Files
linux-nvgpu/drivers/gpu/nvgpu/common/gr/global_ctx.c
Deepak Nibade cebefd7ea2 gpu: nvgpu: move RTV CB code to GRAPHICS config
Some of the RTV circular buffer programming is under GRAPHICS config and
some is under DGPU config. For nvgpu-next, RTV circular buffer is
required even for iGPU so keeping the code under DGPU config does not
make sense.
Move all the code from DGPU config to GRAPHICS config.

Bug 3159973

Change-Id: I8438cc0e25354d27701df2fe44762306a731d8cd
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2524897
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2021-05-06 06:10:58 -07:00

478 lines
11 KiB
C

/*
* Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/gk20a.h>
#include <nvgpu/log.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/kmem.h>
#include <nvgpu/bug.h>
#include <nvgpu/dma.h>
#ifdef CONFIG_NVGPU_GR_GOLDEN_CTX_VERIFICATION
#include <nvgpu/static_analysis.h>
#include <nvgpu/string.h>
#endif
#include <nvgpu/gr/global_ctx.h>
#include "global_ctx_priv.h"
#ifdef NVGPU_UNITTEST_FAULT_INJECTION_ENABLEMENT
#include <nvgpu/posix/posix-fault-injection.h>
struct nvgpu_posix_fault_inj *nvgpu_golden_ctx_verif_get_fault_injection(void)
{
struct nvgpu_posix_fault_inj_container *c =
nvgpu_posix_fault_injection_get_container();
return &c->golden_ctx_verif_fi;
}
struct nvgpu_posix_fault_inj *nvgpu_local_golden_image_get_fault_injection(void)
{
struct nvgpu_posix_fault_inj_container *c =
nvgpu_posix_fault_injection_get_container();
return &c->local_golden_image_fi;
}
#endif
struct nvgpu_gr_global_ctx_buffer_desc *
nvgpu_gr_global_ctx_desc_alloc(struct gk20a *g)
{
struct nvgpu_gr_global_ctx_buffer_desc *desc =
nvgpu_kzalloc(g, sizeof(*desc) *
U64(NVGPU_GR_GLOBAL_CTX_COUNT));
return desc;
}
void nvgpu_gr_global_ctx_desc_free(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc)
{
nvgpu_kfree(g, desc);
}
void nvgpu_gr_global_ctx_set_size(struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index, size_t size)
{
nvgpu_assert(index < NVGPU_GR_GLOBAL_CTX_COUNT);
desc[index].size = size;
}
size_t nvgpu_gr_global_ctx_get_size(struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index)
{
return desc[index].size;
}
static void nvgpu_gr_global_ctx_buffer_destroy(struct gk20a *g,
struct nvgpu_mem *mem)
{
nvgpu_dma_free(g, mem);
}
void nvgpu_gr_global_ctx_buffer_free(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc)
{
u32 i;
if (desc == NULL) {
return;
}
for (i = 0; i < NVGPU_GR_GLOBAL_CTX_COUNT; i++) {
if (desc[i].destroy != NULL) {
desc[i].destroy(g, &desc[i].mem);
desc[i].destroy = NULL;
}
}
nvgpu_log_fn(g, "done");
}
static int nvgpu_gr_global_ctx_buffer_alloc_sys(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index)
{
int err = 0;
nvgpu_log_fn(g, " ");
if (nvgpu_mem_is_valid(&desc[index].mem)) {
return 0;
}
err = nvgpu_dma_alloc_sys(g, desc[index].size,
&desc[index].mem);
if (err != 0) {
return err;
}
desc[index].destroy = nvgpu_gr_global_ctx_buffer_destroy;
return err;
}
#ifdef CONFIG_NVGPU_VPR
static int nvgpu_gr_global_ctx_buffer_alloc_vpr(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index)
{
int err = 0;
nvgpu_log_fn(g, " ");
if (nvgpu_mem_is_valid(&desc[index].mem)) {
return 0;
}
if (g->ops.secure_alloc != NULL) {
err = g->ops.secure_alloc(g,
&desc[index].mem, desc[index].size,
&desc[index].destroy);
if (err != 0) {
return err;
}
}
return err;
}
#endif
static bool nvgpu_gr_global_ctx_buffer_sizes_are_valid(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc)
{
if (desc[NVGPU_GR_GLOBAL_CTX_PRIV_ACCESS_MAP].size == 0U) {
return false;
}
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_MIG)) {
if ((desc[NVGPU_GR_GLOBAL_CTX_CIRCULAR].size == 0U) ||
(desc[NVGPU_GR_GLOBAL_CTX_PAGEPOOL].size == 0U) ||
(desc[NVGPU_GR_GLOBAL_CTX_ATTRIBUTE].size == 0U)) {
return false;
}
#ifdef CONFIG_NVGPU_VPR
if ((desc[NVGPU_GR_GLOBAL_CTX_CIRCULAR_VPR].size == 0U) ||
(desc[NVGPU_GR_GLOBAL_CTX_PAGEPOOL_VPR].size == 0U) ||
(desc[NVGPU_GR_GLOBAL_CTX_ATTRIBUTE_VPR].size == 0U)) {
return false;
}
#endif
}
return true;
}
#ifdef CONFIG_NVGPU_VPR
static int nvgpu_gr_global_ctx_buffer_vpr_alloc(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc)
{
int err = 0;
/*
* MIG supports only compute class.
* Allocate BUNDLE_CB, PAGEPOOL, ATTRIBUTE_CB and RTV_CB
* if 2D/3D/I2M classes(graphics) are supported.
*/
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_MIG)) {
nvgpu_log(g, gpu_dbg_gr | gpu_dbg_mig,
"2D class is not supported "
"skip BUNDLE_CB, PAGEPOOL, ATTRIBUTE_CB "
"and RTV_CB");
return 0;
}
err = nvgpu_gr_global_ctx_buffer_alloc_vpr(g, desc,
NVGPU_GR_GLOBAL_CTX_CIRCULAR_VPR);
if (err != 0) {
goto fail;
}
err = nvgpu_gr_global_ctx_buffer_alloc_vpr(g, desc,
NVGPU_GR_GLOBAL_CTX_PAGEPOOL_VPR);
if (err != 0) {
goto fail;
}
err = nvgpu_gr_global_ctx_buffer_alloc_vpr(g, desc,
NVGPU_GR_GLOBAL_CTX_ATTRIBUTE_VPR);
if (err != 0) {
goto fail;
}
fail:
return err;
}
#endif
static int nvgpu_gr_global_ctx_buffer_sys_alloc(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc)
{
int err = 0;
/*
* MIG supports only compute class.
* Allocate BUNDLE_CB, PAGEPOOL, ATTRIBUTE_CB and RTV_CB
* if 2D/3D/I2M classes(graphics) are supported.
*/
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_MIG)) {
err = nvgpu_gr_global_ctx_buffer_alloc_sys(g, desc,
NVGPU_GR_GLOBAL_CTX_CIRCULAR);
if (err != 0) {
goto fail;
}
err = nvgpu_gr_global_ctx_buffer_alloc_sys(g, desc,
NVGPU_GR_GLOBAL_CTX_PAGEPOOL);
if (err != 0) {
goto fail;
}
err = nvgpu_gr_global_ctx_buffer_alloc_sys(g, desc,
NVGPU_GR_GLOBAL_CTX_ATTRIBUTE);
if (err != 0) {
goto fail;
}
}
err = nvgpu_gr_global_ctx_buffer_alloc_sys(g, desc,
NVGPU_GR_GLOBAL_CTX_PRIV_ACCESS_MAP);
if (err != 0) {
goto fail;
}
fail:
return err;
}
int nvgpu_gr_global_ctx_buffer_alloc(struct gk20a *g,
struct nvgpu_gr_global_ctx_buffer_desc *desc)
{
int err = 0;
if (nvgpu_gr_global_ctx_buffer_sizes_are_valid(g, desc) != true) {
return -EINVAL;
}
err = nvgpu_gr_global_ctx_buffer_sys_alloc(g, desc);
if (err != 0) {
goto clean_up;
}
#ifdef CONFIG_NVGPU_FECS_TRACE
if (desc[NVGPU_GR_GLOBAL_CTX_FECS_TRACE_BUFFER].size != 0U) {
err = nvgpu_gr_global_ctx_buffer_alloc_sys(g, desc,
NVGPU_GR_GLOBAL_CTX_FECS_TRACE_BUFFER);
if (err != 0) {
goto clean_up;
}
}
#endif
#ifdef CONFIG_NVGPU_GRAPHICS
if (!nvgpu_is_enabled(g, NVGPU_SUPPORT_MIG)) {
if (desc[NVGPU_GR_GLOBAL_CTX_RTV_CIRCULAR_BUFFER].size != 0U) {
err = nvgpu_gr_global_ctx_buffer_alloc_sys(g, desc,
NVGPU_GR_GLOBAL_CTX_RTV_CIRCULAR_BUFFER);
if (err != 0) {
goto clean_up;
}
}
}
#endif
#ifdef CONFIG_NVGPU_VPR
if (nvgpu_gr_global_ctx_buffer_vpr_alloc(g, desc) != 0) {
goto clean_up;
}
#endif
return err;
clean_up:
nvgpu_gr_global_ctx_buffer_free(g, desc);
return err;
}
u64 nvgpu_gr_global_ctx_buffer_map(struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index,
struct vm_gk20a *vm, u32 flags, bool priv)
{
u64 gpu_va;
if (!nvgpu_mem_is_valid(&desc[index].mem)) {
return 0;
}
gpu_va = nvgpu_gmmu_map(vm, &desc[index].mem, desc[index].mem.size,
flags, gk20a_mem_flag_none, priv,
desc[index].mem.aperture);
return gpu_va;
}
void nvgpu_gr_global_ctx_buffer_unmap(
struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index,
struct vm_gk20a *vm, u64 gpu_va)
{
if (nvgpu_mem_is_valid(&desc[index].mem)) {
nvgpu_gmmu_unmap(vm, &desc[index].mem, gpu_va);
}
}
struct nvgpu_mem *nvgpu_gr_global_ctx_buffer_get_mem(
struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index)
{
if (nvgpu_mem_is_valid(&desc[index].mem)) {
return &desc[index].mem;
}
return NULL;
}
bool nvgpu_gr_global_ctx_buffer_ready(
struct nvgpu_gr_global_ctx_buffer_desc *desc,
u32 index)
{
if (nvgpu_mem_is_valid(&desc[index].mem)) {
return true;
}
return false;
}
struct nvgpu_gr_global_ctx_local_golden_image *
nvgpu_gr_global_ctx_init_local_golden_image(struct gk20a *g,
struct nvgpu_mem *source_mem, size_t size)
{
struct nvgpu_gr_global_ctx_local_golden_image *local_golden_image;
#ifdef NVGPU_UNITTEST_FAULT_INJECTION_ENABLEMENT
if (nvgpu_posix_fault_injection_handle_call(
nvgpu_local_golden_image_get_fault_injection())) {
return NULL;
}
#endif
local_golden_image = nvgpu_kzalloc(g, sizeof(*local_golden_image));
if (local_golden_image == NULL) {
return NULL;
}
local_golden_image->context = nvgpu_vzalloc(g, size);
if (local_golden_image->context == NULL) {
nvgpu_kfree(g, local_golden_image);
return NULL;
}
local_golden_image->size = size;
nvgpu_mem_rd_n(g, source_mem, 0, local_golden_image->context,
nvgpu_safe_cast_u64_to_u32(size));
return local_golden_image;
}
#ifdef CONFIG_NVGPU_GR_GOLDEN_CTX_VERIFICATION
bool nvgpu_gr_global_ctx_compare_golden_images(struct gk20a *g,
bool is_sysmem,
struct nvgpu_gr_global_ctx_local_golden_image *local_golden_image1,
struct nvgpu_gr_global_ctx_local_golden_image *local_golden_image2,
size_t size)
{
bool is_identical = true;
u32 *data1 = local_golden_image1->context;
u32 *data2 = local_golden_image2->context;
#ifdef CONFIG_NVGPU_DGPU
u32 i;
#endif
#ifdef NVGPU_UNITTEST_FAULT_INJECTION_ENABLEMENT
if (nvgpu_posix_fault_injection_handle_call(
nvgpu_golden_ctx_verif_get_fault_injection())) {
return false;
}
#endif
/*
* In case of sysmem, direct mem compare can be used.
* For vidmem, word by word comparison only works and
* it is too early to use ce engine for read operations.
*/
if (is_sysmem) {
if (nvgpu_memcmp((u8 *)data1, (u8 *)data2, size) != 0) {
is_identical = false;
}
}
else {
#ifdef CONFIG_NVGPU_DGPU
for( i = 0U; i < nvgpu_safe_cast_u64_to_u32(size/sizeof(u32));
i = nvgpu_safe_add_u32(i, 1U)) {
if (*(data1 + i) != *(data2 + i)) {
is_identical = false;
nvgpu_log_info(g,
"mismatch i = %u golden1: %u golden2 %u",
i, *(data1 + i), *(data2 + i));
break;
}
}
#else
is_identical = false;
#endif
}
nvgpu_log_info(g, "%s result %u", __func__, is_identical);
return is_identical;
}
#endif
void nvgpu_gr_global_ctx_load_local_golden_image(struct gk20a *g,
struct nvgpu_gr_global_ctx_local_golden_image *local_golden_image,
struct nvgpu_mem *target_mem)
{
/* Channel gr_ctx buffer is gpu cacheable.
Flush and invalidate before cpu update. */
if (g->ops.mm.cache.l2_flush(g, true) != 0) {
nvgpu_err(g, "l2_flush failed");
}
nvgpu_mem_wr_n(g, target_mem, 0, local_golden_image->context,
nvgpu_safe_cast_u64_to_u32(local_golden_image->size));
nvgpu_log(g, gpu_dbg_gr, "loaded saved golden image into gr_ctx");
}
void nvgpu_gr_global_ctx_deinit_local_golden_image(struct gk20a *g,
struct nvgpu_gr_global_ctx_local_golden_image *local_golden_image)
{
nvgpu_vfree(g, local_golden_image->context);
nvgpu_kfree(g, local_golden_image);
}
#ifdef CONFIG_NVGPU_DEBUGGER
u32 *nvgpu_gr_global_ctx_get_local_golden_image_ptr(
struct nvgpu_gr_global_ctx_local_golden_image *local_golden_image)
{
return local_golden_image->context;
}
#endif