Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/gmmu.c
Debarshi Dutta c46d6fbc5b gpu: nvgpu: Discard coherency check on gmmu
With MSS Nvlink set for force snoop, check for the coherency flag in
gmmu attribute and setting pte aperture to coherent type based on that
checking is not relevant.

coherent variable removed from nvgpu_gmmu_attrs struct.

Bug 200473147
Bug 3057980

Change-Id: Idf76cac901ef7c70faa2c4f7f11a046d94b9466a
Signed-off-by: Vinod G <vinodg@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2013212
Signed-off-by: Debarshi Dutta <ddutta@nvidia.com>
(cherry-picked from 4e17690975
in rel-32)
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2387272
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: Bibek Basu <bbasu@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: Aayush Rajoria <arajoria@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-08-07 09:11:01 -07:00

941 lines
24 KiB
C

/*
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/list.h>
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/enabled.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/barrier.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/sizes.h>
#include <nvgpu/types.h>
#include <nvgpu/gk20a.h>
#include "gk20a/mm_gk20a.h"
#define __gmmu_dbg(g, attrs, fmt, args...) \
do { \
if (attrs->debug) { \
nvgpu_info(g, fmt, ##args); \
} else { \
nvgpu_log(g, gpu_dbg_map, fmt, ##args); \
} \
} while (0)
#define __gmmu_dbg_v(g, attrs, fmt, args...) \
do { \
if (attrs->debug) { \
nvgpu_info(g, fmt, ##args); \
} else { \
nvgpu_log(g, gpu_dbg_map_v, fmt, ##args); \
} \
} while (0)
static int pd_allocate(struct vm_gk20a *vm,
struct nvgpu_gmmu_pd *pd,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_attrs *attrs);
static u32 pd_size(const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_attrs *attrs);
/*
* Core GMMU map function for the kernel to use. If @addr is 0 then the GPU
* VA will be allocated for you. If addr is non-zero then the buffer will be
* mapped at @addr.
*/
static u64 __nvgpu_gmmu_map(struct vm_gk20a *vm,
struct nvgpu_mem *mem,
u64 addr,
u64 size,
u32 flags,
enum gk20a_mem_rw_flag rw_flag,
bool priv,
enum nvgpu_aperture aperture)
{
struct gk20a *g = gk20a_from_vm(vm);
u64 vaddr;
struct nvgpu_sgt *sgt = nvgpu_sgt_create_from_mem(g, mem);
if (sgt == NULL) {
return 0;
}
/*
* Later on, when we free this nvgpu_mem's GPU mapping, we are going to
* potentially have to free the GPU VA space. If the address passed in
* is non-zero then this API is not expected to manage the VA space and
* therefor we should not try and free it. But otherwise, if we do
* manage the VA alloc, we obviously must free it.
*/
if (addr != 0U) {
mem->free_gpu_va = false;
} else {
mem->free_gpu_va = true;
}
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
vaddr = g->ops.mm.gmmu_map(vm, addr,
sgt, /* sg list */
0, /* sg offset */
size,
GMMU_PAGE_SIZE_KERNEL,
0, /* kind */
0, /* ctag_offset */
flags, rw_flag,
false, /* clear_ctags */
false, /* sparse */
priv, /* priv */
NULL, /* mapping_batch handle */
aperture);
nvgpu_mutex_release(&vm->update_gmmu_lock);
nvgpu_sgt_free(g, sgt);
if (vaddr == 0ULL) {
nvgpu_err(g, "failed to map buffer!");
return 0;
}
return vaddr;
}
/*
* Map a nvgpu_mem into the GMMU. This is for kernel space to use.
*/
u64 nvgpu_gmmu_map(struct vm_gk20a *vm,
struct nvgpu_mem *mem,
u64 size,
u32 flags,
enum gk20a_mem_rw_flag rw_flag,
bool priv,
enum nvgpu_aperture aperture)
{
return __nvgpu_gmmu_map(vm, mem, 0, size, flags, rw_flag, priv,
aperture);
}
/*
* Like nvgpu_gmmu_map() except this can work on a fixed address.
*/
u64 nvgpu_gmmu_map_fixed(struct vm_gk20a *vm,
struct nvgpu_mem *mem,
u64 addr,
u64 size,
u32 flags,
enum gk20a_mem_rw_flag rw_flag,
bool priv,
enum nvgpu_aperture aperture)
{
return __nvgpu_gmmu_map(vm, mem, addr, size, flags, rw_flag, priv,
aperture);
}
void nvgpu_gmmu_unmap(struct vm_gk20a *vm, struct nvgpu_mem *mem, u64 gpu_va)
{
struct gk20a *g = gk20a_from_vm(vm);
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
g->ops.mm.gmmu_unmap(vm,
gpu_va,
mem->size,
GMMU_PAGE_SIZE_KERNEL,
mem->free_gpu_va,
gk20a_mem_flag_none,
false,
NULL);
nvgpu_mutex_release(&vm->update_gmmu_lock);
}
int nvgpu_gmmu_init_page_table(struct vm_gk20a *vm)
{
u32 pdb_size;
int err;
/*
* Need this just for page size. Everything else can be ignored. Also
* note that we can just use pgsz 0 (i.e small pages) since the number
* of bits present in the top level PDE are the same for small/large
* page VMs.
*/
struct nvgpu_gmmu_attrs attrs = {
.pgsz = 0,
};
/*
* PDB size here must be one page so that its address is page size
* aligned. Although lower PDE tables can be aligned at 256B boundaries
* the main PDB must be page aligned.
*/
pdb_size = ALIGN(pd_size(&vm->mmu_levels[0], &attrs), PAGE_SIZE);
err = nvgpu_pd_cache_alloc_direct(vm->mm->g, &vm->pdb, pdb_size);
if (WARN_ON(err != 0)) {
return err;
}
/*
* One nvgpu_mb() is done after all mapping operations. Don't need
* individual barriers for each PD write.
*/
vm->pdb.mem->skip_wmb = true;
return 0;
}
/*
* Return the _physical_ address of a page directory.
*/
static u64 nvgpu_pde_phys_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
{
u64 page_addr;
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
page_addr = nvgpu_mem_get_phys_addr(g, pd->mem);
} else {
page_addr = nvgpu_mem_get_addr(g, pd->mem);
}
return page_addr + pd->mem_offs;
}
/*
* Return the aligned length based on the page size in attrs.
*/
static u64 nvgpu_align_map_length(struct vm_gk20a *vm, u64 length,
struct nvgpu_gmmu_attrs *attrs)
{
u64 page_size = vm->gmmu_page_sizes[attrs->pgsz];
return ALIGN(length, page_size);
}
static u32 pd_entries(const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_attrs *attrs)
{
/*
* Number of entries in a PD is easy to compute from the number of bits
* used to index the page directory. That is simply 2 raised to the
* number of bits.
*/
return 1UL << (l->hi_bit[attrs->pgsz] - l->lo_bit[attrs->pgsz] + 1UL);
}
/*
* Computes the size of a PD table.
*/
static u32 pd_size(const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_attrs *attrs)
{
return pd_entries(l, attrs) * l->entry_size;
}
/*
* Allocate a physically contiguous region big enough for a gmmu page table
* of the specified level and page size. The whole range is zeroed so that any
* accesses will fault until proper values are programmed.
*/
static int pd_allocate(struct vm_gk20a *vm,
struct nvgpu_gmmu_pd *pd,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_attrs *attrs)
{
int err;
if (pd->mem) {
return 0;
}
err = nvgpu_pd_alloc(vm, pd, pd_size(l, attrs));
if (err) {
nvgpu_info(vm->mm->g, "error allocating page directory!");
return err;
}
/*
* One nvgpu_mb() is done after all mapping operations. Don't need
* individual barriers for each PD write.
*/
pd->mem->skip_wmb = true;
return 0;
}
/*
* Compute what page directory index at the passed level the passed virtual
* address corresponds to. @attrs is necessary for determining the page size
* which is used to pick the right bit offsets for the GMMU level.
*/
static u32 pd_index(const struct gk20a_mmu_level *l, u64 virt,
struct nvgpu_gmmu_attrs *attrs)
{
u64 pd_mask = (1ULL << ((u64)l->hi_bit[attrs->pgsz] + 1U)) - 1ULL;
u32 pd_shift = (u64)l->lo_bit[attrs->pgsz];
/*
* For convenience we don't bother computing the lower bound of the
* mask; it's easier to just shift it off.
*/
return (virt & pd_mask) >> pd_shift;
}
static int pd_allocate_children(struct vm_gk20a *vm,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_pd *pd,
struct nvgpu_gmmu_attrs *attrs)
{
struct gk20a *g = gk20a_from_vm(vm);
if (pd->entries) {
return 0;
}
pd->num_entries = pd_entries(l, attrs);
pd->entries = nvgpu_vzalloc(g, sizeof(struct nvgpu_gmmu_pd) *
pd->num_entries);
if (pd->entries == NULL) {
return -ENOMEM;
}
return 0;
}
/*
* This function programs the GMMU based on two ranges: a physical range and a
* GPU virtual range. The virtual is mapped to the physical. Physical in this
* case can mean either a real physical sysmem address or a IO virtual address
* (for instance when a system has an IOMMU running).
*
* The rest of the parameters are for describing the actual mapping itself.
*
* This function recursively calls itself for handling PDEs. At the final level
* a PTE handler is called. The phys and virt ranges are adjusted for each
* recursion so that each invocation of this function need only worry about the
* range it is passed.
*
* phys_addr will always point to a contiguous range - the discontiguous nature
* of DMA buffers is taken care of at the layer above this.
*/
static int __set_pd_level(struct vm_gk20a *vm,
struct nvgpu_gmmu_pd *pd,
int lvl,
u64 phys_addr,
u64 virt_addr, u64 length,
struct nvgpu_gmmu_attrs *attrs)
{
int err = 0;
u64 pde_range;
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_gmmu_pd *next_pd = NULL;
const struct gk20a_mmu_level *l = &vm->mmu_levels[lvl];
const struct gk20a_mmu_level *next_l = &vm->mmu_levels[lvl + 1];
/*
* 5 levels for Pascal+. For pre-pascal we only have 2. This puts
* offsets into the page table debugging code which makes it easier to
* see what level prints are from.
*/
static const char *__lvl_debug[] = {
"", /* L=0 */
" ", /* L=1 */
" ", /* L=2 */
" ", /* L=3 */
" ", /* L=4 */
};
pde_range = 1ULL << (u64)l->lo_bit[attrs->pgsz];
__gmmu_dbg_v(g, attrs,
"L=%d %sGPU virt %#-12llx +%#-9llx -> phys %#-12llx",
lvl,
__lvl_debug[lvl],
virt_addr,
length,
phys_addr);
/*
* Iterate across the mapping in chunks the size of this level's PDE.
* For each of those chunks program our level's PDE and then, if there's
* a next level, program the next level's PDEs/PTEs.
*/
while (length) {
u32 pd_idx = pd_index(l, virt_addr, attrs);
u64 chunk_size;
u64 target_addr;
/*
* Truncate the pde_range when the virtual address does not
* start at a PDE boundary.
*/
chunk_size = min(length,
pde_range - (virt_addr & (pde_range - 1U)));
/*
* If the next level has an update_entry function then we know
* that _this_ level points to PDEs (not PTEs). Thus we need to
* have a bunch of children PDs.
*/
if (next_l->update_entry) {
if (pd_allocate_children(vm, l, pd, attrs)) {
return -ENOMEM;
}
/*
* Get the next PD so that we know what to put in this
* current PD. If the next level is actually PTEs then
* we don't need this - we will just use the real
* physical target.
*/
next_pd = &pd->entries[pd_idx];
/*
* Allocate the backing memory for next_pd.
*/
if (pd_allocate(vm, next_pd, next_l, attrs)) {
return -ENOMEM;
}
}
/*
* This is the address we want to program into the actual PDE/
* PTE. When the next level is PDEs we need the target address
* to be the table of PDEs. When the next level is PTEs the
* target addr is the real physical address we are aiming for.
*/
target_addr = (next_pd != NULL) ?
nvgpu_pde_phys_addr(g, next_pd) :
phys_addr;
l->update_entry(vm, l,
pd, pd_idx,
virt_addr,
target_addr,
attrs);
if (next_l->update_entry) {
err = __set_pd_level(vm, next_pd,
lvl + 1,
phys_addr,
virt_addr,
chunk_size,
attrs);
if (err) {
return err;
}
}
virt_addr += chunk_size;
/*
* Only add to phys_addr if it's non-zero. A zero value implies
* we are unmapping as as a result we don't want to place
* non-zero phys addresses in the PTEs. A non-zero phys-addr
* would also confuse the lower level PTE programming code.
*/
if (phys_addr) {
phys_addr += chunk_size;
}
length -= chunk_size;
}
__gmmu_dbg_v(g, attrs, "L=%d %s%s", lvl, __lvl_debug[lvl], "ret!");
return 0;
}
static int __nvgpu_gmmu_do_update_page_table(struct vm_gk20a *vm,
struct nvgpu_sgt *sgt,
u64 space_to_skip,
u64 virt_addr,
u64 length,
struct nvgpu_gmmu_attrs *attrs)
{
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_sgl *sgl;
int err = 0;
if (sgt == NULL) {
/*
* This is considered an unmap. Just pass in 0 as the physical
* address for the entire GPU range.
*/
err = __set_pd_level(vm, &vm->pdb,
0,
0,
virt_addr, length,
attrs);
return err;
}
/*
* At this point we have a scatter-gather list pointing to some number
* of discontiguous chunks of memory. We must iterate over that list and
* generate a GMMU map call for each chunk. There are several
* possibilities:
*
* 1. IOMMU enabled, IOMMU addressing (typical iGPU)
* 2. IOMMU enabled, IOMMU bypass (NVLINK bypasses SMMU)
* 3. IOMMU disabled (less common but still supported)
* 4. VIDMEM
*
* For (1) we can assume that there's really only one actual SG chunk
* since the IOMMU gives us a single contiguous address range. However,
* for (2), (3) and (4) we have to actually go through each SG entry and
* map each chunk individually.
*/
if (nvgpu_aperture_is_sysmem(attrs->aperture) &&
nvgpu_iommuable(g) &&
nvgpu_sgt_iommuable(g, sgt)) {
u64 io_addr = nvgpu_sgt_get_gpu_addr(g, sgt, sgt->sgl, attrs);
io_addr += space_to_skip;
err = __set_pd_level(vm, &vm->pdb,
0,
io_addr,
virt_addr,
length,
attrs);
return err;
}
/*
* Handle cases (2), (3), and (4): do the no-IOMMU mapping. In this case
* we really are mapping physical pages directly.
*/
nvgpu_sgt_for_each_sgl(sgl, sgt) {
u64 phys_addr;
u64 chunk_length;
/*
* Cut out sgl ents for space_to_skip.
*/
if (space_to_skip != 0ULL &&
space_to_skip >= nvgpu_sgt_get_length(sgt, sgl)) {
space_to_skip -= nvgpu_sgt_get_length(sgt, sgl);
continue;
}
phys_addr = g->ops.mm.gpu_phys_addr(g, attrs,
nvgpu_sgt_get_phys(g, sgt, sgl)) + space_to_skip;
chunk_length = min(length,
nvgpu_sgt_get_length(sgt, sgl) - space_to_skip);
err = __set_pd_level(vm, &vm->pdb,
0,
phys_addr,
virt_addr,
chunk_length,
attrs);
if (err) {
break;
}
/* Space has been skipped so zero this for future chunks. */
space_to_skip = 0;
/*
* Update the map pointer and the remaining length.
*/
virt_addr += chunk_length;
length -= chunk_length;
if (length == 0U) {
break;
}
}
return err;
}
/*
* This is the true top level GMMU mapping logic. This breaks down the incoming
* scatter gather table and does actual programming of GPU virtual address to
* physical* address.
*
* The update of each level of the page tables is farmed out to chip specific
* implementations. But the logic around that is generic to all chips. Every
* chip has some number of PDE levels and then a PTE level.
*
* Each chunk of the incoming SGL is sent to the chip specific implementation
* of page table update.
*
* [*] Note: the "physical" address may actually be an IO virtual address in the
* case of SMMU usage.
*/
static int __nvgpu_gmmu_update_page_table(struct vm_gk20a *vm,
struct nvgpu_sgt *sgt,
u64 space_to_skip,
u64 virt_addr,
u64 length,
struct nvgpu_gmmu_attrs *attrs)
{
struct gk20a *g = gk20a_from_vm(vm);
u32 page_size;
int err;
/* note: here we need to map kernel to small, since the
* low-level mmu code assumes 0 is small and 1 is big pages */
if (attrs->pgsz == GMMU_PAGE_SIZE_KERNEL) {
attrs->pgsz = GMMU_PAGE_SIZE_SMALL;
}
page_size = vm->gmmu_page_sizes[attrs->pgsz];
if (space_to_skip & (page_size - 1U)) {
return -EINVAL;
}
/*
* Update length to be aligned to the passed page size.
*/
length = nvgpu_align_map_length(vm, length, attrs);
__gmmu_dbg(g, attrs,
"vm=%s "
"%-5s GPU virt %#-12llx +%#-9llx phys %#-12llx "
"phys offset: %#-4llx; pgsz: %3dkb perm=%-2s | "
"kind=%#02x APT=%-6s %c%c%c%c%c",
vm->name,
(sgt != NULL) ? "MAP" : "UNMAP",
virt_addr,
length,
(sgt != NULL) ? nvgpu_sgt_get_phys(g, sgt, sgt->sgl) : 0,
space_to_skip,
page_size >> 10,
nvgpu_gmmu_perm_str(attrs->rw_flag),
attrs->kind_v,
nvgpu_aperture_str(g, attrs->aperture),
attrs->cacheable ? 'C' : '-',
attrs->sparse ? 'S' : '-',
attrs->priv ? 'P' : '-',
attrs->valid ? 'V' : '-',
attrs->platform_atomic ? 'A' : '-');
err = __nvgpu_gmmu_do_update_page_table(vm,
sgt,
space_to_skip,
virt_addr,
length,
attrs);
nvgpu_mb();
__gmmu_dbg(g, attrs, "%-5s Done!",
(sgt != NULL) ? "MAP" : "UNMAP");
return err;
}
/**
* gk20a_locked_gmmu_map - Map a buffer into the GMMU
*
* This is for non-vGPU chips. It's part of the HAL at the moment but really
* should not be. Chip specific stuff is handled at the PTE/PDE programming
* layer. The rest of the logic is essentially generic for all chips.
*
* To call this function you must have locked the VM lock: vm->update_gmmu_lock.
* However, note: this function is not called directly. It's used through the
* mm.gmmu_lock() HAL. So before calling the mm.gmmu_lock() HAL make sure you
* have the update_gmmu_lock aquired.
*/
u64 gk20a_locked_gmmu_map(struct vm_gk20a *vm,
u64 vaddr,
struct nvgpu_sgt *sgt,
u64 buffer_offset,
u64 size,
u32 pgsz_idx,
u8 kind_v,
u32 ctag_offset,
u32 flags,
enum gk20a_mem_rw_flag rw_flag,
bool clear_ctags,
bool sparse,
bool priv,
struct vm_gk20a_mapping_batch *batch,
enum nvgpu_aperture aperture)
{
struct gk20a *g = gk20a_from_vm(vm);
int err = 0;
bool allocated = false;
int ctag_granularity = g->ops.fb.compression_page_size(g);
struct nvgpu_gmmu_attrs attrs = {
.pgsz = pgsz_idx,
.kind_v = kind_v,
.ctag = (u64)ctag_offset * (u64)ctag_granularity,
.cacheable = flags & NVGPU_VM_MAP_CACHEABLE,
.rw_flag = rw_flag,
.sparse = sparse,
.priv = priv,
.valid = (flags & NVGPU_VM_MAP_UNMAPPED_PTE) == 0U,
.aperture = aperture,
.platform_atomic = (flags & NVGPU_VM_MAP_PLATFORM_ATOMIC) != 0U
};
/*
* We need to add the buffer_offset within compression_page_size so that
* the programmed ctagline gets increased at compression_page_size
* boundaries.
*/
if (attrs.ctag) {
attrs.ctag += buffer_offset & (ctag_granularity - 1U);
}
attrs.l3_alloc = (bool)(flags & NVGPU_VM_MAP_L3_ALLOC);
/*
* Only allocate a new GPU VA range if we haven't already been passed a
* GPU VA range. This facilitates fixed mappings.
*/
if (vaddr == 0ULL) {
vaddr = __nvgpu_vm_alloc_va(vm, size, pgsz_idx);
if (vaddr == 0ULL) {
nvgpu_err(g, "failed to allocate va space");
err = -ENOMEM;
goto fail_alloc;
}
allocated = true;
}
err = __nvgpu_gmmu_update_page_table(vm, sgt, buffer_offset,
vaddr, size, &attrs);
if (err) {
nvgpu_err(g, "failed to update ptes on map");
goto fail_validate;
}
if (batch == NULL) {
g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
} else {
batch->need_tlb_invalidate = true;
}
return vaddr;
fail_validate:
if (allocated) {
__nvgpu_vm_free_va(vm, vaddr, pgsz_idx);
}
fail_alloc:
nvgpu_err(g, "%s: failed with err=%d", __func__, err);
return 0;
}
void gk20a_locked_gmmu_unmap(struct vm_gk20a *vm,
u64 vaddr,
u64 size,
u32 pgsz_idx,
bool va_allocated,
enum gk20a_mem_rw_flag rw_flag,
bool sparse,
struct vm_gk20a_mapping_batch *batch)
{
int err = 0;
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_gmmu_attrs attrs = {
.pgsz = pgsz_idx,
.kind_v = 0,
.ctag = 0,
.cacheable = 0,
.rw_flag = rw_flag,
.sparse = sparse,
.priv = 0,
.valid = 0,
.aperture = APERTURE_INVALID,
};
if (va_allocated) {
err = __nvgpu_vm_free_va(vm, vaddr, pgsz_idx);
if (err) {
nvgpu_err(g, "failed to free va");
return;
}
}
/* unmap here needs to know the page size we assigned at mapping */
err = __nvgpu_gmmu_update_page_table(vm, NULL, 0,
vaddr, size, &attrs);
if (err) {
nvgpu_err(g, "failed to update gmmu ptes on unmap");
}
if (batch == NULL) {
gk20a_mm_l2_flush(g, true);
g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
} else {
if (!batch->gpu_l2_flushed) {
gk20a_mm_l2_flush(g, true);
batch->gpu_l2_flushed = true;
}
batch->need_tlb_invalidate = true;
}
}
u32 __nvgpu_pte_words(struct gk20a *g)
{
const struct gk20a_mmu_level *l = g->ops.mm.get_mmu_levels(g, SZ_64K);
const struct gk20a_mmu_level *next_l;
/*
* Iterate to the bottom GMMU level - the PTE level. The levels array
* is always NULL terminated (by the update_entry function).
*/
do {
next_l = l + 1;
if (next_l->update_entry == NULL) {
break;
}
l++;
} while (true);
return (u32)(l->entry_size / sizeof(u32));
}
/*
* Recursively walk the pages tables to find the PTE.
*/
static int __nvgpu_locate_pte(struct gk20a *g, struct vm_gk20a *vm,
struct nvgpu_gmmu_pd *pd,
u64 vaddr, int lvl,
struct nvgpu_gmmu_attrs *attrs,
u32 *data,
struct nvgpu_gmmu_pd **pd_out, u32 *pd_idx_out,
u32 *pd_offs_out)
{
const struct gk20a_mmu_level *l = &vm->mmu_levels[lvl];
const struct gk20a_mmu_level *next_l = &vm->mmu_levels[lvl + 1];
u32 pd_idx = pd_index(l, vaddr, attrs);
u32 pte_base;
u32 pte_size;
u32 i;
/*
* If this isn't the final level (i.e there's a valid next level)
* then find the next level PD and recurse.
*/
if (next_l->update_entry) {
struct nvgpu_gmmu_pd *pd_next = pd->entries + pd_idx;
/* Invalid entry! */
if (pd_next->mem == NULL) {
return -EINVAL;
}
attrs->pgsz = l->get_pgsz(g, l, pd, pd_idx);
if (attrs->pgsz >= GMMU_NR_PAGE_SIZES) {
return -EINVAL;
}
return __nvgpu_locate_pte(g, vm, pd_next,
vaddr, lvl + 1, attrs,
data, pd_out, pd_idx_out,
pd_offs_out);
}
if (pd->mem == NULL) {
return -EINVAL;
}
/*
* Take into account the real offset into the nvgpu_mem since the PD
* may be located at an offset other than 0 (due to PD packing).
*/
pte_base = (pd->mem_offs / sizeof(u32)) +
pd_offset_from_index(l, pd_idx);
pte_size = (u32)(l->entry_size / sizeof(u32));
if (data) {
for (i = 0; i < pte_size; i++) {
data[i] = nvgpu_mem_rd32(g, pd->mem, pte_base + i);
}
}
if (pd_out) {
*pd_out = pd;
}
if (pd_idx_out) {
*pd_idx_out = pd_idx;
}
if (pd_offs_out) {
*pd_offs_out = pd_offset_from_index(l, pd_idx);
}
return 0;
}
int __nvgpu_get_pte(struct gk20a *g, struct vm_gk20a *vm, u64 vaddr, u32 *pte)
{
struct nvgpu_gmmu_attrs attrs = {
.pgsz = 0,
};
return __nvgpu_locate_pte(g, vm, &vm->pdb,
vaddr, 0, &attrs,
pte, NULL, NULL, NULL);
}
int __nvgpu_set_pte(struct gk20a *g, struct vm_gk20a *vm, u64 vaddr, u32 *pte)
{
struct nvgpu_gmmu_pd *pd;
u32 pd_idx, pd_offs, pte_size, i;
int err;
struct nvgpu_gmmu_attrs attrs = {
.pgsz = 0,
};
struct nvgpu_gmmu_attrs *attrs_ptr = &attrs;
err = __nvgpu_locate_pte(g, vm, &vm->pdb,
vaddr, 0, &attrs,
NULL, &pd, &pd_idx, &pd_offs);
if (err) {
return err;
}
pte_size = __nvgpu_pte_words(g);
for (i = 0; i < pte_size; i++) {
pd_write(g, pd, pd_offs + i, pte[i]);
pte_dbg(g, attrs_ptr,
"PTE: idx=%-4u (%d) 0x%08x", pd_idx, i, pte[i]);
}
/*
* Ensures the pd_write()s are done. The pd_write() does not do this
* since generally there's lots of pd_write()s called one after another.
* There probably also needs to be a TLB invalidate as well but we leave
* that to the caller of this function.
*/
nvgpu_wmb();
return 0;
}