Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/nvgpu_mem.c
Antony Clince Alex c36752fe3d gpu: nvgpu: sim: make ring buffer independent of PAGE_SIZE
The simulator ring buffer DMA interface supports buffers of the following sizes:
4, 8, 12 and 16K. At present, it is configured to 4K and it  happens to match
with the kernel PAGE_SIZE, which is used to wrap back the GET/PUT pointers once
4K is reached. However, this is not always true; for instance, take 64K pages.
Hence, replace PAGE_SIZE with SIM_BFR_SIZE.

Introduce macro NVGPU_CPU_PAGE_SIZE which aliases to PAGE_SIZE and replace
latter with former.

Bug 200658101
Jira NVGPU-6018

Change-Id: I83cc62b87291734015c51f3e5a98173549e065de
Signed-off-by: Antony Clince Alex <aalex@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2420728
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-12-15 14:13:28 -06:00

419 lines
13 KiB
C

/*
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/kmem.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/nvgpu_sgt.h>
#include <nvgpu/dma.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/pramin.h>
#include <nvgpu/string.h>
/*
* Make sure to use the right coherency aperture if you use this function! This
* will not add any checks. If you want to simply use the default coherency then
* use nvgpu_aperture_mask().
*/
u32 nvgpu_aperture_mask_raw(struct gk20a *g, enum nvgpu_aperture aperture,
u32 sysmem_mask, u32 sysmem_coh_mask,
u32 vidmem_mask)
{
u32 ret_mask = 0;
if ((aperture == APERTURE_INVALID) || (aperture >= APERTURE_MAX_ENUM)) {
nvgpu_do_assert_print(g, "Bad aperture");
return 0;
}
/*
* Some iGPUs treat sysmem (i.e SoC DRAM) as vidmem. In these cases the
* "sysmem" aperture should really be translated to VIDMEM.
*/
if (!nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)) {
aperture = APERTURE_VIDMEM;
}
switch (aperture) {
case APERTURE_SYSMEM_COH:
ret_mask = sysmem_coh_mask;
break;
case APERTURE_SYSMEM:
ret_mask = sysmem_mask;
break;
case APERTURE_VIDMEM:
ret_mask = vidmem_mask;
break;
default:
nvgpu_do_assert_print(g, "Bad aperture");
ret_mask = 0;
break;
}
return ret_mask;
}
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask)
{
enum nvgpu_aperture ap = mem->aperture;
return nvgpu_aperture_mask_raw(g, ap,
sysmem_mask,
sysmem_coh_mask,
vidmem_mask);
}
bool nvgpu_aperture_is_sysmem(enum nvgpu_aperture ap)
{
return (ap == APERTURE_SYSMEM_COH) || (ap == APERTURE_SYSMEM);
}
bool nvgpu_mem_is_sysmem(struct nvgpu_mem *mem)
{
return nvgpu_aperture_is_sysmem(mem->aperture);
}
u64 nvgpu_mem_iommu_translate(struct gk20a *g, u64 phys)
{
/* ensure it is not vidmem allocation */
#ifdef CONFIG_NVGPU_DGPU
WARN_ON(nvgpu_addr_is_vidmem_page_alloc(phys));
#endif
if (nvgpu_iommuable(g) && (g->ops.mm.gmmu.get_iommu_bit != NULL)) {
return phys | (1ULL << g->ops.mm.gmmu.get_iommu_bit(g));
}
return phys;
}
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u64 w)
{
u32 data = 0;
if (mem->aperture == APERTURE_SYSMEM) {
u32 *ptr = mem->cpu_va;
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(ptr == NULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
data = ptr[w];
}
#ifdef CONFIG_NVGPU_DGPU
else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_rd_n(g, mem, w * (u64)sizeof(u32),
(u64)sizeof(u32), &data);
}
#endif
else {
nvgpu_do_assert_print(g, "Accessing unallocated nvgpu_mem");
}
return data;
}
u64 nvgpu_mem_rd32_pair(struct gk20a *g, struct nvgpu_mem *mem, u32 lo, u32 hi)
{
u64 lo_data = U64(nvgpu_mem_rd32(g, mem, lo));
u64 hi_data = U64(nvgpu_mem_rd32(g, mem, hi));
return lo_data | (hi_data << 32ULL);
}
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u64 offset)
{
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON((offset & 3ULL) != 0ULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
return nvgpu_mem_rd32(g, mem, offset / (u64)sizeof(u32));
}
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
u64 offset, void *dest, u64 size)
{
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON((offset & 3ULL) != 0ULL);
WARN_ON((size & 3ULL) != 0ULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
if (mem->aperture == APERTURE_SYSMEM) {
u8 *src = (u8 *)mem->cpu_va + offset;
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(mem->cpu_va == NULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
nvgpu_memcpy((u8 *)dest, src, size);
}
#ifdef CONFIG_NVGPU_DGPU
else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_rd_n(g, mem, offset, size, dest);
}
#endif
else {
nvgpu_do_assert_print(g, "Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u64 w, u32 data)
{
if (mem->aperture == APERTURE_SYSMEM) {
u32 *ptr = mem->cpu_va;
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(ptr == NULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
ptr[w] = data;
}
#ifdef CONFIG_NVGPU_DGPU
else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_wr_n(g, mem, w * (u64)sizeof(u32),
(u64)sizeof(u32), &data);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
}
#endif
else {
nvgpu_do_assert_print(g, "Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u64 offset, u32 data)
{
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON((offset & 3ULL) != 0ULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
nvgpu_mem_wr32(g, mem, offset / (u64)sizeof(u32), data);
}
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u64 offset,
void *src, u64 size)
{
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON((offset & 3ULL) != 0ULL);
WARN_ON((size & 3ULL) != 0ULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
if (mem->aperture == APERTURE_SYSMEM) {
u8 *dest = (u8 *)mem->cpu_va + offset;
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(mem->cpu_va == NULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
nvgpu_memcpy(dest, (u8 *)src, size);
}
#ifdef CONFIG_NVGPU_DGPU
else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_wr_n(g, mem, offset, size, src);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
}
#endif
else {
nvgpu_do_assert_print(g, "Accessing unallocated nvgpu_mem");
}
}
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u64 offset,
u32 c, u64 size)
{
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 3, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 3, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 3, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON((offset & 3ULL) != 0ULL);
WARN_ON((size & 3ULL) != 0ULL);
WARN_ON((c & ~0xffU) != 0U);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
c &= 0xffU;
if (mem->aperture == APERTURE_SYSMEM) {
u8 *dest = (u8 *)mem->cpu_va + offset;
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(mem->cpu_va == NULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
(void) memset(dest, (int)c, size);
}
#ifdef CONFIG_NVGPU_DGPU
else if (mem->aperture == APERTURE_VIDMEM) {
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
nvgpu_pramin_memset(g, mem, offset, size, repeat_value);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
}
#endif
else {
nvgpu_do_assert_print(g, "Accessing unallocated nvgpu_mem");
}
}
static void *nvgpu_mem_phys_sgl_next(void *sgl)
{
struct nvgpu_mem_sgl *sgl_impl = (struct nvgpu_mem_sgl *)sgl;
return (void *)(void *)sgl_impl->next;
}
/*
* Provided for compatibility - the DMA address is the same as the phys address
* for these nvgpu_mem's.
*/
static u64 nvgpu_mem_phys_sgl_dma(void *sgl)
{
struct nvgpu_mem_sgl *sgl_impl = (struct nvgpu_mem_sgl *)sgl;
return sgl_impl->phys;
}
static u64 nvgpu_mem_phys_sgl_phys(struct gk20a *g, void *sgl)
{
struct nvgpu_mem_sgl *sgl_impl = (struct nvgpu_mem_sgl *)sgl;
return sgl_impl->phys;
}
static u64 nvgpu_mem_phys_sgl_ipa_to_pa(struct gk20a *g,
void *sgl, u64 ipa, u64 *pa_len)
{
return ipa;
}
static u64 nvgpu_mem_phys_sgl_length(void *sgl)
{
struct nvgpu_mem_sgl *sgl_impl = (struct nvgpu_mem_sgl *)sgl;
return sgl_impl->length;
}
static u64 nvgpu_mem_phys_sgl_gpu_addr(struct gk20a *g, void *sgl,
struct nvgpu_gmmu_attrs *attrs)
{
struct nvgpu_mem_sgl *sgl_impl = (struct nvgpu_mem_sgl *)sgl;
return sgl_impl->phys;
}
static void nvgpu_mem_phys_sgt_free(struct gk20a *g, struct nvgpu_sgt *sgt)
{
/*
* No-op here. The free is handled by freeing the nvgpu_mem itself.
*/
}
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 8_7), "Bug 2823817")
static const struct nvgpu_sgt_ops nvgpu_mem_phys_ops = {
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 8_7))
.sgl_next = nvgpu_mem_phys_sgl_next,
.sgl_dma = nvgpu_mem_phys_sgl_dma,
.sgl_phys = nvgpu_mem_phys_sgl_phys,
.sgl_ipa = nvgpu_mem_phys_sgl_phys,
.sgl_ipa_to_pa = nvgpu_mem_phys_sgl_ipa_to_pa,
.sgl_length = nvgpu_mem_phys_sgl_length,
.sgl_gpu_addr = nvgpu_mem_phys_sgl_gpu_addr,
.sgt_free = nvgpu_mem_phys_sgt_free,
/*
* The physical nvgpu_mems are never IOMMU'able by definition.
*/
.sgt_iommuable = NULL
};
int nvgpu_mem_create_from_phys(struct gk20a *g, struct nvgpu_mem *dest,
u64 src_phys, u64 nr_pages)
{
int ret = 0;
struct nvgpu_sgt *sgt;
struct nvgpu_mem_sgl *sgl;
/*
* Do the two operations that can fail before touching *dest.
*/
sgt = nvgpu_kzalloc(g, sizeof(*sgt));
sgl = nvgpu_kzalloc(g, sizeof(*sgl));
if ((sgt == NULL) || (sgl == NULL)) {
nvgpu_kfree(g, sgt);
nvgpu_kfree(g, sgl);
return -ENOMEM;
}
(void) memset(dest, 0, sizeof(*dest));
dest->aperture = APERTURE_SYSMEM;
dest->size = nvgpu_safe_mult_u64(nr_pages,
(u64)NVGPU_CPU_PAGE_SIZE);
dest->aligned_size = dest->size;
dest->mem_flags = NVGPU_MEM_FLAG_NO_DMA;
dest->phys_sgt = sgt;
sgl->next = NULL;
sgl->phys = src_phys;
sgl->length = dest->size;
sgt->sgl = (void *)sgl;
sgt->ops = &nvgpu_mem_phys_ops;
return ret;
}