handle */,
mapped_buffer->aperture) != 0ULL) {
ret = 0;
}
nvgpu_sgt_free(g, nvgpu_sgt);
out:
nvgpu_mutex_release(&vm->update_gmmu_lock);
return ret;
}
/*
* This is the function call-back for freeing OS specific components of an
* nvgpu_mapped_buf. This should most likely never be called outside of the
* core MM framework!
*
* Note: the VM lock will be held.
*/
void nvgpu_vm_unmap_system(struct nvgpu_mapped_buf *mapped_buffer)
{
struct vm_gk20a *vm = mapped_buffer->vm;
nvgpu_mm_unpin(dev_from_vm(vm), mapped_buffer->os_priv.dmabuf,
mapped_buffer->os_priv.attachment,
mapped_buffer->os_priv.sgt);
dma_buf_put(mapped_buffer->os_priv.dmabuf);
}