Files
linux-nvgpu/drivers/gpu/nvgpu/common/fifo/channel.c
Alex Waterman 194fac7f3c gpu: nvgpu: Remove clutter in engine code
Remove the get_mask_on_id() HAL and replace it's usage with the
global nvgpu_engine_get_mask_on_id() function. There's no need
to have this function as a HAL.

JIRA NVGPU-5420

Change-Id: I4fc843beff8e65806da26a0addc83fa218d390ac
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2361315
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-12-15 14:13:28 -06:00

2432 lines
61 KiB
C

/*
* GK20A Graphics channel
*
* Copyright (c) 2011-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/trace.h>
#include <nvgpu/mm.h>
#include <nvgpu/semaphore.h>
#include <nvgpu/timers.h>
#include <nvgpu/kmem.h>
#include <nvgpu/dma.h>
#include <nvgpu/log.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/list.h>
#include <nvgpu/circ_buf.h>
#include <nvgpu/cond.h>
#include <nvgpu/enabled.h>
#include <nvgpu/debug.h>
#include <nvgpu/debugger.h>
#include <nvgpu/ltc.h>
#include <nvgpu/barrier.h>
#include <nvgpu/error_notifier.h>
#include <nvgpu/os_sched.h>
#include <nvgpu/log2.h>
#include <nvgpu/ptimer.h>
#include <nvgpu/worker.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/mc.h>
#include <nvgpu/nvgpu_init.h>
#include <nvgpu/engines.h>
#include <nvgpu/channel.h>
#include <nvgpu/channel_sync.h>
#include <nvgpu/channel_sync_syncpt.h>
#include <nvgpu/channel_sync_semaphore.h>
#include <nvgpu/channel_user_syncpt.h>
#include <nvgpu/runlist.h>
#include <nvgpu/watchdog.h>
#include <nvgpu/fifo/userd.h>
#include <nvgpu/nvhost.h>
#include <nvgpu/fence.h>
#include <nvgpu/preempt.h>
#include <nvgpu/static_analysis.h>
#ifdef CONFIG_NVGPU_DEBUGGER
#include <nvgpu/gr/gr.h>
#endif
#include <nvgpu/job.h>
#include <nvgpu/priv_cmdbuf.h>
static void free_channel(struct nvgpu_fifo *f, struct nvgpu_channel *ch);
static void channel_dump_ref_actions(struct nvgpu_channel *ch);
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
static const struct nvgpu_worker_ops channel_worker_ops;
#endif
static int channel_setup_ramfc(struct nvgpu_channel *c,
struct nvgpu_setup_bind_args *args,
u64 gpfifo_gpu_va, u32 gpfifo_size);
/* allocate GPU channel */
static struct nvgpu_channel *allocate_channel(struct nvgpu_fifo *f)
{
struct nvgpu_channel *ch = NULL;
struct gk20a *g = f->g;
nvgpu_mutex_acquire(&f->free_chs_mutex);
if (!nvgpu_list_empty(&f->free_chs)) {
ch = nvgpu_list_first_entry(&f->free_chs, nvgpu_channel,
free_chs);
nvgpu_list_del(&ch->free_chs);
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(nvgpu_atomic_read(&ch->ref_count) != 0);
WARN_ON(ch->referenceable);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
f->used_channels = nvgpu_safe_add_u32(f->used_channels, 1U);
}
nvgpu_mutex_release(&f->free_chs_mutex);
if ((g->aggressive_sync_destroy_thresh != 0U) &&
(f->used_channels >
g->aggressive_sync_destroy_thresh)) {
g->aggressive_sync_destroy = true;
}
return ch;
}
static void free_channel(struct nvgpu_fifo *f,
struct nvgpu_channel *ch)
{
struct gk20a *g = f->g;
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_release_used_channel(ch->chid);
#endif
/* refcount is zero here and channel is in a freed/dead state */
nvgpu_mutex_acquire(&f->free_chs_mutex);
/* add to head to increase visibility of timing-related bugs */
nvgpu_list_add(&ch->free_chs, &f->free_chs);
f->used_channels = nvgpu_safe_sub_u32(f->used_channels, 1U);
nvgpu_mutex_release(&f->free_chs_mutex);
/*
* On teardown it is not possible to dereference platform, but ignoring
* this is fine then because no new channels would be created.
*/
if (!nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING)) {
if ((g->aggressive_sync_destroy_thresh != 0U) &&
(f->used_channels <
g->aggressive_sync_destroy_thresh)) {
g->aggressive_sync_destroy = false;
}
}
}
void nvgpu_channel_commit_va(struct nvgpu_channel *c)
{
struct gk20a *g = c->g;
nvgpu_log_fn(g, " ");
g->ops.mm.init_inst_block(&c->inst_block, c->vm,
c->vm->gmmu_page_sizes[GMMU_PAGE_SIZE_BIG]);
}
int nvgpu_channel_update_runlist(struct nvgpu_channel *c, bool add)
{
return c->g->ops.runlist.update_for_channel(c->g, c->runlist_id,
c, add, true);
}
int nvgpu_channel_enable_tsg(struct gk20a *g, struct nvgpu_channel *ch)
{
struct nvgpu_tsg *tsg;
tsg = nvgpu_tsg_from_ch(ch);
if (tsg != NULL) {
g->ops.tsg.enable(tsg);
return 0;
} else {
nvgpu_err(ch->g, "chid: %d is not bound to tsg", ch->chid);
return -EINVAL;
}
}
int nvgpu_channel_disable_tsg(struct gk20a *g, struct nvgpu_channel *ch)
{
struct nvgpu_tsg *tsg;
tsg = nvgpu_tsg_from_ch(ch);
if (tsg != NULL) {
g->ops.tsg.disable(tsg);
return 0;
} else {
nvgpu_err(ch->g, "chid: %d is not bound to tsg", ch->chid);
return -EINVAL;
}
}
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
void nvgpu_channel_abort_clean_up(struct nvgpu_channel *ch)
{
/* synchronize with actual job cleanup */
nvgpu_mutex_acquire(&ch->joblist.cleanup_lock);
/* ensure no fences are pending */
nvgpu_mutex_acquire(&ch->sync_lock);
if (ch->sync != NULL) {
nvgpu_channel_sync_set_min_eq_max(ch->sync);
}
#ifdef CONFIG_TEGRA_GK20A_NVHOST
if (ch->user_sync != NULL) {
nvgpu_channel_user_syncpt_set_safe_state(ch->user_sync);
}
#endif
nvgpu_mutex_release(&ch->sync_lock);
nvgpu_mutex_release(&ch->joblist.cleanup_lock);
/*
* When closing the channel, this scheduled update holds one ref which
* is waited for before advancing with freeing.
*/
nvgpu_channel_update(ch);
}
static void channel_kernelmode_deinit(struct nvgpu_channel *ch)
{
struct vm_gk20a *ch_vm = ch->vm;
nvgpu_dma_unmap_free(ch_vm, &ch->gpfifo.mem);
#ifdef CONFIG_NVGPU_DGPU
nvgpu_big_free(ch->g, ch->gpfifo.pipe);
#endif
(void) memset(&ch->gpfifo, 0, sizeof(struct gpfifo_desc));
if (ch->priv_cmd_q != NULL) {
nvgpu_priv_cmdbuf_queue_free(ch->priv_cmd_q);
ch->priv_cmd_q = NULL;
}
/* free pre-allocated resources, if applicable */
if (nvgpu_channel_is_prealloc_enabled(ch)) {
channel_free_prealloc_resources(ch);
}
/* sync must be destroyed before releasing channel vm */
nvgpu_mutex_acquire(&ch->sync_lock);
if (ch->sync != NULL) {
nvgpu_channel_sync_destroy(ch->sync);
ch->sync = NULL;
}
nvgpu_mutex_release(&ch->sync_lock);
}
bool nvgpu_channel_is_prealloc_enabled(struct nvgpu_channel *c)
{
#ifdef CONFIG_NVGPU_DETERMINISTIC_CHANNELS
bool pre_alloc_enabled = c->joblist.pre_alloc.enabled;
nvgpu_smp_rmb();
return pre_alloc_enabled;
#else
return false;
#endif
}
#ifdef CONFIG_TEGRA_GK20A_NVHOST
int nvgpu_channel_set_syncpt(struct nvgpu_channel *ch)
{
struct gk20a *g = ch->g;
struct nvgpu_channel_sync_syncpt *sync_syncpt;
u32 new_syncpt = 0U;
u32 old_syncpt = g->ops.ramfc.get_syncpt(ch);
int err = 0;
if (ch->sync != NULL) {
sync_syncpt = nvgpu_channel_sync_to_syncpt(ch->sync);
if (sync_syncpt != NULL) {
new_syncpt =
nvgpu_channel_sync_get_syncpt_id(sync_syncpt);
} else {
new_syncpt = NVGPU_INVALID_SYNCPT_ID;
/* ??? */
return -EINVAL;
}
} else {
return -EINVAL;
}
if ((new_syncpt != 0U) && (new_syncpt != old_syncpt)) {
/* disable channel */
err = nvgpu_channel_disable_tsg(g, ch);
if (err != 0) {
nvgpu_err(g, "failed to disable channel/TSG");
return err;
}
/* preempt the channel */
err = nvgpu_preempt_channel(g, ch);
nvgpu_assert(err == 0);
if (err != 0 ) {
goto out;
}
/* no error at this point */
g->ops.ramfc.set_syncpt(ch, new_syncpt);
err = nvgpu_channel_enable_tsg(g, ch);
if (err != 0) {
nvgpu_err(g, "failed to enable channel/TSG");
}
}
nvgpu_log_fn(g, "done");
return err;
out:
if (nvgpu_channel_enable_tsg(g, ch) != 0) {
nvgpu_err(g, "failed to enable channel/TSG");
}
return err;
}
#endif
static int channel_setup_kernelmode(struct nvgpu_channel *c,
struct nvgpu_setup_bind_args *args)
{
u32 gpfifo_size, gpfifo_entry_size;
u64 gpfifo_gpu_va;
u32 priv_cmd_jobs;
int err = 0;
struct gk20a *g = c->g;
gpfifo_size = args->num_gpfifo_entries;
gpfifo_entry_size = nvgpu_get_gpfifo_entry_size();
err = nvgpu_dma_alloc_map_sys(c->vm,
(size_t)gpfifo_size * (size_t)gpfifo_entry_size,
&c->gpfifo.mem);
if (err != 0) {
nvgpu_err(g, "memory allocation failed");
goto clean_up;
}
#ifdef CONFIG_NVGPU_DGPU
if (c->gpfifo.mem.aperture == APERTURE_VIDMEM) {
c->gpfifo.pipe = nvgpu_big_malloc(g,
(size_t)gpfifo_size *
(size_t)gpfifo_entry_size);
if (c->gpfifo.pipe == NULL) {
err = -ENOMEM;
goto clean_up_unmap;
}
}
#endif
gpfifo_gpu_va = c->gpfifo.mem.gpu_va;
c->gpfifo.entry_num = gpfifo_size;
c->gpfifo.get = 0;
c->gpfifo.put = 0;
nvgpu_log_info(g, "channel %d : gpfifo_base 0x%016llx, size %d",
c->chid, gpfifo_gpu_va, c->gpfifo.entry_num);
g->ops.userd.init_mem(g, c);
if (g->aggressive_sync_destroy_thresh == 0U) {
nvgpu_mutex_acquire(&c->sync_lock);
c->sync = nvgpu_channel_sync_create(c);
if (c->sync == NULL) {
err = -ENOMEM;
nvgpu_mutex_release(&c->sync_lock);
goto clean_up_unmap;
}
nvgpu_mutex_release(&c->sync_lock);
if (g->ops.channel.set_syncpt != NULL) {
err = g->ops.channel.set_syncpt(c);
if (err != 0) {
goto clean_up_sync;
}
}
}
err = channel_setup_ramfc(c, args, gpfifo_gpu_va,
c->gpfifo.entry_num);
if (err != 0) {
goto clean_up_sync;
}
if (nvgpu_channel_is_deterministic(c) &&
args->num_inflight_jobs != 0U) {
err = channel_prealloc_resources(c,
args->num_inflight_jobs);
if (err != 0) {
goto clean_up_sync;
}
}
/*
* Allocate priv cmdbuf space for pre and post fences. If the inflight
* job count isn't specified, we base it on the gpfifo count. We
* multiply by a factor of 1/3 because at most a third of the GPFIFO
* entries can be used for user-submitted jobs; another third goes to
* wait entries, and the final third to incr entries. There will be one
* pair of acq and incr commands for each job.
*/
priv_cmd_jobs = args->num_inflight_jobs;
if (priv_cmd_jobs == 0U) {
priv_cmd_jobs = c->gpfifo.entry_num / 3U;
}
err = nvgpu_priv_cmdbuf_queue_alloc(c->vm, priv_cmd_jobs, &c->priv_cmd_q);
if (err != 0) {
goto clean_up_prealloc;
}
err = nvgpu_channel_update_runlist(c, true);
if (err != 0) {
goto clean_up_priv_cmd;
}
return 0;
clean_up_priv_cmd:
nvgpu_priv_cmdbuf_queue_free(c->priv_cmd_q);
c->priv_cmd_q = NULL;
clean_up_prealloc:
if (nvgpu_channel_is_deterministic(c) &&
args->num_inflight_jobs != 0U) {
channel_free_prealloc_resources(c);
}
clean_up_sync:
if (c->sync != NULL) {
nvgpu_channel_sync_destroy(c->sync);
c->sync = NULL;
}
clean_up_unmap:
#ifdef CONFIG_NVGPU_DGPU
nvgpu_big_free(g, c->gpfifo.pipe);
#endif
nvgpu_dma_unmap_free(c->vm, &c->gpfifo.mem);
clean_up:
(void) memset(&c->gpfifo, 0, sizeof(struct gpfifo_desc));
return err;
}
/* Update with this periodically to determine how the gpfifo is draining. */
static inline u32 channel_update_gpfifo_get(struct gk20a *g,
struct nvgpu_channel *c)
{
u32 new_get = g->ops.userd.gp_get(g, c);
c->gpfifo.get = new_get;
return new_get;
}
u32 nvgpu_channel_get_gpfifo_free_count(struct nvgpu_channel *ch)
{
return (ch->gpfifo.entry_num - (ch->gpfifo.put - ch->gpfifo.get) - 1U) %
ch->gpfifo.entry_num;
}
u32 nvgpu_channel_update_gpfifo_get_and_get_free_count(struct nvgpu_channel *ch)
{
(void)channel_update_gpfifo_get(ch->g, ch);
return nvgpu_channel_get_gpfifo_free_count(ch);
}
static inline struct nvgpu_channel_worker *
nvgpu_channel_worker_from_worker(struct nvgpu_worker *worker)
{
return (struct nvgpu_channel_worker *)
((uintptr_t)worker - offsetof(struct nvgpu_channel_worker, worker));
};
#ifdef CONFIG_NVGPU_CHANNEL_WDT
static void nvgpu_channel_worker_poll_init(struct nvgpu_worker *worker)
{
struct nvgpu_channel_worker *ch_worker =
nvgpu_channel_worker_from_worker(worker);
int ret;
ch_worker->watchdog_interval = 100U;
ret = nvgpu_timeout_init(worker->g, &ch_worker->timeout,
ch_worker->watchdog_interval, NVGPU_TIMER_CPU_TIMER);
if (ret != 0) {
nvgpu_err(worker->g, "timeout_init failed: %d", ret);
}
}
/**
* Loop every living channel, check timeouts and handle stuck channels.
*/
static void nvgpu_channel_poll_wdt(struct gk20a *g)
{
unsigned int chid;
for (chid = 0; chid < g->fifo.num_channels; chid++) {
struct nvgpu_channel *ch = nvgpu_channel_from_id(g, chid);
if (ch != NULL) {
if (!nvgpu_channel_check_unserviceable(ch)) {
nvgpu_channel_wdt_check(ch->wdt, ch);
}
nvgpu_channel_put(ch);
}
}
}
static void nvgpu_channel_worker_poll_wakeup_post_process_item(
struct nvgpu_worker *worker)
{
struct gk20a *g = worker->g;
struct nvgpu_channel_worker *ch_worker =
nvgpu_channel_worker_from_worker(worker);
int ret;
if (nvgpu_timeout_peek_expired(&ch_worker->timeout)) {
nvgpu_channel_poll_wdt(g);
ret = nvgpu_timeout_init(g, &ch_worker->timeout,
ch_worker->watchdog_interval,
NVGPU_TIMER_CPU_TIMER);
if (ret != 0) {
nvgpu_err(g, "timeout_init failed: %d", ret);
}
}
}
static u32 nvgpu_channel_worker_poll_wakeup_condition_get_timeout(
struct nvgpu_worker *worker)
{
struct nvgpu_channel_worker *ch_worker =
nvgpu_channel_worker_from_worker(worker);
return ch_worker->watchdog_interval;
}
#endif /* CONFIG_NVGPU_CHANNEL_WDT */
static inline struct nvgpu_channel *
nvgpu_channel_from_worker_item(struct nvgpu_list_node *node)
{
return (struct nvgpu_channel *)
((uintptr_t)node - offsetof(struct nvgpu_channel, worker_item));
};
static void nvgpu_channel_worker_poll_wakeup_process_item(
struct nvgpu_list_node *work_item)
{
struct nvgpu_channel *ch = nvgpu_channel_from_worker_item(work_item);
nvgpu_assert(ch != NULL);
nvgpu_log_fn(ch->g, " ");
nvgpu_channel_clean_up_jobs(ch, true);
/* ref taken when enqueued */
nvgpu_channel_put(ch);
}
static const struct nvgpu_worker_ops channel_worker_ops = {
#ifdef CONFIG_NVGPU_CHANNEL_WDT
.pre_process = nvgpu_channel_worker_poll_init,
.wakeup_post_process =
nvgpu_channel_worker_poll_wakeup_post_process_item,
.wakeup_timeout =
nvgpu_channel_worker_poll_wakeup_condition_get_timeout,
#endif
.wakeup_early_exit = NULL,
.wakeup_process_item =
nvgpu_channel_worker_poll_wakeup_process_item,
.wakeup_condition = NULL,
};
/**
* Initialize the channel worker's metadata and start the background thread.
*/
int nvgpu_channel_worker_init(struct gk20a *g)
{
struct nvgpu_worker *worker = &g->channel_worker.worker;
nvgpu_worker_init_name(worker, "nvgpu_channel_poll", g->name);
return nvgpu_worker_init(g, worker, &channel_worker_ops);
}
void nvgpu_channel_worker_deinit(struct gk20a *g)
{
struct nvgpu_worker *worker = &g->channel_worker.worker;
nvgpu_worker_deinit(worker);
}
/**
* Append a channel to the worker's list, if not there already.
*
* The worker thread processes work items (channels in its work list) and polls
* for other things. This adds @ch to the end of the list and wakes the worker
* up immediately. If the channel already existed in the list, it's not added,
* because in that case it has been scheduled already but has not yet been
* processed.
*/
static void channel_worker_enqueue(struct nvgpu_channel *ch)
{
struct gk20a *g = ch->g;
int ret;
nvgpu_log_fn(g, " ");
/*
* Ref released when this item gets processed. The caller should hold
* one ref already, so normally shouldn't fail, but the channel could
* end up being freed between the time the caller got its reference and
* the time we end up here (e.g., if the client got killed); if so, just
* return.
*/
if (nvgpu_channel_get(ch) == NULL) {
nvgpu_info(g, "cannot get ch ref for worker!");
return;
}
ret = nvgpu_worker_enqueue(&g->channel_worker.worker,
&ch->worker_item);
if (ret != 0) {
nvgpu_channel_put(ch);
return;
}
}
int nvgpu_channel_add_job(struct nvgpu_channel *c,
struct nvgpu_channel_job *job,
bool skip_buffer_refcounting)
{
struct vm_gk20a *vm = c->vm;
struct nvgpu_mapped_buf **mapped_buffers = NULL;
int err = 0;
u32 num_mapped_buffers = 0;
bool pre_alloc_enabled = nvgpu_channel_is_prealloc_enabled(c);
if (!skip_buffer_refcounting) {
err = nvgpu_vm_get_buffers(vm, &mapped_buffers,
&num_mapped_buffers);
if (err != 0) {
return err;
}
}
if (c != NULL) {
job->num_mapped_buffers = num_mapped_buffers;
job->mapped_buffers = mapped_buffers;
nvgpu_channel_wdt_start(c->wdt, c);
if (!pre_alloc_enabled) {
nvgpu_channel_joblist_lock(c);
}
/*
* ensure all pending write complete before adding to the list.
* see corresponding nvgpu_smp_rmb in
* nvgpu_channel_clean_up_jobs()
*/
nvgpu_smp_wmb();
channel_joblist_add(c, job);
if (!pre_alloc_enabled) {
nvgpu_channel_joblist_unlock(c);
}
} else {
err = -ETIMEDOUT;
goto err_put_buffers;
}
return 0;
err_put_buffers:
nvgpu_vm_put_buffers(vm, mapped_buffers, num_mapped_buffers);
return err;
}
/**
* Clean up job resources for further jobs to use.
* @clean_all: If true, process as many jobs as possible, otherwise just one.
*
* Loop all jobs from the joblist until a pending job is found, or just one if
* clean_all is not set. Pending jobs are detected from the job's post fence,
* so this is only done for jobs that have job tracking resources. Free all
* per-job memory for completed jobs; in case of preallocated resources, this
* opens up slots for new jobs to be submitted.
*/
void nvgpu_channel_clean_up_jobs(struct nvgpu_channel *c,
bool clean_all)
{
struct vm_gk20a *vm;
struct nvgpu_channel_job *job;
struct gk20a *g;
bool job_finished = false;
bool watchdog_on = false;
if (nvgpu_is_powered_off(c->g)) { /* shutdown case */
return;
}
vm = c->vm;
g = c->g;
/*
* If !clean_all, we're in a condition where watchdog isn't supported
* anyway (this would be a no-op).
*/
if (clean_all) {
watchdog_on = nvgpu_channel_wdt_stop(c->wdt);
}
/* Synchronize with abort cleanup that needs the jobs. */
nvgpu_mutex_acquire(&c->joblist.cleanup_lock);
while (true) {
bool completed;
nvgpu_channel_joblist_lock(c);
if (nvgpu_channel_joblist_is_empty(c)) {
/*
* No jobs in flight, timeout will remain stopped until
* new jobs are submitted.
*/
nvgpu_channel_joblist_unlock(c);
break;
}
/*
* ensure that all subsequent reads occur after checking
* that we have a valid node. see corresponding nvgpu_smp_wmb in
* nvgpu_channel_add_job().
*/
nvgpu_smp_rmb();
job = channel_joblist_peek(c);
nvgpu_channel_joblist_unlock(c);
completed = nvgpu_fence_is_expired(job->post_fence);
if (!completed) {
/*
* The watchdog eventually sees an updated gp_get if
* something happened in this loop. A new job can have
* been submitted between the above call to stop and
* this - in that case, this is a no-op and the new
* later timeout is still used.
*/
if (clean_all && watchdog_on) {
nvgpu_channel_wdt_continue(c->wdt);
}
break;
}
WARN_ON(c->sync == NULL);
if (c->sync != NULL) {
if (c->has_os_fence_framework_support &&
g->os_channel.os_fence_framework_inst_exists(c)) {
g->os_channel.signal_os_fence_framework(c,
job->post_fence);
}
if (g->aggressive_sync_destroy_thresh != 0U) {
nvgpu_mutex_acquire(&c->sync_lock);
if (nvgpu_channel_sync_put_ref_and_check(c->sync)
&& g->aggressive_sync_destroy) {
nvgpu_channel_sync_destroy(c->sync);
c->sync = NULL;
}
nvgpu_mutex_release(&c->sync_lock);
}
}
if (job->num_mapped_buffers != 0U) {
nvgpu_vm_put_buffers(vm, job->mapped_buffers,
job->num_mapped_buffers);
}
/*
* Remove job from channel's job list before we close the
* fences, to prevent other callers (nvgpu_channel_abort) from
* trying to dereference post_fence when it no longer exists.
*/
nvgpu_channel_joblist_lock(c);
channel_joblist_delete(c, job);
nvgpu_channel_joblist_unlock(c);
/* Close the fence (this will unref the semaphore and release
* it to the pool). */
nvgpu_fence_put(job->post_fence);
/*
* Free the private command buffers (wait_cmd first and
* then incr_cmd i.e. order of allocation)
*/
if (job->wait_cmd != NULL) {
nvgpu_priv_cmdbuf_free(c->priv_cmd_q, job->wait_cmd);
}
nvgpu_priv_cmdbuf_free(c->priv_cmd_q, job->incr_cmd);
/*
* ensure all pending writes complete before freeing up the job.
* see corresponding nvgpu_smp_rmb in nvgpu_channel_alloc_job().
*/
nvgpu_smp_wmb();
nvgpu_channel_free_job(c, job);
job_finished = true;
/*
* Deterministic channels have a channel-wide power reference;
* for others, there's one per submit.
*/
if (!nvgpu_channel_is_deterministic(c)) {
gk20a_idle(g);
}
if (!clean_all) {
/* Timeout isn't supported here so don't touch it. */
break;
}
}
nvgpu_mutex_release(&c->joblist.cleanup_lock);
if ((job_finished) &&
(g->os_channel.work_completion_signal != NULL)) {
g->os_channel.work_completion_signal(c);
}
}
/**
* Schedule a job cleanup work on this channel to free resources and to signal
* about completion.
*
* Call this when there has been an interrupt about finished jobs, or when job
* cleanup needs to be performed, e.g., when closing a channel. This is always
* safe to call even if there is nothing to clean up. Any visible actions on
* jobs just before calling this are guaranteed to be processed.
*/
void nvgpu_channel_update(struct nvgpu_channel *c)
{
if (nvgpu_is_powered_off(c->g)) { /* shutdown case */
return;
}
#ifdef CONFIG_NVGPU_TRACE
trace_nvgpu_channel_update(c->chid);
#endif
/* A queued channel is always checked for job cleanup. */
channel_worker_enqueue(c);
}
bool nvgpu_channel_update_and_check_ctxsw_timeout(struct nvgpu_channel *ch,
u32 timeout_delta_ms, bool *progress)
{
u32 gpfifo_get;
if (ch->usermode_submit_enabled) {
ch->ctxsw_timeout_accumulated_ms += timeout_delta_ms;
*progress = false;
goto done;
}
gpfifo_get = channel_update_gpfifo_get(ch->g, ch);
if (gpfifo_get == ch->ctxsw_timeout_gpfifo_get) {
/* didn't advance since previous ctxsw timeout check */
ch->ctxsw_timeout_accumulated_ms += timeout_delta_ms;
*progress = false;
} else {
/* first ctxsw timeout isr encountered */
ch->ctxsw_timeout_accumulated_ms = timeout_delta_ms;
*progress = true;
}
ch->ctxsw_timeout_gpfifo_get = gpfifo_get;
done:
return nvgpu_is_timeouts_enabled(ch->g) &&
ch->ctxsw_timeout_accumulated_ms > ch->ctxsw_timeout_max_ms;
}
#else
void nvgpu_channel_abort_clean_up(struct nvgpu_channel *ch)
{
/* ensure no fences are pending */
nvgpu_mutex_acquire(&ch->sync_lock);
if (ch->user_sync != NULL) {
nvgpu_channel_user_syncpt_set_safe_state(ch->user_sync);
}
nvgpu_mutex_release(&ch->sync_lock);
}
#endif /* CONFIG_NVGPU_KERNEL_MODE_SUBMIT */
void nvgpu_channel_set_unserviceable(struct nvgpu_channel *ch)
{
nvgpu_spinlock_acquire(&ch->unserviceable_lock);
ch->unserviceable = true;
nvgpu_spinlock_release(&ch->unserviceable_lock);
}
bool nvgpu_channel_check_unserviceable(struct nvgpu_channel *ch)
{
bool unserviceable_status;
nvgpu_spinlock_acquire(&ch->unserviceable_lock);
unserviceable_status = ch->unserviceable;
nvgpu_spinlock_release(&ch->unserviceable_lock);
return unserviceable_status;
}
void nvgpu_channel_abort(struct nvgpu_channel *ch, bool channel_preempt)
{
struct nvgpu_tsg *tsg = nvgpu_tsg_from_ch(ch);
nvgpu_log_fn(ch->g, " ");
if (tsg != NULL) {
return nvgpu_tsg_abort(ch->g, tsg, channel_preempt);
} else {
nvgpu_err(ch->g, "chid: %d is not bound to tsg", ch->chid);
}
}
void nvgpu_channel_wait_until_counter_is_N(
struct nvgpu_channel *ch, nvgpu_atomic_t *counter, int wait_value,
struct nvgpu_cond *c, const char *caller, const char *counter_name)
{
while (true) {
if (NVGPU_COND_WAIT(
c,
nvgpu_atomic_read(counter) == wait_value,
5000U) == 0) {
break;
}
nvgpu_warn(ch->g,
"%s: channel %d, still waiting, %s left: %d, waiting for: %d",
caller, ch->chid, counter_name,
nvgpu_atomic_read(counter), wait_value);
channel_dump_ref_actions(ch);
}
}
static void nvgpu_channel_usermode_deinit(struct nvgpu_channel *ch)
{
nvgpu_channel_free_usermode_buffers(ch);
#ifdef CONFIG_NVGPU_USERD
(void) nvgpu_userd_init_channel(ch->g, ch);
#endif
ch->usermode_submit_enabled = false;
}
static void channel_free_invoke_unbind(struct nvgpu_channel *ch)
{
int err = 0;
struct nvgpu_tsg *tsg;
struct gk20a *g = ch->g;
if (!nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING)) {
/* abort channel and remove from runlist */
tsg = nvgpu_tsg_from_ch(ch);
if (tsg != NULL) {
/* Between tsg is not null and unbind_channel call,
* ioctl cannot be called anymore because user doesn't
* have an open channel fd anymore to use for the unbind
* ioctl.
*/
err = nvgpu_tsg_unbind_channel(tsg, ch);
if (err != 0) {
nvgpu_err(g,
"failed to unbind channel %d from TSG",
ch->chid);
}
} else {
/*
* Channel is already unbound from TSG by User with
* explicit call
* Nothing to do here in that case
*/
}
}
}
static void channel_free_invoke_deferred_engine_reset(struct nvgpu_channel *ch)
{
#ifdef CONFIG_NVGPU_DEBUGGER
struct gk20a *g = ch->g;
struct nvgpu_fifo *f = &g->fifo;
bool deferred_reset_pending;
/* if engine reset was deferred, perform it now */
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
deferred_reset_pending = g->fifo.deferred_reset_pending;
nvgpu_mutex_release(&f->deferred_reset_mutex);
if (deferred_reset_pending) {
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg, "engine reset was"
" deferred, running now");
nvgpu_mutex_acquire(&g->fifo.engines_reset_mutex);
nvgpu_assert(nvgpu_channel_deferred_reset_engines(g, ch) == 0);
nvgpu_mutex_release(&g->fifo.engines_reset_mutex);
}
#endif
}
static void channel_free_invoke_sync_destroy(struct nvgpu_channel *ch)
{
#ifdef CONFIG_TEGRA_GK20A_NVHOST
nvgpu_mutex_acquire(&ch->sync_lock);
if (ch->user_sync != NULL) {
/*
* Set user managed syncpoint to safe state
* But it's already done if channel is recovered
*/
if (!nvgpu_channel_check_unserviceable(ch)) {
nvgpu_channel_user_syncpt_set_safe_state(ch->user_sync);
}
nvgpu_channel_user_syncpt_destroy(ch->user_sync);
ch->user_sync = NULL;
}
nvgpu_mutex_release(&ch->sync_lock);
#endif
}
static void channel_free_unlink_debug_session(struct nvgpu_channel *ch)
{
#ifdef CONFIG_NVGPU_DEBUGGER
struct gk20a *g = ch->g;
struct dbg_session_gk20a *dbg_s;
struct dbg_session_data *session_data, *tmp_s;
struct dbg_session_channel_data *ch_data, *tmp;
/* unlink all debug sessions */
nvgpu_mutex_acquire(&g->dbg_sessions_lock);
nvgpu_list_for_each_entry_safe(session_data, tmp_s,
&ch->dbg_s_list, dbg_session_data, dbg_s_entry) {
dbg_s = session_data->dbg_s;
nvgpu_mutex_acquire(&dbg_s->ch_list_lock);
nvgpu_list_for_each_entry_safe(ch_data, tmp, &dbg_s->ch_list,
dbg_session_channel_data, ch_entry) {
if (ch_data->chid == ch->chid) {
if (ch_data->unbind_single_channel(dbg_s,
ch_data) != 0) {
nvgpu_err(g,
"unbind failed for chid: %d",
ch_data->chid);
}
}
}
nvgpu_mutex_release(&dbg_s->ch_list_lock);
}
nvgpu_mutex_release(&g->dbg_sessions_lock);
#endif
}
static void channel_free_wait_for_refs(struct nvgpu_channel *ch,
int wait_value, bool force)
{
/* wait until no more refs to the channel */
if (!force) {
nvgpu_channel_wait_until_counter_is_N(
ch, &ch->ref_count, wait_value, &ch->ref_count_dec_wq,
__func__, "references");
}
}
#ifdef CONFIG_NVGPU_DETERMINISTIC_CHANNELS
static void channel_free_put_deterministic_ref_from_init(
struct nvgpu_channel *ch)
{
struct gk20a *g = ch->g;
/* put back the channel-wide submit ref from init */
if (ch->deterministic) {
nvgpu_rwsem_down_read(&g->deterministic_busy);
ch->deterministic = false;
if (!ch->deterministic_railgate_allowed) {
gk20a_idle(g);
}
ch->deterministic_railgate_allowed = false;
nvgpu_rwsem_up_read(&g->deterministic_busy);
}
}
#endif
/* call ONLY when no references to the channel exist: after the last put */
static void channel_free(struct nvgpu_channel *ch, bool force)
{
struct gk20a *g = ch->g;
struct nvgpu_fifo *f = &g->fifo;
struct vm_gk20a *ch_vm = ch->vm;
unsigned long timeout;
if (g == NULL) {
nvgpu_do_assert_print(g, "ch already freed");
return;
}
nvgpu_log_fn(g, " ");
timeout = nvgpu_get_poll_timeout(g);
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_free_channel(ch->chid);
#endif
/*
* Disable channel/TSG and unbind here. This should not be executed if
* HW access is not available during shutdown/removal path as it will
* trigger a timeout
*/
channel_free_invoke_unbind(ch);
/*
* OS channel close may require that syncpoint should be set to some
* safe value before it is called. nvgpu_tsg_unbind_channel(above) is
* internally doing that by calling nvgpu_nvhost_syncpt_set_safe_state
* deep down in the stack. Otherwise os_channel close may block if the
* app is killed abruptly (which was going to do the syncpoint signal).
*/
if (g->os_channel.close != NULL) {
g->os_channel.close(ch, force);
}
/* wait until there's only our ref to the channel */
channel_free_wait_for_refs(ch, 1, force);
/* wait until all pending interrupts for recently completed
* jobs are handled */
nvgpu_wait_for_deferred_interrupts(g);
/* prevent new refs */
nvgpu_spinlock_acquire(&ch->ref_obtain_lock);
if (!ch->referenceable) {
nvgpu_spinlock_release(&ch->ref_obtain_lock);
nvgpu_err(ch->g,
"Extra %s() called to channel %u",
__func__, ch->chid);
return;
}
ch->referenceable = false;
nvgpu_spinlock_release(&ch->ref_obtain_lock);
/* matches with the initial reference in nvgpu_channel_open_new() */
nvgpu_atomic_dec(&ch->ref_count);
channel_free_wait_for_refs(ch, 0, force);
channel_free_invoke_deferred_engine_reset(ch);
if (!nvgpu_channel_as_bound(ch)) {
goto unbind;
}
nvgpu_log_info(g, "freeing bound channel context, timeout=%ld",
timeout);
#ifdef CONFIG_NVGPU_FECS_TRACE
if (g->ops.gr.fecs_trace.unbind_channel && !ch->vpr)
g->ops.gr.fecs_trace.unbind_channel(g, &ch->inst_block);
#endif
if (g->ops.gr.setup.free_subctx != NULL) {
g->ops.gr.setup.free_subctx(ch);
ch->subctx = NULL;
}
g->ops.gr.intr.flush_channel_tlb(g);
if (ch->usermode_submit_enabled) {
nvgpu_channel_usermode_deinit(ch);
} else {
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
channel_kernelmode_deinit(ch);
#endif
}
channel_free_invoke_sync_destroy(ch);
/*
* When releasing the channel we unbind the VM - so release the ref.
*/
nvgpu_vm_put(ch_vm);
/* make sure we don't have deferred interrupts pending that
* could still touch the channel */
nvgpu_wait_for_deferred_interrupts(g);
unbind:
g->ops.channel.unbind(ch);
g->ops.channel.free_inst(g, ch);
nvgpu_channel_wdt_destroy(ch->wdt);
ch->wdt = NULL;
#ifdef CONFIG_NVGPU_DETERMINISTIC_CHANNELS
channel_free_put_deterministic_ref_from_init(ch);
#endif
ch->vpr = false;
ch->vm = NULL;
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
WARN_ON(ch->sync != NULL);
#endif
channel_free_unlink_debug_session(ch);
#if GK20A_CHANNEL_REFCOUNT_TRACKING
(void) memset(ch->ref_actions, 0, sizeof(ch->ref_actions));
ch->ref_actions_put = 0;
#endif
/* make sure we catch accesses of unopened channels in case
* there's non-refcounted channel pointers hanging around */
ch->g = NULL;
nvgpu_smp_wmb();
/* ALWAYS last */
free_channel(f, ch);
}
static void channel_dump_ref_actions(struct nvgpu_channel *ch)
{
#if GK20A_CHANNEL_REFCOUNT_TRACKING
size_t i, get;
s64 now = nvgpu_current_time_ms();
s64 prev = 0;
struct gk20a *g = ch->g;
nvgpu_spinlock_acquire(&ch->ref_actions_lock);
nvgpu_info(g, "ch %d: refs %d. Actions, most recent last:",
ch->chid, nvgpu_atomic_read(&ch->ref_count));
/* start at the oldest possible entry. put is next insertion point */
get = ch->ref_actions_put;
/*
* If the buffer is not full, this will first loop to the oldest entry,
* skipping not-yet-initialized entries. There is no ref_actions_get.
*/
for (i = 0; i < GK20A_CHANNEL_REFCOUNT_TRACKING; i++) {
struct nvgpu_channel_ref_action *act = &ch->ref_actions[get];
if (act->trace.nr_entries) {
nvgpu_info(g,
"%s ref %zu steps ago (age %lld ms, diff %lld ms)",
act->type == channel_gk20a_ref_action_get
? "GET" : "PUT",
GK20A_CHANNEL_REFCOUNT_TRACKING - 1 - i,
now - act->timestamp_ms,
act->timestamp_ms - prev);
print_stack_trace(&act->trace, 0);
prev = act->timestamp_ms;
}
get = (get + 1) % GK20A_CHANNEL_REFCOUNT_TRACKING;
}
nvgpu_spinlock_release(&ch->ref_actions_lock);
#endif
}
#if GK20A_CHANNEL_REFCOUNT_TRACKING
static void channel_save_ref_source(struct nvgpu_channel *ch,
enum nvgpu_channel_ref_action_type type)
{
struct nvgpu_channel_ref_action *act;
nvgpu_spinlock_acquire(&ch->ref_actions_lock);
act = &ch->ref_actions[ch->ref_actions_put];
act->type = type;
act->trace.max_entries = GK20A_CHANNEL_REFCOUNT_TRACKING_STACKLEN;
act->trace.nr_entries = 0;
act->trace.skip = 3; /* onwards from the caller of this */
act->trace.entries = act->trace_entries;
save_stack_trace(&act->trace);
act->timestamp_ms = nvgpu_current_time_ms();
ch->ref_actions_put = (ch->ref_actions_put + 1) %
GK20A_CHANNEL_REFCOUNT_TRACKING;
nvgpu_spinlock_release(&ch->ref_actions_lock);
}
#endif
/* Try to get a reference to the channel. Return nonzero on success. If fails,
* the channel is dead or being freed elsewhere and you must not touch it.
*
* Always when a nvgpu_channel pointer is seen and about to be used, a
* reference must be held to it - either by you or the caller, which should be
* documented well or otherwise clearly seen. This usually boils down to the
* file from ioctls directly, or an explicit get in exception handlers when the
* channel is found by a chid.
*
* Most global functions in this file require a reference to be held by the
* caller.
*/
struct nvgpu_channel *nvgpu_channel_get__func(struct nvgpu_channel *ch,
const char *caller)
{
struct nvgpu_channel *ret;
nvgpu_spinlock_acquire(&ch->ref_obtain_lock);
if (likely(ch->referenceable)) {
#if GK20A_CHANNEL_REFCOUNT_TRACKING
channel_save_ref_source(ch, channel_gk20a_ref_action_get);
#endif
nvgpu_atomic_inc(&ch->ref_count);
ret = ch;
} else {
ret = NULL;
}
nvgpu_spinlock_release(&ch->ref_obtain_lock);
#ifdef CONFIG_NVGPU_TRACE
if (ret != NULL) {
trace_nvgpu_channel_get(ch->chid, caller);
}
#endif
return ret;
}
void nvgpu_channel_put__func(struct nvgpu_channel *ch, const char *caller)
{
#if GK20A_CHANNEL_REFCOUNT_TRACKING
channel_save_ref_source(ch, channel_gk20a_ref_action_put);
#endif
#ifdef CONFIG_NVGPU_TRACE
trace_nvgpu_channel_put(ch->chid, caller);
#endif
nvgpu_atomic_dec(&ch->ref_count);
if (nvgpu_cond_broadcast(&ch->ref_count_dec_wq) != 0) {
nvgpu_warn(ch->g, "failed to broadcast");
}
/* More puts than gets. Channel is probably going to get
* stuck. */
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 10_3), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 2, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
WARN_ON(nvgpu_atomic_read(&ch->ref_count) < 0);
/* Also, more puts than gets. ref_count can go to 0 only if
* the channel is closing. Channel is probably going to get
* stuck. */
WARN_ON((nvgpu_atomic_read(&ch->ref_count) == 0) && ch->referenceable);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 10_3))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
}
struct nvgpu_channel *nvgpu_channel_from_id__func(struct gk20a *g,
u32 chid, const char *caller)
{
if (chid == NVGPU_INVALID_CHANNEL_ID) {
return NULL;
}
return nvgpu_channel_get__func(&g->fifo.channel[chid], caller);
}
void nvgpu_channel_close(struct nvgpu_channel *ch)
{
channel_free(ch, false);
}
/*
* Be careful with this - it is meant for terminating channels when we know the
* driver is otherwise dying. Ref counts and the like are ignored by this
* version of the cleanup.
*/
void nvgpu_channel_kill(struct nvgpu_channel *ch)
{
channel_free(ch, true);
}
struct nvgpu_channel *nvgpu_channel_open_new(struct gk20a *g,
u32 runlist_id,
bool is_privileged_channel,
pid_t pid, pid_t tid)
{
struct nvgpu_fifo *f = &g->fifo;
struct nvgpu_channel *ch;
/* compatibility with existing code */
if (!nvgpu_engine_is_valid_runlist_id(g, runlist_id)) {
runlist_id = nvgpu_engine_get_gr_runlist_id(g);
}
nvgpu_log_fn(g, " ");
ch = allocate_channel(f);
if (ch == NULL) {
/* TBD: we want to make this virtualizable */
nvgpu_err(g, "out of hw chids");
return NULL;
}
#ifdef CONFIG_NVGPU_TRACE
trace_nvgpu_channel_open_new(ch->chid);
#endif
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 14_4), "Bug 2277532")
NVGPU_COV_WHITELIST_BLOCK_BEGIN(false_positive, 1, NVGPU_MISRA(Rule, 15_6), "Bug 2277532")
BUG_ON(ch->g != NULL);
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 14_4))
NVGPU_COV_WHITELIST_BLOCK_END(NVGPU_MISRA(Rule, 15_6))
ch->g = g;
/* Runlist for the channel */
ch->runlist_id = runlist_id;
/* Channel privilege level */
ch->is_privileged_channel = is_privileged_channel;
ch->pid = tid;
ch->tgid = pid; /* process granularity for FECS traces */
#ifdef CONFIG_NVGPU_USERD
if (nvgpu_userd_init_channel(g, ch) != 0) {
nvgpu_err(g, "userd init failed");
goto clean_up;
}
#endif
if (g->ops.channel.alloc_inst(g, ch) != 0) {
nvgpu_err(g, "inst allocation failed");
goto clean_up;
}
/* now the channel is in a limbo out of the free list but not marked as
* alive and used (i.e. get-able) yet */
/* By default, channel is regular (non-TSG) channel */
ch->tsgid = NVGPU_INVALID_TSG_ID;
/* clear ctxsw timeout counter and update timestamp */
ch->ctxsw_timeout_accumulated_ms = 0;
ch->ctxsw_timeout_gpfifo_get = 0;
/* set gr host default timeout */
ch->ctxsw_timeout_max_ms = nvgpu_get_poll_timeout(g);
ch->ctxsw_timeout_debug_dump = true;
/* ch is unserviceable until it is bound to tsg */
ch->unserviceable = true;
#ifdef CONFIG_NVGPU_CHANNEL_WDT
ch->wdt = nvgpu_channel_wdt_alloc(ch);
if (ch->wdt == NULL) {
nvgpu_err(g, "wdt alloc failed");
goto clean_up;
}
#endif
ch->obj_class = 0;
ch->subctx_id = 0;
ch->runqueue_sel = 0;
ch->mmu_nack_handled = false;
/* The channel is *not* runnable at this point. It still needs to have
* an address space bound and allocate a gpfifo and grctx. */
if (nvgpu_cond_init(&ch->notifier_wq) != 0) {
nvgpu_err(g, "cond init failed");
goto clean_up;
}
if (nvgpu_cond_init(&ch->semaphore_wq) != 0) {
nvgpu_err(g, "cond init failed");
goto clean_up;
}
/* Mark the channel alive, get-able, with 1 initial use
* references. The initial reference will be decreased in
* channel_free().
*
* Use the lock, since an asynchronous thread could
* try to access this channel while it's not fully
* initialized.
*/
nvgpu_spinlock_acquire(&ch->ref_obtain_lock);
ch->referenceable = true;
nvgpu_atomic_set(&ch->ref_count, 1);
nvgpu_spinlock_release(&ch->ref_obtain_lock);
return ch;
clean_up:
ch->g = NULL;
free_channel(f, ch);
return NULL;
}
static int channel_setup_ramfc(struct nvgpu_channel *c,
struct nvgpu_setup_bind_args *args,
u64 gpfifo_gpu_va, u32 gpfifo_size)
{
int err = 0;
u64 pbdma_acquire_timeout = 0ULL;
struct gk20a *g = c->g;
if (nvgpu_channel_wdt_enabled(c->wdt) &&
nvgpu_is_timeouts_enabled(c->g)) {
pbdma_acquire_timeout = nvgpu_channel_wdt_limit(c->wdt);
}
err = g->ops.ramfc.setup(c, gpfifo_gpu_va, gpfifo_size,
pbdma_acquire_timeout, args->flags);
return err;
}
static int nvgpu_channel_setup_usermode(struct nvgpu_channel *c,
struct nvgpu_setup_bind_args *args)
{
u32 gpfifo_size = args->num_gpfifo_entries;
int err = 0;
struct gk20a *g = c->g;
u64 gpfifo_gpu_va;
if (g->os_channel.alloc_usermode_buffers != NULL) {
err = g->os_channel.alloc_usermode_buffers(c, args);
if (err != 0) {
nvgpu_err(g, "Usermode buffer alloc failed");
goto clean_up;
}
c->userd_mem = &c->usermode_userd;
c->userd_offset = 0U;
c->userd_iova = nvgpu_mem_get_addr(g, c->userd_mem);
c->usermode_submit_enabled = true;
} else {
nvgpu_err(g, "Usermode submit not supported");
err = -EINVAL;
goto clean_up;
}
gpfifo_gpu_va = c->usermode_gpfifo.gpu_va;
nvgpu_log_info(g, "channel %d : gpfifo_base 0x%016llx, size %d",
c->chid, gpfifo_gpu_va, gpfifo_size);
err = channel_setup_ramfc(c, args, gpfifo_gpu_va, gpfifo_size);
if (err != 0) {
goto clean_up_unmap;
}
err = nvgpu_channel_update_runlist(c, true);
if (err != 0) {
goto clean_up_unmap;
}
return 0;
clean_up_unmap:
nvgpu_channel_free_usermode_buffers(c);
#ifdef CONFIG_NVGPU_USERD
(void) nvgpu_userd_init_channel(g, c);
#endif
c->usermode_submit_enabled = false;
clean_up:
return err;
}
static int channel_setup_bind_prechecks(struct nvgpu_channel *c,
struct nvgpu_setup_bind_args *args)
{
struct gk20a *g = c->g;
struct nvgpu_tsg *tsg;
int err = 0;
if (args->num_gpfifo_entries > 0x80000000U) {
nvgpu_err(g,
"num_gpfifo_entries exceeds max limit of 2^31");
err = -EINVAL;
goto fail;
}
/* an address space needs to have been bound at this point. */
if (!nvgpu_channel_as_bound(c)) {
nvgpu_err(g,
"not bound to an address space at time of setup_bind");
err = -EINVAL;
goto fail;
}
/* The channel needs to be bound to a tsg at this point */
tsg = nvgpu_tsg_from_ch(c);
if (tsg == NULL) {
nvgpu_err(g,
"not bound to tsg at time of setup_bind");
err = -EINVAL;
goto fail;
}
if (c->usermode_submit_enabled) {
nvgpu_err(g, "channel %d : "
"usermode buffers allocated", c->chid);
err = -EEXIST;
goto fail;
}
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
if (nvgpu_mem_is_valid(&c->gpfifo.mem)) {
nvgpu_err(g, "channel %d :"
"gpfifo already allocated", c->chid);
err = -EEXIST;
goto fail;
}
#endif
fail:
return err;
}
int nvgpu_channel_setup_bind(struct nvgpu_channel *c,
struct nvgpu_setup_bind_args *args)
{
struct gk20a *g = c->g;
int err = 0;
err = channel_setup_bind_prechecks(c, args);
if (err != 0) {
goto fail;
}
#ifdef CONFIG_NVGPU_VPR
if ((args->flags & NVGPU_SETUP_BIND_FLAGS_SUPPORT_VPR) != 0U) {
c->vpr = true;
}
#else
c->vpr = false;
#endif
#ifdef CONFIG_NVGPU_DETERMINISTIC_CHANNELS
if ((args->flags & NVGPU_SETUP_BIND_FLAGS_SUPPORT_DETERMINISTIC) != 0U) {
nvgpu_rwsem_down_read(&g->deterministic_busy);
/*
* Railgating isn't deterministic; instead of disallowing
* railgating globally, take a power refcount for this
* channel's lifetime. The gk20a_idle() pair for this happens
* when the channel gets freed.
*
* Deterministic flag and this busy must be atomic within the
* busy lock.
*/
err = gk20a_busy(g);
if (err != 0) {
nvgpu_rwsem_up_read(&g->deterministic_busy);
return err;
}
c->deterministic = true;
nvgpu_rwsem_up_read(&g->deterministic_busy);
}
#endif
if ((args->flags & NVGPU_SETUP_BIND_FLAGS_USERMODE_SUPPORT) != 0U) {
err = nvgpu_channel_setup_usermode(c, args);
} else {
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
if (g->os_channel.open != NULL) {
g->os_channel.open(c);
}
err = channel_setup_kernelmode(c, args);
#else
err = -EINVAL;
#endif
}
if (err != 0) {
goto clean_up_idle;
}
g->ops.channel.bind(c);
nvgpu_log_fn(g, "done");
return 0;
clean_up_idle:
#ifdef CONFIG_NVGPU_DETERMINISTIC_CHANNELS
if (nvgpu_channel_is_deterministic(c)) {
nvgpu_rwsem_down_read(&g->deterministic_busy);
gk20a_idle(g);
c->deterministic = false;
nvgpu_rwsem_up_read(&g->deterministic_busy);
}
#endif
fail:
nvgpu_err(g, "fail");
return err;
}
void nvgpu_channel_free_usermode_buffers(struct nvgpu_channel *c)
{
if (nvgpu_mem_is_valid(&c->usermode_userd)) {
nvgpu_dma_free(c->g, &c->usermode_userd);
}
if (nvgpu_mem_is_valid(&c->usermode_gpfifo)) {
nvgpu_dma_unmap_free(c->vm, &c->usermode_gpfifo);
}
if (c->g->os_channel.free_usermode_buffers != NULL) {
c->g->os_channel.free_usermode_buffers(c);
}
}
static bool nvgpu_channel_ctxsw_timeout_debug_dump_state(
struct nvgpu_channel *ch)
{
bool verbose = false;
if (nvgpu_is_err_notifier_set(ch,
NVGPU_ERR_NOTIFIER_FIFO_ERROR_IDLE_TIMEOUT)) {
verbose = ch->ctxsw_timeout_debug_dump;
}
return verbose;
}
static void nvgpu_channel_set_has_timedout_and_wakeup_wqs(struct gk20a *g,
struct nvgpu_channel *ch)
{
/* mark channel as faulted */
nvgpu_channel_set_unserviceable(ch);
/* unblock pending waits */
if (nvgpu_cond_broadcast_interruptible(&ch->semaphore_wq) != 0) {
nvgpu_warn(g, "failed to broadcast");
}
if (nvgpu_cond_broadcast_interruptible(&ch->notifier_wq) != 0) {
nvgpu_warn(g, "failed to broadcast");
}
}
bool nvgpu_channel_mark_error(struct gk20a *g, struct nvgpu_channel *ch)
{
bool verbose;
verbose = nvgpu_channel_ctxsw_timeout_debug_dump_state(ch);
nvgpu_channel_set_has_timedout_and_wakeup_wqs(g, ch);
return verbose;
}
void nvgpu_channel_set_error_notifier(struct gk20a *g, struct nvgpu_channel *ch,
u32 error_notifier)
{
g->ops.channel.set_error_notifier(ch, error_notifier);
}
void nvgpu_channel_sw_quiesce(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
struct nvgpu_channel *ch;
u32 chid;
for (chid = 0; chid < f->num_channels; chid++) {
ch = nvgpu_channel_get(&f->channel[chid]);
if (ch != NULL) {
nvgpu_channel_set_error_notifier(g, ch,
NVGPU_ERR_NOTIFIER_FIFO_ERROR_IDLE_TIMEOUT);
nvgpu_channel_set_has_timedout_and_wakeup_wqs(g, ch);
nvgpu_channel_put(ch);
}
}
}
#ifdef CONFIG_NVGPU_DETERMINISTIC_CHANNELS
/*
* Stop deterministic channel activity for do_idle() when power needs to go off
* momentarily but deterministic channels keep power refs for potentially a
* long time.
*
* Takes write access on g->deterministic_busy.
*
* Must be paired with nvgpu_channel_deterministic_unidle().
*/
void nvgpu_channel_deterministic_idle(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
/* Grab exclusive access to the hw to block new submits */
nvgpu_rwsem_down_write(&g->deterministic_busy);
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = nvgpu_channel_from_id(g, chid);
if (ch == NULL) {
continue;
}
if (ch->deterministic && !ch->deterministic_railgate_allowed) {
/*
* Drop the power ref taken when setting deterministic
* flag. deterministic_unidle will put this and the
* channel ref back. If railgate is allowed separately
* for this channel, the power ref has already been put
* away.
*
* Hold the channel ref: it must not get freed in
* between. A race could otherwise result in lost
* gk20a_busy() via unidle, and in unbalanced
* gk20a_idle() via closing the channel.
*/
gk20a_idle(g);
} else {
/* Not interesting, carry on. */
nvgpu_channel_put(ch);
}
}
}
/*
* Allow deterministic channel activity again for do_unidle().
*
* This releases write access on g->deterministic_busy.
*/
void nvgpu_channel_deterministic_unidle(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
int err;
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = nvgpu_channel_from_id(g, chid);
if (ch == NULL) {
continue;
}
/*
* Deterministic state changes inside deterministic_busy lock,
* which we took in deterministic_idle.
*/
if (ch->deterministic && !ch->deterministic_railgate_allowed) {
err = gk20a_busy(g);
if (err != 0) {
nvgpu_err(g, "cannot busy() again!");
}
/* Took this in idle() */
nvgpu_channel_put(ch);
}
nvgpu_channel_put(ch);
}
/* Release submits, new deterministic channels and frees */
nvgpu_rwsem_up_write(&g->deterministic_busy);
}
#endif
static void nvgpu_channel_destroy(struct nvgpu_channel *c)
{
nvgpu_mutex_destroy(&c->ioctl_lock);
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
nvgpu_mutex_destroy(&c->joblist.cleanup_lock);
nvgpu_mutex_destroy(&c->joblist.pre_alloc.read_lock);
#endif
nvgpu_mutex_destroy(&c->sync_lock);
#if defined(CONFIG_NVGPU_CYCLESTATS)
nvgpu_mutex_destroy(&c->cyclestate.cyclestate_buffer_mutex);
nvgpu_mutex_destroy(&c->cs_client_mutex);
#endif
#if defined(CONFIG_NVGPU_DEBUGGER)
nvgpu_mutex_destroy(&c->dbg_s_lock);
#endif
}
void nvgpu_channel_cleanup_sw(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
/*
* Make sure all channels are closed before deleting them.
*/
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = &f->channel[chid];
/*
* Could race but worst that happens is we get an error message
* from channel_free() complaining about multiple closes.
*/
if (ch->referenceable) {
nvgpu_channel_kill(ch);
}
nvgpu_channel_destroy(ch);
}
nvgpu_vfree(g, f->channel);
f->channel = NULL;
nvgpu_mutex_destroy(&f->free_chs_mutex);
}
int nvgpu_channel_init_support(struct gk20a *g, u32 chid)
{
struct nvgpu_channel *c = &g->fifo.channel[chid];
int err;
c->g = NULL;
c->chid = chid;
nvgpu_atomic_set(&c->bound, 0);
nvgpu_spinlock_init(&c->ref_obtain_lock);
nvgpu_atomic_set(&c->ref_count, 0);
c->referenceable = false;
err = nvgpu_cond_init(&c->ref_count_dec_wq);
if (err != 0) {
nvgpu_err(g, "cond_init failed");
return err;
}
nvgpu_spinlock_init(&c->unserviceable_lock);
#if GK20A_CHANNEL_REFCOUNT_TRACKING
nvgpu_spinlock_init(&c->ref_actions_lock);
#endif
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
nvgpu_spinlock_init(&c->joblist.dynamic.lock);
nvgpu_init_list_node(&c->joblist.dynamic.jobs);
nvgpu_init_list_node(&c->worker_item);
nvgpu_mutex_init(&c->joblist.cleanup_lock);
nvgpu_mutex_init(&c->joblist.pre_alloc.read_lock);
#endif /* CONFIG_NVGPU_KERNEL_MODE_SUBMIT */
nvgpu_mutex_init(&c->ioctl_lock);
nvgpu_mutex_init(&c->sync_lock);
#if defined(CONFIG_NVGPU_CYCLESTATS)
nvgpu_mutex_init(&c->cyclestate.cyclestate_buffer_mutex);
nvgpu_mutex_init(&c->cs_client_mutex);
#endif
#if defined(CONFIG_NVGPU_DEBUGGER)
nvgpu_init_list_node(&c->dbg_s_list);
nvgpu_mutex_init(&c->dbg_s_lock);
#endif
nvgpu_init_list_node(&c->ch_entry);
nvgpu_list_add(&c->free_chs, &g->fifo.free_chs);
return 0;
}
int nvgpu_channel_setup_sw(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid, i;
int err;
f->num_channels = g->ops.channel.count(g);
nvgpu_mutex_init(&f->free_chs_mutex);
f->channel = nvgpu_vzalloc(g, f->num_channels * sizeof(*f->channel));
if (f->channel == NULL) {
nvgpu_err(g, "no mem for channels");
err = -ENOMEM;
goto clean_up_mutex;
}
nvgpu_init_list_node(&f->free_chs);
for (chid = 0; chid < f->num_channels; chid++) {
err = nvgpu_channel_init_support(g, chid);
if (err != 0) {
nvgpu_err(g, "channel init failed, chid=%u", chid);
goto clean_up;
}
}
return 0;
clean_up:
for (i = 0; i < chid; i++) {
struct nvgpu_channel *ch = &f->channel[i];
nvgpu_channel_destroy(ch);
}
nvgpu_vfree(g, f->channel);
f->channel = NULL;
clean_up_mutex:
nvgpu_mutex_destroy(&f->free_chs_mutex);
return err;
}
int nvgpu_channel_suspend_all_serviceable_ch(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
bool channels_in_use = false;
u32 active_runlist_ids = 0;
int err;
nvgpu_log_fn(g, " ");
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = nvgpu_channel_from_id(g, chid);
if (ch == NULL) {
continue;
}
if (nvgpu_channel_check_unserviceable(ch)) {
nvgpu_log_info(g, "do not suspend recovered "
"channel %d", chid);
} else {
nvgpu_log_info(g, "suspend channel %d", chid);
/* disable channel */
if (nvgpu_channel_disable_tsg(g, ch) != 0) {
nvgpu_err(g, "failed to disable channel/TSG");
}
/* preempt the channel */
err = nvgpu_preempt_channel(g, ch);
if (err != 0) {
nvgpu_err(g, "failed to preempt channel/TSG");
}
/* wait for channel update notifiers */
if (g->os_channel.work_completion_cancel_sync != NULL) {
g->os_channel.work_completion_cancel_sync(ch);
}
g->ops.channel.unbind(ch);
channels_in_use = true;
active_runlist_ids |= BIT32(ch->runlist_id);
}
nvgpu_channel_put(ch);
}
if (channels_in_use) {
nvgpu_assert(nvgpu_runlist_reload_ids(g,
active_runlist_ids, false) == 0);
}
nvgpu_log_fn(g, "done");
return 0;
}
int nvgpu_channel_resume_all_serviceable_ch(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
bool channels_in_use = false;
u32 active_runlist_ids = 0;
nvgpu_log_fn(g, " ");
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = nvgpu_channel_from_id(g, chid);
if (ch == NULL) {
continue;
}
if (nvgpu_channel_check_unserviceable(ch)) {
nvgpu_log_info(g, "do not resume recovered "
"channel %d", chid);
} else {
nvgpu_log_info(g, "resume channel %d", chid);
g->ops.channel.bind(ch);
channels_in_use = true;
active_runlist_ids |= BIT32(ch->runlist_id);
}
nvgpu_channel_put(ch);
}
if (channels_in_use) {
nvgpu_assert(nvgpu_runlist_reload_ids(g,
active_runlist_ids, true) == 0);
}
nvgpu_log_fn(g, "done");
return 0;
}
static void nvgpu_channel_semaphore_signal(struct nvgpu_channel *c,
bool post_events)
{
struct gk20a *g = c->g;
if (nvgpu_cond_broadcast_interruptible( &c->semaphore_wq) != 0) {
nvgpu_warn(g, "failed to broadcast");
}
#ifdef CONFIG_NVGPU_CHANNEL_TSG_CONTROL
if (post_events) {
struct nvgpu_tsg *tsg = nvgpu_tsg_from_ch(c);
if (tsg != NULL) {
g->ops.tsg.post_event_id(tsg,
NVGPU_EVENT_ID_BLOCKING_SYNC);
}
}
#endif
#ifdef CONFIG_NVGPU_KERNEL_MODE_SUBMIT
/*
* Only non-deterministic channels get the channel_update callback. We
* don't allow semaphore-backed syncs for these channels anyways, since
* they have a dependency on the sync framework. If deterministic
* channels are receiving a semaphore wakeup, it must be for a
* user-space managed semaphore.
*/
if (!nvgpu_channel_is_deterministic(c)) {
nvgpu_channel_update(c);
}
#endif
}
void nvgpu_channel_semaphore_wakeup(struct gk20a *g, bool post_events)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
nvgpu_log_fn(g, " ");
/*
* Ensure that all pending writes are actually done before trying to
* read semaphore values from DRAM.
*/
nvgpu_assert(g->ops.mm.cache.fb_flush(g) == 0);
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel *c = &g->fifo.channel[chid];
if (nvgpu_channel_get(c) != NULL) {
if (nvgpu_atomic_read(&c->bound) != 0) {
nvgpu_channel_semaphore_signal(c, post_events);
}
nvgpu_channel_put(c);
}
}
}
/* return with a reference to the channel, caller must put it back */
struct nvgpu_channel *nvgpu_channel_refch_from_inst_ptr(struct gk20a *g,
u64 inst_ptr)
{
struct nvgpu_fifo *f = &g->fifo;
unsigned int ci;
if (unlikely(f->channel == NULL)) {
return NULL;
}
for (ci = 0; ci < f->num_channels; ci++) {
struct nvgpu_channel *ch;
u64 ch_inst_ptr;
ch = nvgpu_channel_from_id(g, ci);
/* only alive channels are searched */
if (ch == NULL) {
continue;
}
ch_inst_ptr = nvgpu_inst_block_addr(g, &ch->inst_block);
if (inst_ptr == ch_inst_ptr) {
return ch;
}
nvgpu_channel_put(ch);
}
return NULL;
}
int nvgpu_channel_alloc_inst(struct gk20a *g, struct nvgpu_channel *ch)
{
int err;
nvgpu_log_fn(g, " ");
err = nvgpu_alloc_inst_block(g, &ch->inst_block);
if (err != 0) {
return err;
}
nvgpu_log_info(g, "channel %d inst block physical addr: 0x%16llx",
ch->chid, nvgpu_inst_block_addr(g, &ch->inst_block));
nvgpu_log_fn(g, "done");
return 0;
}
void nvgpu_channel_free_inst(struct gk20a *g, struct nvgpu_channel *ch)
{
nvgpu_free_inst_block(g, &ch->inst_block);
}
static void nvgpu_channel_sync_debug_dump(struct gk20a *g,
struct nvgpu_debug_context *o, struct nvgpu_channel_dump_info *info)
{
#ifdef CONFIG_NVGPU_NON_FUSA
gk20a_debug_output(o,
"RAMFC: TOP: %012llx PUT: %012llx GET: %012llx "
"FETCH: %012llx "
"HEADER: %08x COUNT: %08x "
"SYNCPOINT: %08x %08x "
"SEMAPHORE: %08x %08x %08x %08x",
info->inst.pb_top_level_get,
info->inst.pb_put,
info->inst.pb_get,
info->inst.pb_fetch,
info->inst.pb_header,
info->inst.pb_count,
info->inst.syncpointa,
info->inst.syncpointb,
info->inst.semaphorea,
info->inst.semaphoreb,
info->inst.semaphorec,
info->inst.semaphored);
g->ops.pbdma.syncpt_debug_dump(g, o, info);
#endif
}
static void nvgpu_channel_info_debug_dump(struct gk20a *g,
struct nvgpu_debug_context *o,
struct nvgpu_channel_dump_info *info)
{
/**
* Use gpu hw version to control the channel instance fields
* dump in nvgpu_channel_dump_info struct.
* For hw version before gv11b, dump syncpoint a/b, semaphore a/b/c/d.
* For hw version after gv11b, dump sem addr/payload/execute.
*/
u32 ver = nvgpu_safe_add_u32(g->params.gpu_arch, g->params.gpu_impl);
gk20a_debug_output(o, "%d-%s, TSG: %u, pid %d, refs: %d%s: ",
info->chid,
g->name,
info->tsgid,
info->pid,
info->refs,
info->deterministic ? ", deterministic" : "");
gk20a_debug_output(o, "channel status: %s in use %s %s",
info->hw_state.enabled ? "" : "not",
info->hw_state.status_string,
info->hw_state.busy ? "busy" : "not busy");
if (ver < NVGPU_GPUID_GV11B) {
nvgpu_channel_sync_debug_dump(g, o, info);
} else {
gk20a_debug_output(o,
"RAMFC: TOP: %012llx PUT: %012llx GET: %012llx "
"FETCH: %012llx "
"HEADER: %08x COUNT: %08x "
"SEMAPHORE: addr %012llx "
"payload %016llx execute %08x",
info->inst.pb_top_level_get,
info->inst.pb_put,
info->inst.pb_get,
info->inst.pb_fetch,
info->inst.pb_header,
info->inst.pb_count,
info->inst.sem_addr,
info->inst.sem_payload,
info->inst.sem_execute);
}
if (info->sema.addr != 0ULL) {
gk20a_debug_output(o, "SEMA STATE: value: 0x%08x "
"next_val: 0x%08x addr: 0x%010llx",
info->sema.value,
info->sema.next,
info->sema.addr);
}
gk20a_debug_output(o, " ");
}
void nvgpu_channel_debug_dump_all(struct gk20a *g,
struct nvgpu_debug_context *o)
{
struct nvgpu_fifo *f = &g->fifo;
u32 chid;
struct nvgpu_channel_dump_info **infos;
infos = nvgpu_kzalloc(g, sizeof(*infos) * f->num_channels);
if (infos == NULL) {
gk20a_debug_output(o, "cannot alloc memory for channels");
return;
}
for (chid = 0U; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = nvgpu_channel_from_id(g, chid);
if (ch != NULL) {
struct nvgpu_channel_dump_info *info;
info = nvgpu_kzalloc(g, sizeof(*info));
/*
* ref taken stays to below loop with
* successful allocs
*/
if (info == NULL) {
nvgpu_channel_put(ch);
} else {
infos[chid] = info;
}
}
}
for (chid = 0U; chid < f->num_channels; chid++) {
struct nvgpu_channel *ch = &f->channel[chid];
struct nvgpu_channel_dump_info *info = infos[chid];
#ifdef CONFIG_NVGPU_SW_SEMAPHORE
struct nvgpu_channel_sync_semaphore *sync_sema;
struct nvgpu_hw_semaphore *hw_sema = NULL;
if (ch->sync != NULL) {
sync_sema = nvgpu_channel_sync_to_semaphore(ch->sync);
if (sync_sema != NULL) {
hw_sema = nvgpu_channel_sync_semaphore_hw_sema(
sync_sema);
}
}
#endif
/* if this info exists, the above loop took a channel ref */
if (info == NULL) {
continue;
}
info->chid = ch->chid;
info->tsgid = ch->tsgid;
info->pid = ch->pid;
info->refs = nvgpu_atomic_read(&ch->ref_count);
info->deterministic = nvgpu_channel_is_deterministic(ch);
#ifdef CONFIG_NVGPU_SW_SEMAPHORE
if (hw_sema != NULL) {
info->sema.value = nvgpu_hw_semaphore_read(hw_sema);
info->sema.next =
(u32)nvgpu_hw_semaphore_read_next(hw_sema);
info->sema.addr = nvgpu_hw_semaphore_addr(hw_sema);
}
#endif
g->ops.channel.read_state(g, ch, &info->hw_state);
g->ops.ramfc.capture_ram_dump(g, ch, info);
nvgpu_channel_put(ch);
}
gk20a_debug_output(o, "Channel Status - chip %-5s", g->name);
gk20a_debug_output(o, "---------------------------");
for (chid = 0U; chid < f->num_channels; chid++) {
struct nvgpu_channel_dump_info *info = infos[chid];
if (info != NULL) {
nvgpu_channel_info_debug_dump(g, o, info);
nvgpu_kfree(g, info);
}
}
nvgpu_kfree(g, infos);
}
#ifdef CONFIG_NVGPU_DEBUGGER
int nvgpu_channel_deferred_reset_engines(struct gk20a *g,
struct nvgpu_channel *ch)
{
unsigned long engine_id, engines = 0U;
struct nvgpu_tsg *tsg;
bool deferred_reset_pending;
struct nvgpu_fifo *f = &g->fifo;
int err = 0;
nvgpu_mutex_acquire(&g->dbg_sessions_lock);
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
deferred_reset_pending = g->fifo.deferred_reset_pending;
nvgpu_mutex_release(&f->deferred_reset_mutex);
if (!deferred_reset_pending) {
nvgpu_mutex_release(&g->dbg_sessions_lock);
return 0;
}
err = nvgpu_gr_disable_ctxsw(g);
if (err != 0) {
nvgpu_err(g, "failed to disable ctxsw");
goto fail;
}
tsg = nvgpu_tsg_from_ch(ch);
if (tsg != NULL) {
engines = nvgpu_engine_get_mask_on_id(g,
tsg->tsgid, true);
} else {
nvgpu_err(g, "chid: %d is not bound to tsg", ch->chid);
}
if (engines == 0U) {
goto clean_up;
}
/*
* If deferred reset is set for an engine, and channel is running
* on that engine, reset it
*/
for_each_set_bit(engine_id, &g->fifo.deferred_fault_engines, 32UL) {
if ((BIT64(engine_id) & engines) != 0ULL) {
nvgpu_engine_reset(g, (u32)engine_id);
}
}
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
g->fifo.deferred_fault_engines = 0;
g->fifo.deferred_reset_pending = false;
nvgpu_mutex_release(&f->deferred_reset_mutex);
clean_up:
err = nvgpu_gr_enable_ctxsw(g);
if (err != 0) {
nvgpu_err(g, "failed to enable ctxsw");
}
fail:
nvgpu_mutex_release(&g->dbg_sessions_lock);
return err;
}
#endif