Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/module.c
Thomas Fleury 95bb19827e gpu: nvgpu: add sw quiesce
For safety build, nvgpu driver should enter SW quiesce state
in case an uncorrectable error has occurred. In this state, any
activity on the GPU should be prevented, without powering off the GPU.
Also, a minimal set of operations should be used to enter SW quiesce
state.

Entering SW quiesce state does the following:
- set sw_quiesce_pending: when this flag is set, interrupt
  handlers exit after masking interrupts. This should help mitigate
  an interrupt storm.
- wake up thread to complete quiescing.

The thread performs the following:
- set NVGPU_DRIVER_IS_DYING to prevent allocation of new resources
- disable interrupts
- disable fifo scheduling
- preempt all runlists
- set error notifier for all active channels

Note: for channels with usermode submit enabled, userspace can
still ring doorbell, but this will not trigger any work on
engines since fifo scheduling is disabled.

Jira NVGPU-3493

Change-Id: I639a32da754d8833f54dcec1fa23135721d8d89a
Signed-off-by: Thomas Fleury <tfleury@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2172391
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-08-27 10:37:21 -07:00

1692 lines
36 KiB
C

/*
* GK20A Graphics
*
* Copyright (c) 2011-2019, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/reboot.h>
#include <linux/notifier.h>
#include <linux/platform/tegra/common.h>
#include <linux/pci.h>
#include <linux/of_gpio.h>
#include <uapi/linux/nvgpu.h>
#include <dt-bindings/soc/gm20b-fuse.h>
#include <dt-bindings/soc/gp10b-fuse.h>
#include <dt-bindings/soc/gv11b-fuse.h>
#include <soc/tegra/fuse.h>
#include <nvgpu/hal_init.h>
#include <nvgpu/dma.h>
#include <nvgpu/kmem.h>
#include <nvgpu/nvgpu_common.h>
#include <nvgpu/soc.h>
#include <nvgpu/fbp.h>
#include <nvgpu/enabled.h>
#include <nvgpu/debug.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/sim.h>
#include <nvgpu/clk_arb.h>
#include <nvgpu/timers.h>
#include <nvgpu/engines.h>
#include <nvgpu/channel.h>
#include <nvgpu/gr/gr.h>
#include <nvgpu/gr/gr_utils.h>
#include <nvgpu/pmu/pmu_pstate.h>
#include <nvgpu/cyclestats_snapshot.h>
#include <nvgpu/nvgpu_init.h>
#include "platform_gk20a.h"
#include "sysfs.h"
#include "vgpu/vgpu_linux.h"
#include "scale.h"
#include "pci.h"
#include "module.h"
#include "module_usermode.h"
#include "intr.h"
#include "ioctl.h"
#include "ioctl_ctrl.h"
#include "os_linux.h"
#include "os_ops.h"
#include "fecs_trace_linux.h"
#include "driver_common.h"
#include "channel.h"
#include "debug_pmgr.h"
#ifdef CONFIG_NVGPU_SUPPORT_CDE
#include "cde.h"
#endif
#define CLASS_NAME "nvidia-gpu"
/* TODO: Change to e.g. "nvidia-gpu%s" once we have symlinks in place. */
#define GK20A_WAIT_FOR_IDLE_MS 2000
#define CREATE_TRACE_POINTS
#ifdef CONFIG_NVGPU_TRACE
#include <trace/events/gk20a.h>
#endif
static int nvgpu_wait_for_idle(struct gk20a *g)
{
int wait_length = 150; /* 3 second overall max wait. */
int target_usage_count = 0;
bool done = false;
if (g == NULL) {
return -ENODEV;
}
do {
if (nvgpu_atomic_read(&g->usage_count) == target_usage_count) {
done = true;
} else if (wait_length-- < 0) {
done = true;
} else {
nvgpu_msleep(20);
}
} while (!done);
if (wait_length < 0) {
nvgpu_warn(g, "Timed out waiting for idle (%d)!\n",
nvgpu_atomic_read(&g->usage_count));
return -ETIMEDOUT;
}
return 0;
}
static int nvgpu_kernel_shutdown_notification(struct notifier_block *nb,
unsigned long event, void *unused)
{
struct nvgpu_os_linux *l = container_of(nb, struct nvgpu_os_linux,
nvgpu_reboot_nb);
struct gk20a *g = &l->g;
nvgpu_set_enabled(g, NVGPU_KERNEL_IS_DYING, true);
return NOTIFY_DONE;
}
struct device_node *nvgpu_get_node(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return bus->bridge->parent->of_node;
}
return dev->of_node;
}
void gk20a_busy_noresume(struct gk20a *g)
{
pm_runtime_get_noresume(dev_from_gk20a(g));
}
int gk20a_busy(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
int ret = 0;
struct device *dev;
if (!g)
return -ENODEV;
atomic_inc(&g->usage_count.atomic_var);
down_read(&l->busy_lock);
if (!nvgpu_can_busy(g)) {
ret = -ENODEV;
atomic_dec(&g->usage_count.atomic_var);
goto fail;
}
dev = dev_from_gk20a(g);
if (pm_runtime_enabled(dev)) {
/* Increment usage count and attempt to resume device */
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
/* Mark suspended so runtime pm will retry later */
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
atomic_dec(&g->usage_count.atomic_var);
goto fail;
}
} else {
ret = gk20a_gpu_is_virtual(dev) ?
vgpu_pm_finalize_poweron(dev) :
gk20a_pm_finalize_poweron(dev);
if (ret) {
atomic_dec(&g->usage_count.atomic_var);
goto fail;
}
}
fail:
up_read(&l->busy_lock);
return ret < 0 ? ret : 0;
}
void gk20a_idle_nosuspend(struct gk20a *g)
{
pm_runtime_put_noidle(dev_from_gk20a(g));
}
void gk20a_idle(struct gk20a *g)
{
struct device *dev;
atomic_dec(&g->usage_count.atomic_var);
dev = dev_from_gk20a(g);
if (!(dev && nvgpu_can_busy(g)))
return;
if (pm_runtime_enabled(dev)) {
pm_runtime_mark_last_busy(dev);
pm_runtime_put_sync_autosuspend(dev);
}
}
/*
* Undoes gk20a_lockout_registers().
*/
static int gk20a_restore_registers(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
l->regs = l->regs_saved;
l->bar1 = l->bar1_saved;
nvgpu_restore_usermode_registers(g);
return 0;
}
int nvgpu_finalize_poweron_linux(struct nvgpu_os_linux *l)
{
struct gk20a *g = &l->g;
int err;
if (l->init_done)
return 0;
err = nvgpu_channel_init_support_linux(l);
if (err) {
nvgpu_err(g, "failed to init linux channel support");
return err;
}
#ifdef CONFIG_NVGPU_FECS_TRACE
err = gk20a_ctxsw_trace_init(g);
if (err != 0)
nvgpu_warn(g, "could not initialize ctxsw tracing");
#endif
if (l->ops.clk.init_debugfs) {
err = l->ops.clk.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux clk debugfs");
return err;
}
}
if (l->ops.therm.init_debugfs) {
err = l->ops.therm.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux therm debugfs");
return err;
}
}
if (l->ops.fecs_trace.init_debugfs) {
err = l->ops.fecs_trace.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux fecs trace debugfs");
return err;
}
}
if (l->ops.volt.init_debugfs) {
err = l->ops.volt.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux volt debugfs");
return err;
}
}
if (l->ops.s_param.init_debugfs) {
err = l->ops.s_param.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux s_param trace debugfs");
return err;
}
}
err = nvgpu_pmgr_init_debugfs_linux(l);
if (err) {
nvgpu_err(g, "failed to init linux pmgr debugfs");
return err;
}
l->init_done = true;
return 0;
}
void gk20a_init_linux_characteristics(struct gk20a *g)
{
nvgpu_set_enabled(g, NVGPU_SUPPORT_PARTIAL_MAPPINGS, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_DETERMINISTIC_OPTS, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_USERSPACE_MANAGED_AS, true);
if (IS_ENABLED(CONFIG_SYNC)) {
nvgpu_set_enabled(g, NVGPU_SUPPORT_SYNC_FENCE_FDS, true);
}
}
static void therm_alert_work_queue(struct work_struct *work)
{
struct dgpu_thermal_alert *thermal_alert =
container_of(work, struct dgpu_thermal_alert, work);
struct nvgpu_os_linux *l =
container_of(thermal_alert, struct nvgpu_os_linux,
thermal_alert);
struct gk20a *g = &l->g;
nvgpu_clk_arb_send_thermal_alarm(g);
nvgpu_msleep(l->thermal_alert.event_delay * 1000U);
enable_irq(l->thermal_alert.therm_alert_irq);
}
static irqreturn_t therm_irq(int irq, void *dev_id)
{
struct nvgpu_os_linux *l = (struct nvgpu_os_linux *)dev_id;
disable_irq_nosync(irq);
queue_work(l->thermal_alert.workqueue, &l->thermal_alert.work);
return IRQ_HANDLED;
}
static int nvgpu_request_therm_irq(struct nvgpu_os_linux *l)
{
struct device_node *np;
int ret = 0, gpio, index = 0;
u32 irq_flags = IRQ_TYPE_NONE;
u32 event_delay = 10U;
if (l->thermal_alert.workqueue != NULL) {
return ret;
}
np = of_find_node_by_name(NULL, "nvgpu");
if (!np) {
return -ENOENT;
}
gpio = of_get_named_gpio(np, "nvgpu-therm-gpios", index);
if (gpio < 0) {
nvgpu_err(&l->g, "failed to get GPIO %d ", gpio);
return gpio;
}
l->thermal_alert.therm_alert_irq = gpio_to_irq(gpio);
if (of_property_read_u32(np, "alert-interrupt-level", &irq_flags))
nvgpu_info(&l->g, "Missing interrupt-level "
"prop using %d", irq_flags);
if (of_property_read_u32(np, "alert-event-interval", &event_delay))
nvgpu_info(&l->g, "Missing event-interval "
"prop using %d seconds ", event_delay);
l->thermal_alert.event_delay = event_delay;
if (!l->thermal_alert.workqueue) {
l->thermal_alert.workqueue = alloc_workqueue("%s",
WQ_HIGHPRI, 1, "dgpu_thermal_alert");
INIT_WORK(&l->thermal_alert.work, therm_alert_work_queue);
}
ret = devm_request_irq(l->dev, l->thermal_alert.therm_alert_irq ,
therm_irq, irq_flags, "dgpu_therm", l);
if (ret != 0) {
nvgpu_err(&l->g, "IRQ request failed");
}
return ret;
}
int gk20a_pm_finalize_poweron(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err = 0;
nvgpu_log_fn(g, " ");
nvgpu_mutex_acquire(&g->power_lock);
if (g->power_on)
goto done;
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_finalize_poweron(dev_name(dev));
#endif
/* Increment platform power refcount */
if (platform->busy) {
err = platform->busy(dev);
if (err < 0) {
nvgpu_err(g, "failed to poweron platform dependency");
goto done;
}
}
err = gk20a_restore_registers(g);
if (err)
goto done;
nvgpu_restore_usermode_for_poweron(g);
/* Enable interrupt workqueue */
if (!l->nonstall_work_queue) {
l->nonstall_work_queue = alloc_workqueue("%s",
WQ_HIGHPRI, 1, "mc_nonstall");
INIT_WORK(&l->nonstall_fn_work, nvgpu_intr_nonstall_cb);
}
err = nvgpu_detect_chip(g);
if (err)
goto done;
if (g->sim) {
if (g->sim->sim_init_late)
g->sim->sim_init_late(g);
}
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_DGPU_THERMAL_ALERT) &&
nvgpu_platform_is_silicon(g)) {
err = nvgpu_request_therm_irq(l);
if (err && (err != -ENOENT)) {
nvgpu_err(g, "thermal interrupt request failed %d",
err);
goto done;
}
if (err == -ENOENT) {
nvgpu_info(g, "nvgpu-therm-gpio DT entry is missing. "
"Thermal Alert feature will not be enabled");
}
}
err = nvgpu_finalize_poweron(g);
if (err)
goto done;
/* Initialize linux specific flags */
gk20a_init_linux_characteristics(g);
err = nvgpu_init_os_linux_ops(l);
if (err)
goto done;
nvgpu_init_usermode_support(g);
err = nvgpu_finalize_poweron_linux(l);
if (err)
goto done;
#ifdef CONFIG_NVGPU_DGPU
nvgpu_init_mm_ce_context(g);
#endif
nvgpu_vidmem_thread_unpause(&g->mm);
/* Initialise scaling: it will initialize scaling drive only once */
if (IS_ENABLED(CONFIG_GK20A_DEVFREQ) &&
nvgpu_platform_is_silicon(g)) {
gk20a_scale_init(dev);
if (platform->initscale)
platform->initscale(dev);
}
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_finalize_poweron_done(dev_name(dev));
#endif
enable_irq(g->irq_stall);
if (g->irq_stall != g->irq_nonstall)
enable_irq(g->irq_nonstall);
g->irqs_enabled = 1;
gk20a_scale_resume(dev_from_gk20a(g));
#ifdef CONFIG_NVGPU_SUPPORT_CDE
if (platform->has_cde)
gk20a_init_cde_support(l);
#endif
err = gk20a_sched_ctrl_init(g);
if (err) {
nvgpu_err(g, "failed to init sched control");
goto done;
}
g->sw_ready = true;
done:
if (err)
g->power_on = false;
nvgpu_mutex_release(&g->power_lock);
return err;
}
/*
* Locks out the driver from accessing GPU registers. This prevents access to
* thse registers after the GPU has been clock or power gated. This should help
* find annoying bugs where register reads and writes are silently dropped
* after the GPU has been turned off. On older chips these reads and writes can
* also lock the entire CPU up.
*/
static int gk20a_lockout_registers(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
l->regs = NULL;
l->bar1 = NULL;
nvgpu_lockout_usermode_registers(g);
return 0;
}
void nvgpu_disable_irqs(struct gk20a *g)
{
if (g->irqs_enabled) {
disable_irq(g->irq_stall);
if (g->irq_stall != g->irq_nonstall)
disable_irq(g->irq_nonstall);
g->irqs_enabled = 0;
}
}
static int gk20a_pm_prepare_poweroff(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
#endif
struct gk20a_platform *platform = gk20a_get_platform(dev);
bool irqs_enabled;
int ret = 0;
nvgpu_log_fn(g, " ");
nvgpu_mutex_acquire(&g->power_lock);
if (!g->power_on)
goto done;
/* disable IRQs and wait for completion */
irqs_enabled = g->irqs_enabled;
nvgpu_disable_irqs(g);
gk20a_scale_suspend(dev);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
gk20a_cde_suspend(l);
#endif
ret = nvgpu_prepare_poweroff(g);
if (ret)
goto error;
/* Decrement platform power refcount */
if (platform->idle)
platform->idle(dev);
/* Stop CPU from accessing the GPU registers. */
gk20a_lockout_registers(g);
nvgpu_hide_usermode_for_poweroff(g);
nvgpu_mutex_release(&g->power_lock);
return 0;
error:
/* re-enabled IRQs if previously enabled */
if (irqs_enabled) {
enable_irq(g->irq_stall);
if (g->irq_stall != g->irq_nonstall)
enable_irq(g->irq_nonstall);
g->irqs_enabled = 1;
}
gk20a_scale_resume(dev);
done:
nvgpu_mutex_release(&g->power_lock);
return ret;
}
static struct of_device_id tegra_gk20a_of_match[] = {
#ifdef CONFIG_TEGRA_GK20A
{ .compatible = "nvidia,tegra210-gm20b",
.data = &gm20b_tegra_platform },
{ .compatible = "nvidia,tegra186-gp10b",
.data = &gp10b_tegra_platform },
{ .compatible = "nvidia,gv11b",
.data = &gv11b_tegra_platform },
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
{ .compatible = "nvidia,gv11b-vgpu",
.data = &gv11b_vgpu_tegra_platform},
#endif
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
{ .compatible = "nvidia,tegra124-gk20a-vgpu",
.data = &vgpu_tegra_platform },
#endif
#endif
{ },
};
MODULE_DEVICE_TABLE(of, tegra_gk20a_of_match);
#ifdef CONFIG_PM
/**
* gk20a_do_idle_impl() - force the GPU to idle and railgate
*
* In success, this call MUST be balanced by caller with gk20a_do_unidle_impl()
*
* Acquires two locks : &l->busy_lock and &platform->railgate_lock
* In success, we hold these locks and return
* In failure, we release these locks and return
*/
int gk20a_do_idle_impl(struct gk20a *g, bool force_reset)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = dev_get_drvdata(dev);
struct nvgpu_timeout timeout;
int ref_cnt;
int target_ref_cnt = 0;
bool is_railgated;
int err = 0;
/*
* Hold back deterministic submits and changes to deterministic
* channels - this must be outside the power busy locks.
*/
nvgpu_channel_deterministic_idle(g);
/* acquire busy lock to block other busy() calls */
down_write(&l->busy_lock);
/* acquire railgate lock to prevent unrailgate in midst of do_idle() */
nvgpu_mutex_acquire(&platform->railgate_lock);
/* check if it is already railgated ? */
if (platform->is_railgated(dev))
return 0;
/*
* release railgate_lock, prevent suspend by incrementing usage counter,
* re-acquire railgate_lock
*/
nvgpu_mutex_release(&platform->railgate_lock);
pm_runtime_get_sync(dev);
/*
* One refcount taken in this API
* If User disables rail gating, we take one more
* extra refcount
*/
if (nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE))
target_ref_cnt = 1;
else
target_ref_cnt = 2;
nvgpu_mutex_acquire(&platform->railgate_lock);
nvgpu_timeout_init(g, &timeout, GK20A_WAIT_FOR_IDLE_MS,
NVGPU_TIMER_CPU_TIMER);
/* check and wait until GPU is idle (with a timeout) */
do {
nvgpu_usleep_range(1000, 1100);
ref_cnt = atomic_read(&dev->power.usage_count);
} while (ref_cnt != target_ref_cnt && !nvgpu_timeout_expired(&timeout));
if (ref_cnt != target_ref_cnt) {
nvgpu_err(g, "failed to idle - refcount %d != target_ref_cnt",
ref_cnt);
goto fail_drop_usage_count;
}
/* check if global force_reset flag is set */
force_reset |= platform->force_reset_in_do_idle;
nvgpu_timeout_init(g, &timeout, GK20A_WAIT_FOR_IDLE_MS,
NVGPU_TIMER_CPU_TIMER);
if (nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE) && !force_reset) {
/*
* Case 1 : GPU railgate is supported
*
* if GPU is now idle, we will have only one ref count,
* drop this ref which will rail gate the GPU
*/
pm_runtime_put_sync(dev);
/* add sufficient delay to allow GPU to rail gate */
nvgpu_msleep(g->railgate_delay);
/* check in loop if GPU is railgated or not */
do {
nvgpu_usleep_range(1000, 1100);
is_railgated = platform->is_railgated(dev);
} while (!is_railgated && !nvgpu_timeout_expired(&timeout));
if (is_railgated) {
return 0;
} else {
nvgpu_err(g, "failed to idle in timeout");
goto fail_timeout;
}
} else {
/*
* Case 2 : GPU railgate is not supported or we explicitly
* do not want to depend on runtime PM
*
* if GPU is now idle, call prepare_poweroff() to save the
* state and then do explicit railgate
*
* gk20a_do_unidle_impl() needs to unrailgate, call
* finalize_poweron(), and then call pm_runtime_put_sync()
* to balance the GPU usage counter
*/
/* Save the GPU state */
err = gk20a_pm_prepare_poweroff(dev);
if (err)
goto fail_drop_usage_count;
/* railgate GPU */
platform->railgate(dev);
nvgpu_udelay(10);
g->forced_reset = true;
return 0;
}
fail_drop_usage_count:
pm_runtime_put_noidle(dev);
fail_timeout:
nvgpu_mutex_release(&platform->railgate_lock);
up_write(&l->busy_lock);
nvgpu_channel_deterministic_unidle(g);
return -EBUSY;
}
/**
* gk20a_do_idle() - wrap up for gk20a_do_idle_impl() to be called
* from outside of GPU driver
*
* In success, this call MUST be balanced by caller with gk20a_do_unidle()
*/
static int gk20a_do_idle(void *_g)
{
struct gk20a *g = (struct gk20a *)_g;
return gk20a_do_idle_impl(g, true);
}
/**
* gk20a_do_unidle_impl() - unblock all the tasks blocked by
* gk20a_do_idle_impl()
*/
int gk20a_do_unidle_impl(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = dev_get_drvdata(dev);
int err;
if (g->forced_reset) {
/*
* If we did a forced-reset/railgate
* then unrailgate the GPU here first
*/
platform->unrailgate(dev);
/* restore the GPU state */
err = gk20a_pm_finalize_poweron(dev);
if (err)
return err;
/* balance GPU usage counter */
pm_runtime_put_sync(dev);
g->forced_reset = false;
}
/* release the lock and open up all other busy() calls */
nvgpu_mutex_release(&platform->railgate_lock);
up_write(&l->busy_lock);
nvgpu_channel_deterministic_unidle(g);
return 0;
}
/**
* gk20a_do_unidle() - wrap up for gk20a_do_unidle_impl()
*/
static int gk20a_do_unidle(void *_g)
{
struct gk20a *g = (struct gk20a *)_g;
return gk20a_do_unidle_impl(g);
}
#endif
void __iomem *nvgpu_devm_ioremap_resource(struct platform_device *dev, int i,
struct resource **out)
{
struct resource *r = platform_get_resource(dev, IORESOURCE_MEM, i);
if (!r)
return NULL;
if (out)
*out = r;
return devm_ioremap_resource(&dev->dev, r);
}
void __iomem *nvgpu_devm_ioremap(struct device *dev, resource_size_t offset,
resource_size_t size)
{
return devm_ioremap(dev, offset, size);
}
u64 nvgpu_resource_addr(struct platform_device *dev, int i)
{
struct resource *r = platform_get_resource(dev, IORESOURCE_MEM, i);
if (!r)
return 0;
return r->start;
}
static irqreturn_t gk20a_intr_isr_stall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
return nvgpu_intr_stall(g);
}
static irqreturn_t gk20a_intr_isr_nonstall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
return nvgpu_intr_nonstall(g);
}
static irqreturn_t gk20a_intr_thread_stall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
return nvgpu_intr_thread_stall(g);
}
void gk20a_remove_support(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct sim_nvgpu_linux *sim_linux;
tegra_unregister_idle_unidle(gk20a_do_idle);
#ifdef CONFIG_NVGPU_DEBUGGER
nvgpu_kfree(g, g->dbg_regops_tmp_buf);
#endif
nvgpu_channel_remove_support_linux(l);
if (g->sec2.remove_support != NULL) {
g->sec2.remove_support(&g->sec2);
}
nvgpu_gr_remove_support(g);
if (g->mm.remove_ce_support)
g->mm.remove_ce_support(&g->mm);
if (g->fifo.remove_support)
g->fifo.remove_support(&g->fifo);
nvgpu_pmu_remove_support(g, g->pmu);
if (g->mm.remove_support)
g->mm.remove_support(&g->mm);
if (g->sim) {
sim_linux = container_of(g->sim, struct sim_nvgpu_linux, sim);
if (g->sim->remove_support)
g->sim->remove_support(g);
if (sim_linux->remove_support_linux)
sim_linux->remove_support_linux(g);
}
#if defined(CONFIG_NVGPU_CYCLESTATS)
nvgpu_free_cyclestats_snapshot_data(g);
#endif
nvgpu_fbp_remove_support(g);
nvgpu_remove_usermode_support(g);
nvgpu_free_enabled_flags(g);
gk20a_lockout_registers(g);
}
static int gk20a_init_support(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
int err = -ENOMEM;
tegra_register_idle_unidle(gk20a_do_idle, gk20a_do_unidle, g);
l->regs = nvgpu_devm_ioremap_resource(pdev,
GK20A_BAR0_IORESOURCE_MEM,
&l->reg_mem);
if (IS_ERR(l->regs)) {
nvgpu_err(g, "failed to remap gk20a registers");
err = PTR_ERR(l->regs);
goto fail;
}
l->regs_bus_addr = nvgpu_resource_addr(pdev,
GK20A_BAR0_IORESOURCE_MEM);
if (!l->regs_bus_addr) {
nvgpu_err(g, "failed to read register bus offset");
err = -ENODEV;
goto fail;
}
l->bar1 = nvgpu_devm_ioremap_resource(pdev,
GK20A_BAR1_IORESOURCE_MEM,
&l->bar1_mem);
if (IS_ERR(l->bar1)) {
nvgpu_err(g, "failed to remap gk20a bar1");
err = PTR_ERR(l->bar1);
goto fail;
}
err = nvgpu_init_sim_support_linux(g, pdev);
if (err)
goto fail;
err = nvgpu_init_sim_support(g);
if (err)
goto fail_sim;
err = nvgpu_gr_alloc(g);
if (err != 0) {
nvgpu_err(g, "couldn't allocate gr memory");
goto fail_sim;
}
nvgpu_init_usermode_support(g);
return 0;
fail_sim:
nvgpu_remove_sim_support_linux(g);
fail:
if (l->regs)
l->regs = NULL;
if (l->bar1)
l->bar1 = NULL;
return err;
}
static int gk20a_pm_railgate(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
int ret = 0;
struct gk20a *g = get_gk20a(dev);
/* return early if platform didn't implement railgate */
if (!platform->railgate)
return 0;
/* if platform is already railgated, then just return */
if (platform->is_railgated && platform->is_railgated(dev))
return ret;
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_gate_start = jiffies;
if (g->pstats.railgating_cycle_count >= 1)
g->pstats.total_rail_ungate_time_ms =
g->pstats.total_rail_ungate_time_ms +
jiffies_to_msecs(g->pstats.last_rail_gate_start -
g->pstats.last_rail_ungate_complete);
#endif
ret = platform->railgate(dev);
if (ret) {
nvgpu_err(g, "failed to railgate platform, err=%d", ret);
return ret;
}
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_gate_complete = jiffies;
#endif
ret = tegra_fuse_clock_disable();
if (ret)
nvgpu_err(g, "failed to disable tegra fuse clock, err=%d", ret);
return ret;
}
static int gk20a_pm_unrailgate(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
int ret = 0;
struct gk20a *g = get_gk20a(dev);
/* return early if platform didn't implement unrailgate */
if (!platform->unrailgate)
return 0;
ret = tegra_fuse_clock_enable();
if (ret) {
nvgpu_err(g, "failed to enable tegra fuse clock, err=%d", ret);
return ret;
}
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_ungate_start = jiffies;
if (g->pstats.railgating_cycle_count >= 1)
g->pstats.total_rail_gate_time_ms =
g->pstats.total_rail_gate_time_ms +
jiffies_to_msecs(g->pstats.last_rail_ungate_start -
g->pstats.last_rail_gate_complete);
g->pstats.railgating_cycle_count++;
#endif
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_pm_unrailgate(dev_name(dev));
#endif
nvgpu_mutex_acquire(&platform->railgate_lock);
ret = platform->unrailgate(dev);
nvgpu_mutex_release(&platform->railgate_lock);
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_ungate_complete = jiffies;
#endif
return ret;
}
/*
* Remove association of the driver with OS interrupt handler
*/
void nvgpu_free_irq(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
devm_free_irq(dev, g->irq_stall, g);
if (g->irq_stall != g->irq_nonstall)
devm_free_irq(dev, g->irq_nonstall, g);
}
/*
* Idle the GPU in preparation of shutdown/remove.
* gk20a_driver_start_unload() does not idle the GPU, but instead changes the SW
* state to prevent further activity on the driver SW side.
* On driver removal quiesce() should be called after start_unload()
*/
int nvgpu_quiesce(struct gk20a *g)
{
int err;
struct device *dev = dev_from_gk20a(g);
if (g->power_on) {
err = nvgpu_wait_for_idle(g);
if (err) {
nvgpu_err(g, "failed to idle GPU, err=%d", err);
return err;
}
err = nvgpu_engine_disable_activity_all(g, true);
if (err) {
nvgpu_err(g,
"failed to disable engine activity, err=%d",
err);
return err;
}
err = nvgpu_engine_wait_for_idle(g);
if (err) {
nvgpu_err(g, "failed to idle engines, err=%d",
err);
return err;
}
}
if (gk20a_gpu_is_virtual(dev))
err = vgpu_pm_prepare_poweroff(dev);
else
err = gk20a_pm_prepare_poweroff(dev);
if (err)
nvgpu_err(g, "failed to prepare for poweroff, err=%d",
err);
return err;
}
static void gk20a_pm_shutdown(struct platform_device *pdev)
{
struct gk20a_platform *platform = platform_get_drvdata(pdev);
struct gk20a *g = platform->g;
int err;
nvgpu_info(g, "shutting down");
/* vgpu has nothing to clean up currently */
if (gk20a_gpu_is_virtual(&pdev->dev))
return;
if (!g->power_on)
goto finish;
gk20a_driver_start_unload(g);
/* If GPU is already railgated,
* just prevent more requests, and return */
if (platform->is_railgated && platform->is_railgated(&pdev->dev)) {
__pm_runtime_disable(&pdev->dev, false);
nvgpu_info(g, "already railgated, shut down complete");
return;
}
/* Prevent more requests by disabling Runtime PM */
__pm_runtime_disable(&pdev->dev, false);
err = nvgpu_quiesce(g);
if (err)
goto finish;
err = gk20a_pm_railgate(&pdev->dev);
if (err)
nvgpu_err(g, "failed to railgate, err=%d", err);
finish:
nvgpu_info(g, "shut down complete");
}
#ifdef CONFIG_PM
static int gk20a_pm_runtime_resume(struct device *dev)
{
int err = 0;
err = gk20a_pm_unrailgate(dev);
if (err)
goto fail;
if (gk20a_gpu_is_virtual(dev))
err = vgpu_pm_finalize_poweron(dev);
else
err = gk20a_pm_finalize_poweron(dev);
if (err)
goto fail_poweron;
return 0;
fail_poweron:
gk20a_pm_railgate(dev);
fail:
return err;
}
static int gk20a_pm_runtime_suspend(struct device *dev)
{
int err = 0;
struct gk20a *g = get_gk20a(dev);
if (!g)
return 0;
if (gk20a_gpu_is_virtual(dev))
err = vgpu_pm_prepare_poweroff(dev);
else
err = gk20a_pm_prepare_poweroff(dev);
if (err) {
nvgpu_err(g, "failed to power off, err=%d", err);
goto fail;
}
err = gk20a_pm_railgate(dev);
if (err)
goto fail;
return 0;
fail:
gk20a_pm_finalize_poweron(dev);
pm_runtime_mark_last_busy(dev);
return err;
}
static int gk20a_pm_suspend(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
struct gk20a *g = get_gk20a(dev);
int ret = 0;
int idle_usage_count = 0;
if (!g->power_on) {
if (platform->suspend)
ret = platform->suspend(dev);
if (ret)
return ret;
if (!pm_runtime_enabled(dev))
ret = gk20a_pm_railgate(dev);
return ret;
}
if (nvgpu_atomic_read(&g->usage_count) > idle_usage_count)
return -EBUSY;
ret = gk20a_pm_runtime_suspend(dev);
if (ret)
return ret;
if (platform->suspend)
ret = platform->suspend(dev);
if (ret)
return ret;
g->suspended = true;
return ret;
}
static int gk20a_pm_resume(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
struct gk20a *g = get_gk20a(dev);
int ret = 0;
if (!g->suspended) {
if (platform->resume)
ret = platform->resume(dev);
if (ret)
return ret;
if (!pm_runtime_enabled(dev))
ret = gk20a_pm_unrailgate(dev);
return ret;
}
if (platform->resume)
ret = platform->resume(dev);
if (ret)
return ret;
ret = gk20a_pm_runtime_resume(dev);
if (ret)
return ret;
g->suspended = false;
return ret;
}
static const struct dev_pm_ops gk20a_pm_ops = {
.runtime_resume = gk20a_pm_runtime_resume,
.runtime_suspend = gk20a_pm_runtime_suspend,
.resume = gk20a_pm_resume,
.suspend = gk20a_pm_suspend,
};
#endif
static int gk20a_pm_init(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
int err = 0;
nvgpu_log_fn(g, " ");
/*
* Initialise pm runtime. For railgate disable
* case, set autosuspend delay to negative which
* will suspend runtime pm
*/
if (g->railgate_delay && nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE))
pm_runtime_set_autosuspend_delay(dev,
g->railgate_delay);
else
pm_runtime_set_autosuspend_delay(dev, -1);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
return err;
}
static int gk20a_pm_deinit(struct device *dev)
{
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev);
return 0;
}
void nvgpu_start_gpu_idle(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
down_write(&l->busy_lock);
nvgpu_set_enabled(g, NVGPU_DRIVER_IS_DYING, true);
/*
* GR SW ready needs to be invalidated at this time with the busy lock
* held to prevent a racing condition on the gr/mm code
*/
nvgpu_gr_sw_ready(g, false);
g->sw_ready = false;
up_write(&l->busy_lock);
}
int nvgpu_wait_for_gpu_idle(struct gk20a *g)
{
int ret = 0;
ret = nvgpu_wait_for_idle(g);
if (ret) {
nvgpu_err(g, "failed in wait for idle");
goto out;
}
nvgpu_wait_for_deferred_interrupts(g);
out:
return ret;
}
/*
* Start the process for unloading the driver. Set NVGPU_DRIVER_IS_DYING.
*/
void gk20a_driver_start_unload(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
nvgpu_log(g, gpu_dbg_shutdown, "Driver is now going down!\n");
nvgpu_start_gpu_idle(g);
if (g->is_virtual)
return;
nvgpu_wait_for_idle(g);
nvgpu_wait_for_deferred_interrupts(g);
if (l->nonstall_work_queue) {
cancel_work_sync(&l->nonstall_fn_work);
destroy_workqueue(l->nonstall_work_queue);
l->nonstall_work_queue = NULL;
}
}
static inline void set_gk20a(struct platform_device *pdev, struct gk20a *gk20a)
{
gk20a_get_platform(&pdev->dev)->g = gk20a;
}
static int nvgpu_read_fuse_overrides(struct gk20a *g)
{
struct device_node *np = nvgpu_get_node(g);
struct gk20a_platform *platform = dev_get_drvdata(dev_from_gk20a(g));
u32 *fuses;
int count, i;
if (!np) /* may be pcie device */
return 0;
count = of_property_count_elems_of_size(np, "fuse-overrides", 8);
if (count <= 0)
return count;
fuses = nvgpu_kmalloc(g, sizeof(u32) * count * 2);
if (!fuses)
return -ENOMEM;
of_property_read_u32_array(np, "fuse-overrides", fuses, count * 2);
for (i = 0; i < count; i++) {
u32 fuse, value;
fuse = fuses[2 * i];
value = fuses[2 * i + 1];
switch (fuse) {
case GM20B_FUSE_OPT_TPC_DISABLE:
g->tpc_fs_mask_user = ~value;
break;
case GP10B_FUSE_OPT_ECC_EN:
nvgpu_gr_override_ecc_val(g, value);
break;
case GV11B_FUSE_OPT_TPC_DISABLE:
if (platform->set_tpc_pg_mask != NULL)
platform->set_tpc_pg_mask(dev_from_gk20a(g),
value);
break;
default:
nvgpu_err(g, "ignore unknown fuse override %08x", fuse);
break;
}
}
nvgpu_kfree(g, fuses);
return 0;
}
static int gk20a_probe(struct platform_device *dev)
{
struct nvgpu_os_linux *l = NULL;
struct gk20a *gk20a;
int err;
struct gk20a_platform *platform = NULL;
struct device_node *np;
if (dev->dev.of_node) {
const struct of_device_id *match;
match = of_match_device(tegra_gk20a_of_match, &dev->dev);
if (match)
platform = (struct gk20a_platform *)match->data;
} else
platform = (struct gk20a_platform *)dev->dev.platform_data;
if (!platform) {
dev_err(&dev->dev, "no platform data\n");
return -ENODATA;
}
platform_set_drvdata(dev, platform);
if (gk20a_gpu_is_virtual(&dev->dev))
return vgpu_probe(dev);
l = kzalloc(sizeof(*l), GFP_KERNEL);
if (!l) {
dev_err(&dev->dev, "couldn't allocate gk20a support");
return -ENOMEM;
}
hash_init(l->ecc_sysfs_stats_htable);
gk20a = &l->g;
nvgpu_log_fn(gk20a, " ");
nvgpu_init_gk20a(gk20a);
set_gk20a(dev, gk20a);
l->dev = &dev->dev;
gk20a->log_mask = NVGPU_DEFAULT_DBG_MASK;
nvgpu_kmem_init(gk20a);
err = nvgpu_init_enabled_flags(gk20a);
if (err)
goto return_err;
np = nvgpu_get_node(gk20a);
if (of_dma_is_coherent(np)) {
nvgpu_set_enabled(gk20a, NVGPU_USE_COHERENT_SYSMEM, true);
nvgpu_set_enabled(gk20a, NVGPU_SUPPORT_IO_COHERENCE, true);
}
if (nvgpu_platform_is_simulation(gk20a))
nvgpu_set_enabled(gk20a, NVGPU_IS_FMODEL, true);
gk20a->irq_stall = platform_get_irq(dev, 0);
gk20a->irq_nonstall = platform_get_irq(dev, 1);
if ((int)gk20a->irq_stall < 0 || (int)gk20a->irq_nonstall < 0) {
err = -ENXIO;
goto return_err;
}
err = devm_request_threaded_irq(&dev->dev,
gk20a->irq_stall,
gk20a_intr_isr_stall,
gk20a_intr_thread_stall,
0, "gk20a_stall", gk20a);
if (err) {
dev_err(&dev->dev,
"failed to request stall intr irq @ %d\n",
gk20a->irq_stall);
goto return_err;
}
err = devm_request_irq(&dev->dev,
gk20a->irq_nonstall,
gk20a_intr_isr_nonstall,
0, "gk20a_nonstall", gk20a);
if (err) {
dev_err(&dev->dev,
"failed to request non-stall intr irq @ %d\n",
gk20a->irq_nonstall);
goto return_err;
}
disable_irq(gk20a->irq_stall);
if (gk20a->irq_stall != gk20a->irq_nonstall)
disable_irq(gk20a->irq_nonstall);
err = gk20a_init_support(dev);
if (err)
goto return_err;
err = nvgpu_read_fuse_overrides(gk20a);
#ifdef CONFIG_RESET_CONTROLLER
platform->reset_control = devm_reset_control_get(&dev->dev, NULL);
if (IS_ERR(platform->reset_control))
platform->reset_control = NULL;
#endif
err = nvgpu_probe(gk20a, "gpu.0", INTERFACE_NAME, &nvgpu_class);
if (err)
goto return_err;
err = gk20a_pm_init(&dev->dev);
if (err) {
dev_err(&dev->dev, "pm init failed");
goto return_err;
}
l->nvgpu_reboot_nb.notifier_call =
nvgpu_kernel_shutdown_notification;
err = register_reboot_notifier(&l->nvgpu_reboot_nb);
if (err)
goto return_err;
return 0;
return_err:
nvgpu_free_enabled_flags(gk20a);
/*
* Last since the above allocs may use data structures in here.
*/
nvgpu_kmem_fini(gk20a, NVGPU_KMEM_FINI_FORCE_CLEANUP);
nvgpu_gr_free(gk20a);
kfree(l);
return err;
}
int nvgpu_remove(struct device *dev, struct class *class)
{
struct gk20a *g = get_gk20a(dev);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
#endif
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err;
nvgpu_log_fn(g, " ");
err = nvgpu_quiesce(g);
WARN(err, "gpu failed to idle during driver removal");
if (nvgpu_mem_is_valid(&g->syncpt_mem))
nvgpu_dma_free(g, &g->syncpt_mem);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
if (platform->has_cde)
gk20a_cde_destroy(l);
#endif
#ifdef CONFIG_NVGPU_FECS_TRACE
gk20a_ctxsw_trace_cleanup(g);
#endif
gk20a_sched_ctrl_cleanup(g);
if (IS_ENABLED(CONFIG_GK20A_DEVFREQ))
gk20a_scale_exit(dev);
nvgpu_clk_arb_cleanup_arbiter(g);
gk20a_user_deinit(dev, class);
gk20a_debug_deinit(g);
nvgpu_remove_sysfs(dev);
if (platform->secure_buffer.destroy)
platform->secure_buffer.destroy(g,
&platform->secure_buffer);
if (platform->remove)
platform->remove(dev);
nvgpu_mutex_destroy(&g->clk_arb_enable_lock);
nvgpu_log_fn(g, "removed");
return err;
}
static int __exit gk20a_remove(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
if (gk20a_gpu_is_virtual(dev))
return vgpu_remove(pdev);
err = nvgpu_remove(dev, &nvgpu_class);
unregister_reboot_notifier(&l->nvgpu_reboot_nb);
set_gk20a(pdev, NULL);
nvgpu_put(g);
gk20a_pm_deinit(dev);
return err;
}
static struct platform_driver gk20a_driver = {
.probe = gk20a_probe,
.remove = __exit_p(gk20a_remove),
.shutdown = gk20a_pm_shutdown,
.driver = {
.owner = THIS_MODULE,
.name = "gk20a",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
#ifdef CONFIG_OF
.of_match_table = tegra_gk20a_of_match,
#endif
#ifdef CONFIG_PM
.pm = &gk20a_pm_ops,
#endif
.suppress_bind_attrs = true,
}
};
struct class nvgpu_class = {
.owner = THIS_MODULE,
.name = CLASS_NAME,
};
static int __init gk20a_init(void)
{
int ret;
ret = class_register(&nvgpu_class);
if (ret)
return ret;
ret = nvgpu_pci_init();
if (ret)
return ret;
return platform_driver_register(&gk20a_driver);
}
static void __exit gk20a_exit(void)
{
nvgpu_pci_exit();
platform_driver_unregister(&gk20a_driver);
class_unregister(&nvgpu_class);
}
MODULE_LICENSE("GPL v2");
module_init(gk20a_init);
module_exit(gk20a_exit);