Files
linux-nvgpu/drivers/gpu/nvgpu/hal/ltc/ltc_gm20b.c
Seshendra Gadagottu a15d1fa72c gpu: nvgpu: ltc: move chip specific files to hal
Move ltc chip speciifc files to hal from common

JIRA NVGPU-2044

Change-Id: If3f5e77fce1dfa94336e1be616833cef5b91839b
Signed-off-by: Seshendra Gadagottu <sgadagottu@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2070186
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-03-18 07:45:34 -07:00

353 lines
10 KiB
C

/*
* GM20B L2
*
* Copyright (c) 2014-2019 NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <trace/events/gk20a.h>
#include <nvgpu/timers.h>
#include <nvgpu/enabled.h>
#include <nvgpu/bug.h>
#include <nvgpu/ltc.h>
#include <nvgpu/io.h>
#include <nvgpu/utils.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/hw/gm20b/hw_ltc_gm20b.h>
#include <nvgpu/hw/gm20b/hw_top_gm20b.h>
#include <nvgpu/hw/gm20b/hw_pri_ringmaster_gm20b.h>
#include "ltc_gm20b.h"
void gm20b_ltc_init_fs_state(struct gk20a *g)
{
u32 reg;
nvgpu_log_info(g, "initialize gm20b l2");
g->max_ltc_count = gk20a_readl(g, top_num_ltcs_r());
g->ltc_count = gk20a_readl(g, pri_ringmaster_enum_ltc_r());
nvgpu_log_info(g, "%d ltcs out of %d", g->ltc_count, g->max_ltc_count);
reg = gk20a_readl(g, ltc_ltcs_ltss_cbc_param_r());
g->slices_per_ltc = ltc_ltcs_ltss_cbc_param_slices_per_ltc_v(reg);;
g->cacheline_size =
U32(512) << ltc_ltcs_ltss_cbc_param_cache_line_size_v(reg);
gk20a_writel(g, ltc_ltcs_ltss_cbc_num_active_ltcs_r(),
g->ltc_count);
gk20a_writel(g, ltc_ltcs_misc_ltc_num_active_ltcs_r(),
g->ltc_count);
gk20a_writel(g, ltc_ltcs_ltss_dstg_cfg0_r(),
gk20a_readl(g, ltc_ltc0_lts0_dstg_cfg0_r()) |
ltc_ltcs_ltss_dstg_cfg0_vdc_4to2_disable_m());
/* Disable LTC interrupts */
reg = gk20a_readl(g, ltc_ltcs_ltss_intr_r());
reg &= ~ltc_ltcs_ltss_intr_en_evicted_cb_m();
reg &= ~ltc_ltcs_ltss_intr_en_illegal_compstat_access_m();
reg &= ~ltc_ltcs_ltss_intr_en_illegal_compstat_m();
gk20a_writel(g, ltc_ltcs_ltss_intr_r(), reg);
}
void gm20b_ltc_lts_isr(struct gk20a *g, unsigned int ltc, unsigned int slice)
{
u32 ltc_intr;
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
ltc_intr = gk20a_readl(g, ltc_ltc0_lts0_intr_r() +
ltc_stride * ltc +
lts_stride * slice);
nvgpu_err(g, "ltc%d, slice %d: %08x",
ltc, slice, ltc_intr);
gk20a_writel(g, ltc_ltc0_lts0_intr_r() +
ltc_stride * ltc +
lts_stride * slice,
ltc_intr);
}
void gm20b_ltc_isr(struct gk20a *g, unsigned int ltc)
{
unsigned int slice;
for (slice = 0U; slice < g->slices_per_ltc; slice++) {
gm20b_ltc_lts_isr(g, ltc, slice);
}
}
/*
* Performs a full flush of the L2 cache.
*/
void gm20b_flush_ltc(struct gk20a *g)
{
struct nvgpu_timeout timeout;
unsigned int ltc;
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
bool is_clean_pending_set = false;
bool is_invalidate_pending_set = false;
/* Clean... */
nvgpu_writel_check(g, ltc_ltcs_ltss_tstg_cmgmt1_r(),
ltc_ltcs_ltss_tstg_cmgmt1_clean_pending_f() |
ltc_ltcs_ltss_tstg_cmgmt1_max_cycles_between_cleans_3_f() |
ltc_ltcs_ltss_tstg_cmgmt1_clean_wait_for_fb_to_pull_true_f() |
ltc_ltcs_ltss_tstg_cmgmt1_clean_evict_last_class_true_f() |
ltc_ltcs_ltss_tstg_cmgmt1_clean_evict_normal_class_true_f() |
ltc_ltcs_ltss_tstg_cmgmt1_clean_evict_first_class_true_f());
/* Wait on each LTC individually. */
for (ltc = 0; ltc < g->ltc_count; ltc++) {
u32 op_pending;
/*
* Use 5ms - this should be sufficient time to flush the cache.
* On tegra, rough EMC BW available for old tegra chips (newer
* chips are strictly faster) can be estimated as follows:
*
* Lowest reasonable EMC clock speed will be around 102MHz on
* t124 for display enabled boards and generally fixed to max
* for non-display boards (since they are generally plugged in).
*
* Thus, the available BW is 64b * 2 * 102MHz = 1.3GB/s. Of that
* BW the GPU will likely get about half (display and overhead/
* utilization inefficiency eating the rest) so 650MB/s at
* worst. Assuming at most 1MB of GPU L2 cache (less for most
* chips) worst case is we take 1MB/650MB/s = 1.5ms.
*
* So 5ms timeout here should be more than sufficient.
*/
nvgpu_timeout_init(g, &timeout, 5, NVGPU_TIMER_CPU_TIMER);
do {
int cmgmt1 = ltc_ltc0_ltss_tstg_cmgmt1_r() +
ltc * ltc_stride;
op_pending = gk20a_readl(g, cmgmt1);
is_clean_pending_set = (op_pending &
ltc_ltc0_ltss_tstg_cmgmt1_clean_pending_f()) != 0U;
} while (is_clean_pending_set &&
(nvgpu_timeout_expired_msg(&timeout,
"L2 flush timeout!") == 0));
}
/* And invalidate. */
nvgpu_writel_check(g, ltc_ltcs_ltss_tstg_cmgmt0_r(),
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_pending_f() |
ltc_ltcs_ltss_tstg_cmgmt0_max_cycles_between_invalidates_3_f() |
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_evict_last_class_true_f() |
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_evict_normal_class_true_f() |
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_evict_first_class_true_f());
/* Wait on each LTC individually. */
for (ltc = 0; ltc < g->ltc_count; ltc++) {
u32 op_pending;
/* Again, 5ms. */
nvgpu_timeout_init(g, &timeout, 5, NVGPU_TIMER_CPU_TIMER);
do {
int cmgmt0 = ltc_ltc0_ltss_tstg_cmgmt0_r() +
ltc * ltc_stride;
op_pending = gk20a_readl(g, cmgmt0);
is_invalidate_pending_set = (op_pending &
ltc_ltc0_ltss_tstg_cmgmt0_invalidate_pending_f()) != 0U;
} while (is_invalidate_pending_set &&
(nvgpu_timeout_expired_msg(&timeout,
"L2 flush timeout!") == 0));
}
}
int gm20b_determine_L2_size_bytes(struct gk20a *g)
{
u32 lts_per_ltc;
u32 ways;
u32 sets;
u32 bytes_per_line;
u32 active_ltcs;
u32 cache_size;
u32 tmp;
u32 active_sets_value;
tmp = gk20a_readl(g, ltc_ltc0_lts0_tstg_cfg1_r());
ways = hweight32(ltc_ltc0_lts0_tstg_cfg1_active_ways_v(tmp));
active_sets_value = ltc_ltc0_lts0_tstg_cfg1_active_sets_v(tmp);
if (active_sets_value == ltc_ltc0_lts0_tstg_cfg1_active_sets_all_v()) {
sets = 64U;
} else if (active_sets_value ==
ltc_ltc0_lts0_tstg_cfg1_active_sets_half_v()) {
sets = 32U;
} else if (active_sets_value ==
ltc_ltc0_lts0_tstg_cfg1_active_sets_quarter_v()) {
sets = 16U;
} else {
nvgpu_err(g, "Unknown constant %u for active sets",
(unsigned)active_sets_value);
sets = 0U;
}
active_ltcs = g->gr.num_fbps;
/* chip-specific values */
lts_per_ltc = 2U;
bytes_per_line = 128U;
cache_size = active_ltcs * lts_per_ltc * ways * sets * bytes_per_line;
return cache_size;
}
/*
* Sets the ZBC color for the passed index.
*/
void gm20b_ltc_set_zbc_color_entry(struct gk20a *g,
u32 *color_l2,
u32 index)
{
u32 i;
nvgpu_writel_check(g, ltc_ltcs_ltss_dstg_zbc_index_r(),
ltc_ltcs_ltss_dstg_zbc_index_address_f(index));
for (i = 0;
i < ltc_ltcs_ltss_dstg_zbc_color_clear_value__size_1_v(); i++) {
nvgpu_writel_check(g,
ltc_ltcs_ltss_dstg_zbc_color_clear_value_r(i),
color_l2[i]);
}
}
/*
* Sets the ZBC depth for the passed index.
*/
void gm20b_ltc_set_zbc_depth_entry(struct gk20a *g,
u32 depth_val,
u32 index)
{
nvgpu_writel_check(g, ltc_ltcs_ltss_dstg_zbc_index_r(),
ltc_ltcs_ltss_dstg_zbc_index_address_f(index));
nvgpu_writel_check(g,
ltc_ltcs_ltss_dstg_zbc_depth_clear_value_r(),
depth_val);
}
void gm20b_ltc_set_enabled(struct gk20a *g, bool enabled)
{
u32 reg_f = ltc_ltcs_ltss_tstg_set_mgmt_2_l2_bypass_mode_enabled_f();
u32 reg = gk20a_readl(g, ltc_ltcs_ltss_tstg_set_mgmt_2_r());
if (enabled) {
/* bypass disabled (normal caching ops) */
reg &= ~reg_f;
} else {
/* bypass enabled (no caching) */
reg |= reg_f;
}
gk20a_writel(g, ltc_ltcs_ltss_tstg_set_mgmt_2_r(), reg);
}
/*
* LTC pri addressing
*/
bool gm20b_ltc_pri_is_ltc_addr(struct gk20a *g, u32 addr)
{
return ((addr >= ltc_pltcg_base_v()) && (addr < ltc_pltcg_extent_v()));
}
bool gm20b_ltc_is_ltcs_ltss_addr(struct gk20a *g, u32 addr)
{
u32 ltc_shared_base = ltc_ltcs_ltss_v();
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
return (addr >= ltc_shared_base) &&
(addr < (ltc_shared_base + lts_stride));
}
bool gm20b_ltc_is_ltcn_ltss_addr(struct gk20a *g, u32 addr)
{
u32 lts_shared_base = ltc_ltc0_ltss_v();
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
u32 addr_mask = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE) - 1U;
u32 base_offset = lts_shared_base & addr_mask;
u32 end_offset = base_offset + lts_stride;
return (!gm20b_ltc_is_ltcs_ltss_addr(g, addr)) &&
((addr & addr_mask) >= base_offset) &&
((addr & addr_mask) < end_offset);
}
static void gm20b_ltc_update_ltc_lts_addr(struct gk20a *g, u32 addr, u32 ltc_num,
u32 *priv_addr_table,
u32 *priv_addr_table_index)
{
u32 num_ltc_slices = g->ops.top.get_max_lts_per_ltc(g);
u32 index = *priv_addr_table_index;
u32 lts_num;
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
for (lts_num = 0; lts_num < num_ltc_slices; lts_num++) {
priv_addr_table[index++] = ltc_ltc0_lts0_v() +
ltc_num * ltc_stride +
lts_num * lts_stride +
(addr & (lts_stride - 1U));
}
*priv_addr_table_index = index;
}
void gm20b_ltc_split_lts_broadcast_addr(struct gk20a *g, u32 addr,
u32 *priv_addr_table,
u32 *priv_addr_table_index)
{
u32 num_ltc = g->ltc_count;
u32 i, start, ltc_num = 0;
u32 pltcg_base = ltc_pltcg_base_v();
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
for (i = 0; i < num_ltc; i++) {
start = pltcg_base + i * ltc_stride;
if ((addr >= start) && (addr < (start + ltc_stride))) {
ltc_num = i;
break;
}
}
gm20b_ltc_update_ltc_lts_addr(g, addr, ltc_num, priv_addr_table,
priv_addr_table_index);
}
void gm20b_ltc_split_ltc_broadcast_addr(struct gk20a *g, u32 addr,
u32 *priv_addr_table,
u32 *priv_addr_table_index)
{
u32 num_ltc = g->ltc_count;
u32 ltc_num;
for (ltc_num = 0; ltc_num < num_ltc; ltc_num++) {
gm20b_ltc_update_ltc_lts_addr(g, addr, ltc_num,
priv_addr_table, priv_addr_table_index);
}
}