Files
linux-nvgpu/drivers/gpu/nvgpu/include/nvgpu/mm.h
Sagar Kamble a16cc2dde3 gpu: nvgpu: compile out vidmem from safety build
Safety build does not support vidmem. This patch compiles out vidmem
related changes - vidmem, dma alloc, cbc/acr/pmu alloc based on
vidmem and corresponding tests like pramin, page allocator &
gmmu_map_unmap_vidmem..
As vidmem is applicable only in case of DGPUs the code is compiled
out using CONFIG_NVGPU_DGPU.

JIRA NVGPU-3524

Change-Id: Ic623801112484ffc071195e828ab9f290f945d4d
Signed-off-by: Sagar Kamble <skamble@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2132773
GVS: Gerrit_Virtual_Submit
Reviewed-by: Vaibhav Kachore <vkachore@nvidia.com>
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-06-25 04:37:08 -07:00

352 lines
9.6 KiB
C

/*
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef NVGPU_MM_H
#define NVGPU_MM_H
/**
* @file
* @page unit-mm Unit MM
*
* Overview
* ========
*
* The MM unit is responsible for managing memory in nvgpu. Memory consists
* primarily of two types:
*
* + Regular kernel memory
* + Device accessible memory (DMA memory)
*
* The MM code also makes sure that all of the necessary SW and HW
* initialization for any memory subsystems are taken care of before the GPU
* begins executing work.
*
* Regular Kernel Memory
* ---------------------
*
* The MM unit generally relies on the underlying system to manage kernel
* memory. The nvgpu_kmalloc() and friends implementation is handled by
* kmalloc() on Linux for example.
*
* See include/nvgpu/kmem.h for more details.
*
* DMA
* ---
*
* DMA memory is more complex since it depends on both the GPU hardware and the
* underlying operating system to handle mapping of DMA memory into the GMMU
* (GPU Memory Management Unit). See the following documents for a reference
* describing DMA support in nvgpu-driver:
*
* + include/nvgpu/dma.h
* + include/nvgpu/vm.h
* + include/nvgpu/gmmu.h
* + include/nvgpu/nvgpu_mem.h
* + include/nvgpu/nvgpu_sgt.h
*
* Data Structures
* ===============
*
* The major data structures exposed to users of the MM unit in nvgpu all relate
* to managing DMA buffers and mapping DMA buffers into a GMMU context. The
* following is a list of these structures:
*
* + struct mm_gk20a
*
* struct mm_gk20a defines a single GPU's memory context. It contains
* descriptions of various system GMMU contexts and other GPU global
* locks, descriptions, etc.
*
* + struct vm_gk20a
*
* struct vm_gk20a describes a single GMMU context. This is made up of a
* page directory base (PDB) and other meta data necessary for managing
* GPU memory mappings within this context.
*
* + struct nvgpu_mem
*
* struct nvgpu_mem abstracts all forms of GPU accessible memory which may
* or may not be backed by an SGT/SGL. This structure forms the basis for
* all GPU accessible memory within nvgpu-common.
*
* + struct nvgpu_sgt
*
* In most modern operating systems a DMA buffer may actually be comprised
* of many smaller buffers. This is because in a system running for
* extended periods of time the memory starts to become fragmented at page
* level granularity. Thus when trying to allocate a buffer larger than a
* page it's possible that there won't be a large enough contiguous region
* capable of satisfying the allocation despite there apparently being
* more than enough available space.
*
* This classic fragmentation problem is solved by using lists or tables
* of sub-allocations, that together, form a single DMA buffer. To manage
* these buffers the notion of a scatter-gather list or scatter gather
* table (SGL and SGT, respectively) are introduced.
*
* + struct nvgpu_mapped_buf
*
* This describes a mapping of a userspace provided buffer.
*
* Static Design
* =============
*
* Details of static design.
*
* Resource utilization
* --------------------
*
* External APIs
* -------------
*
* + nvgpu_mm_setup_hw()
*
*
* Supporting Functionality
* ========================
*
* There's a fair amount of supporting functionality:
*
* + Allocators
* - Buddy allocator
* - Page allocator
* - Bitmap allocator
* + vm_area
* + gmmu
* # pd_cache
* # page_table
*
* Documentation for this will be filled in!
*
* Dependencies
* ------------
*
* Dynamic Design
* ==============
*
* Use case descriptions go here. Some potentials:
*
* - nvgpu_vm_map()
* - nvgpu_gmmu_map()
* - nvgpu_dma_alloc()
*
* Requirements
* ============
*
* I added this section to link to unit level requirements. Seems like it's
* missing from the IPP template.
*
* Requirement | Link
* ----------- | ---------------------------------------------------------------------------
* NVGPU-RQCD-45 | https://nvidia.jamacloud.com/perspective.req#/items/6434840?projectId=20460
*
* Open Items
* ==========
*
* Any open items can go here.
*/
#include <nvgpu/vm.h>
#include <nvgpu/types.h>
#include <nvgpu/cond.h>
#include <nvgpu/thread.h>
#include <nvgpu/lock.h>
#include <nvgpu/atomic.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/allocator.h>
#include <nvgpu/list.h>
#include <nvgpu/sizes.h>
#include <nvgpu/mmu_fault.h>
struct gk20a;
struct vm_gk20a;
struct nvgpu_mem;
struct nvgpu_pd_cache;
enum nvgpu_flush_op {
NVGPU_FLUSH_DEFAULT,
NVGPU_FLUSH_FB,
NVGPU_FLUSH_L2_INV,
NVGPU_FLUSH_L2_FLUSH,
NVGPU_FLUSH_CBC_CLEAN,
};
/**
* This struct keeps track of a given GPU's memory management state. Each GPU
* has exactly one of these structs embedded directly in the gk20a struct. Some
* memory state is tracked on a per-context basis in the <nvgpu/vm.h> header but
* for state that's global to a given GPU this is used.
*/
struct mm_gk20a {
struct gk20a *g;
/* GPU VA default sizes address spaces for channels */
struct {
u64 user_size; /* userspace-visible GPU VA region */
u64 kernel_size; /* kernel-only GPU VA region */
} channel;
struct {
u32 aperture_size;
struct vm_gk20a *vm;
struct nvgpu_mem inst_block;
} bar1;
struct {
u32 aperture_size;
struct vm_gk20a *vm;
struct nvgpu_mem inst_block;
} bar2;
struct engine_ucode {
u32 aperture_size;
struct vm_gk20a *vm;
struct nvgpu_mem inst_block;
} pmu, sec2, gsp;
struct {
/* using pmu vm currently */
struct nvgpu_mem inst_block;
} hwpm;
struct {
struct vm_gk20a *vm;
struct nvgpu_mem inst_block;
} perfbuf;
struct {
struct vm_gk20a *vm;
} cde;
struct {
struct vm_gk20a *vm;
} ce;
struct nvgpu_pd_cache *pd_cache;
struct nvgpu_mutex l2_op_lock;
struct nvgpu_mutex tlb_lock;
struct nvgpu_mutex priv_lock;
struct nvgpu_mem bar2_desc;
struct nvgpu_mem hw_fault_buf[NVGPU_MMU_FAULT_TYPE_NUM];
struct mmu_fault_info fault_info[NVGPU_MMU_FAULT_TYPE_NUM];
struct nvgpu_mutex hub_isr_mutex;
#ifdef CONFIG_NVGPU_CE
/*
* Separate function to cleanup the CE since it requires a channel to
* be closed which must happen before fifo cleanup.
*/
void (*remove_ce_support)(struct mm_gk20a *mm);
#endif
void (*remove_support)(struct mm_gk20a *mm);
bool sw_ready;
int physical_bits;
bool use_full_comp_tag_line;
bool ltc_enabled_current;
bool ltc_enabled_target;
bool disable_bigpage;
struct nvgpu_mem sysmem_flush;
#ifdef CONFIG_NVGPU_DGPU
u32 pramin_window;
struct nvgpu_spinlock pramin_window_lock;
struct {
size_t size;
u64 base;
size_t bootstrap_size;
u64 bootstrap_base;
struct nvgpu_allocator allocator;
struct nvgpu_allocator bootstrap_allocator;
u32 ce_ctx_id;
volatile bool cleared;
struct nvgpu_mutex first_clear_mutex;
struct nvgpu_list_node clear_list_head;
struct nvgpu_mutex clear_list_mutex;
struct nvgpu_cond clearing_thread_cond;
struct nvgpu_thread clearing_thread;
struct nvgpu_mutex clearing_thread_lock;
nvgpu_atomic_t pause_count;
nvgpu_atomic64_t bytes_pending;
} vidmem;
#endif
struct nvgpu_mem mmu_wr_mem;
struct nvgpu_mem mmu_rd_mem;
};
#define gk20a_from_mm(mm) ((mm)->g)
#define gk20a_from_vm(vm) ((vm)->mm->g)
static inline u32 bar1_aperture_size_mb_gk20a(void)
{
return 16U; /* 16MB is more than enough atm. */
}
/* The maximum GPU VA range supported */
#define NV_GMMU_VA_RANGE 38
/* The default userspace-visible GPU VA size */
#define NV_MM_DEFAULT_USER_SIZE (1ULL << 37)
/* The default kernel-reserved GPU VA size */
#define NV_MM_DEFAULT_KERNEL_SIZE (1ULL << 32)
/*
* When not using unified address spaces, the bottom 56GB of the space are used
* for small pages, and the remaining high memory is used for large pages.
*/
static inline u64 nvgpu_gmmu_va_small_page_limit(void)
{
return ((u64)SZ_1G * 56U);
}
#ifdef CONFIG_NVGPU_CE
void nvgpu_init_mm_ce_context(struct gk20a *g);
#endif
int nvgpu_init_mm_support(struct gk20a *g);
int nvgpu_alloc_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block);
u64 nvgpu_inst_block_addr(struct gk20a *g, struct nvgpu_mem *inst_block);
u32 nvgpu_inst_block_ptr(struct gk20a *g, struct nvgpu_mem *inst_block);
void nvgpu_free_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block);
int nvgpu_mm_suspend(struct gk20a *g);
u32 nvgpu_mm_get_default_big_page_size(struct gk20a *g);
u32 nvgpu_mm_get_available_big_page_sizes(struct gk20a *g);
/**
* Setup MM.
*
* @param g - The GPU.
*/
int nvgpu_mm_setup_hw(struct gk20a *g);
#endif /* NVGPU_MM_H */