mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
For Linux, limit the use of the cache to entries less than the page size, to avoid potential problems with running out of CMA memory when allocating large, contiguous slabs, as would be required for non-iommmuable chips. Also, in nvgpu_pd_cache_do_free(), zero out entries only if iommu is in use and PTE entries use the cache (since it's the prefetch of invalid PTEs by iommu that needs to be avoided). Bug 3093183 Bug 3100907 Change-Id: I363031db32e11bc705810a7e87fc9e9ac1dc00bd Signed-off-by: Peter Daifuku <pdaifuku@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2422039 Reviewed-by: automaticguardword <automaticguardword@nvidia.com> Reviewed-by: Alex Waterman <alexw@nvidia.com> Reviewed-by: Dinesh T <dt@nvidia.com> Reviewed-by: Satish Arora <satisha@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> GVS: Gerrit_Virtual_Submit Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
501 lines
13 KiB
C
501 lines
13 KiB
C
/*
|
|
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/list.h>
|
|
#include <nvgpu/log2.h>
|
|
#include <nvgpu/gk20a.h>
|
|
|
|
#include "gk20a/mm_gk20a.h"
|
|
|
|
#define pd_dbg(g, fmt, args...) nvgpu_log(g, gpu_dbg_pd_cache, fmt, ##args)
|
|
|
|
/**
|
|
* DOC: PD cache
|
|
*
|
|
* In the name of saving memory with the many sub-page sized PD levels in Pascal
|
|
* and beyond a way of packing PD tables together is necessary. This code here
|
|
* does just that. If a PD table only requires 1024 bytes, then it is possible
|
|
* to have 4 of these PDs in one page. This is even more pronounced for 256 byte
|
|
* PD tables.
|
|
*
|
|
* The pd cache is basically a slab allocator. Each instance of the nvgpu
|
|
* driver makes one of these structs:
|
|
*
|
|
* struct nvgpu_pd_cache {
|
|
* struct nvgpu_list_node full[NVGPU_PD_CACHE_COUNT];
|
|
* struct nvgpu_list_node partial[NVGPU_PD_CACHE_COUNT];
|
|
*
|
|
* struct nvgpu_rbtree_node *mem_tree;
|
|
* };
|
|
*
|
|
* There are two sets of lists used for cached allocations, the full and the
|
|
* partial. The full lists contain pages of memory for which all the memory in
|
|
* that entry is in use. The partial lists contain partially full blocks of
|
|
* memory which can be used for more PD allocations. The cache works as follows:
|
|
*
|
|
* 1. PDs greater than NVGPU_PD_CACHE_SIZE bypass the pd cache.
|
|
* 2. PDs are always power of 2 and greater than %NVGPU_PD_CACHE_MIN bytes.
|
|
*
|
|
* nvgpu_pd_alloc() will allocate a PD for the GMMU. It will check if the PD
|
|
* size is NVGPU_PD_CACHE_SIZE or larger and choose the correct allocation
|
|
* scheme - either from the PD cache or directly. Similarly nvgpu_pd_free()
|
|
* will free a PD allocated by nvgpu_pd_alloc().
|
|
*
|
|
* Since the top level PD (the PDB) is a page aligned pointer but less than a
|
|
* page size the direct functions must be used for allocating PDBs. Otherwise
|
|
* there would be alignment issues for the PDBs when they get packed.
|
|
*/
|
|
|
|
static u32 nvgpu_pd_cache_nr(u32 bytes)
|
|
{
|
|
return ilog2(bytes >> (NVGPU_PD_CACHE_MIN_SHIFT - 1U));
|
|
}
|
|
|
|
static u32 nvgpu_pd_cache_get_nr_entries(struct nvgpu_pd_mem_entry *pentry)
|
|
{
|
|
BUG_ON(pentry->pd_size == 0);
|
|
|
|
return NVGPU_PD_CACHE_SIZE / pentry->pd_size;
|
|
}
|
|
|
|
int nvgpu_pd_cache_init(struct gk20a *g)
|
|
{
|
|
struct nvgpu_pd_cache *cache;
|
|
u32 i;
|
|
int err = 0;
|
|
|
|
|
|
/*
|
|
* This gets called from finalize_poweron() so we need to make sure we
|
|
* don't reinit the pd_cache over and over.
|
|
*/
|
|
if (g->mm.pd_cache) {
|
|
return 0;
|
|
}
|
|
|
|
cache = nvgpu_kzalloc(g, sizeof(*cache));
|
|
if (cache == NULL) {
|
|
nvgpu_err(g, "Failed to alloc pd_cache!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
|
|
nvgpu_init_list_node(&cache->full[i]);
|
|
nvgpu_init_list_node(&cache->partial[i]);
|
|
}
|
|
|
|
cache->mem_tree = NULL;
|
|
|
|
err = nvgpu_mutex_init(&cache->lock);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "Error in cache.lock initialization");
|
|
nvgpu_kfree(g, cache);
|
|
return err;
|
|
}
|
|
|
|
g->mm.pd_cache = cache;
|
|
pd_dbg(g, "PD cache initialized!");
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_pd_cache_fini(struct gk20a *g)
|
|
{
|
|
u32 i;
|
|
struct nvgpu_pd_cache *cache = g->mm.pd_cache;
|
|
|
|
if (cache == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
|
|
WARN_ON(!nvgpu_list_empty(&cache->full[i]));
|
|
WARN_ON(!nvgpu_list_empty(&cache->partial[i]));
|
|
}
|
|
|
|
nvgpu_kfree(g, g->mm.pd_cache);
|
|
}
|
|
|
|
/*
|
|
* This is the simple pass-through for greater than page or page sized PDs.
|
|
*
|
|
* Note: this does not need the cache lock since it does not modify any of the
|
|
* PD cache data structures.
|
|
*/
|
|
int nvgpu_pd_cache_alloc_direct(struct gk20a *g,
|
|
struct nvgpu_gmmu_pd *pd, u32 bytes)
|
|
{
|
|
int err;
|
|
unsigned long flags = 0;
|
|
|
|
pd_dbg(g, "PD-Alloc [D] %u bytes", bytes);
|
|
|
|
pd->mem = nvgpu_kzalloc(g, sizeof(*pd->mem));
|
|
if (pd->mem == NULL) {
|
|
nvgpu_err(g, "OOM allocating nvgpu_mem struct!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* If bytes == PAGE_SIZE then it's impossible to get a discontiguous DMA
|
|
* allocation. Some DMA implementations may, despite this fact, still
|
|
* use the contiguous pool for page sized allocations. As such only
|
|
* request explicitly contiguous allocs if the page directory is larger
|
|
* than the page size. Also, of course, this is all only revelant for
|
|
* GPUs not using an IOMMU. If there is an IOMMU DMA allocs are always
|
|
* going to be virtually contiguous and we don't have to force the
|
|
* underlying allocations to be physically contiguous as well.
|
|
*/
|
|
if (!nvgpu_iommuable(g) && bytes > PAGE_SIZE) {
|
|
flags = NVGPU_DMA_FORCE_CONTIGUOUS;
|
|
}
|
|
|
|
err = nvgpu_dma_alloc_flags(g, flags, bytes, pd->mem);
|
|
if (err) {
|
|
nvgpu_err(g, "OOM allocating page directory!");
|
|
nvgpu_kfree(g, pd->mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pd->cached = false;
|
|
pd->mem_offs = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Make a new nvgpu_pd_cache_entry and allocate a PD from it. Update the passed
|
|
* pd to reflect this allocation.
|
|
*/
|
|
static int nvgpu_pd_cache_alloc_new(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
u32 bytes)
|
|
{
|
|
struct nvgpu_pd_mem_entry *pentry;
|
|
unsigned long flags = 0;
|
|
int err;
|
|
|
|
pd_dbg(g, "PD-Alloc [C] New: offs=0");
|
|
|
|
pentry = nvgpu_kzalloc(g, sizeof(*pentry));
|
|
if (pentry == NULL) {
|
|
nvgpu_err(g, "OOM allocating pentry!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!nvgpu_iommuable(g) && (NVGPU_PD_CACHE_SIZE > PAGE_SIZE)) {
|
|
flags = NVGPU_DMA_FORCE_CONTIGUOUS;
|
|
}
|
|
|
|
err = nvgpu_dma_alloc_flags(g, flags,
|
|
NVGPU_PD_CACHE_SIZE, &pentry->mem);
|
|
if (err != 0) {
|
|
nvgpu_kfree(g, pentry);
|
|
|
|
/* Not enough contiguous space, but a direct
|
|
* allocation may work
|
|
*/
|
|
if (err == -ENOMEM) {
|
|
return nvgpu_pd_cache_alloc_direct(g, pd, bytes);
|
|
}
|
|
nvgpu_err(g, "Unable to DMA alloc!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pentry->pd_size = bytes;
|
|
nvgpu_list_add(&pentry->list_entry,
|
|
&cache->partial[nvgpu_pd_cache_nr(bytes)]);
|
|
|
|
/*
|
|
* This allocates the very first PD table in the set of tables in this
|
|
* nvgpu_pd_mem_entry.
|
|
*/
|
|
set_bit(0U, pentry->alloc_map);
|
|
pentry->allocs = 1;
|
|
|
|
/*
|
|
* Now update the nvgpu_gmmu_pd to reflect this allocation.
|
|
*/
|
|
pd->mem = &pentry->mem;
|
|
pd->mem_offs = 0;
|
|
pd->cached = true;
|
|
|
|
pentry->tree_entry.key_start = (u64)(uintptr_t)&pentry->mem;
|
|
nvgpu_rbtree_insert(&pentry->tree_entry, &cache->mem_tree);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvgpu_pd_cache_alloc_from_partial(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_pd_mem_entry *pentry,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
unsigned long bit_offs;
|
|
u32 mem_offs;
|
|
u32 nr_bits = nvgpu_pd_cache_get_nr_entries(pentry);
|
|
|
|
/*
|
|
* Find and allocate an open PD.
|
|
*/
|
|
bit_offs = find_first_zero_bit(pentry->alloc_map, nr_bits);
|
|
mem_offs = bit_offs * pentry->pd_size;
|
|
|
|
/* Bit map full. Somethings wrong. */
|
|
if (WARN_ON(bit_offs >= nr_bits)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_bit(bit_offs, pentry->alloc_map);
|
|
pentry->allocs++;
|
|
|
|
pd_dbg(g, "PD-Alloc [C] Partial: offs=%lu", bit_offs);
|
|
|
|
/*
|
|
* First update the pd.
|
|
*/
|
|
pd->mem = &pentry->mem;
|
|
pd->mem_offs = mem_offs;
|
|
pd->cached = true;
|
|
|
|
/*
|
|
* Now make sure the pentry is in the correct list (full vs partial).
|
|
*/
|
|
if (pentry->allocs >= nr_bits) {
|
|
pd_dbg(g, "Adding pentry to full list!");
|
|
nvgpu_list_del(&pentry->list_entry);
|
|
nvgpu_list_add(&pentry->list_entry,
|
|
&cache->full[nvgpu_pd_cache_nr(pentry->pd_size)]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get a partially full nvgpu_pd_mem_entry. Returns NULL if there is no partial
|
|
* nvgpu_pd_mem_entry's.
|
|
*/
|
|
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_get_partial(
|
|
struct nvgpu_pd_cache *cache, u32 bytes)
|
|
{
|
|
struct nvgpu_list_node *list =
|
|
&cache->partial[nvgpu_pd_cache_nr(bytes)];
|
|
|
|
if (nvgpu_list_empty(list)) {
|
|
return NULL;
|
|
}
|
|
|
|
return nvgpu_list_first_entry(list,
|
|
nvgpu_pd_mem_entry,
|
|
list_entry);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory from an nvgpu_mem for the page directory.
|
|
*/
|
|
static int nvgpu_pd_cache_alloc(struct gk20a *g, struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd, u32 bytes)
|
|
{
|
|
struct nvgpu_pd_mem_entry *pentry;
|
|
int err;
|
|
|
|
pd_dbg(g, "PD-Alloc [C] %u bytes", bytes);
|
|
|
|
if ((bytes & (bytes - 1U)) != 0U ||
|
|
(bytes >= NVGPU_PD_CACHE_SIZE ||
|
|
bytes < NVGPU_PD_CACHE_MIN)) {
|
|
pd_dbg(g, "PD-Alloc [C] Invalid (bytes=%u)!", bytes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pentry = nvgpu_pd_cache_get_partial(cache, bytes);
|
|
if (pentry == NULL) {
|
|
err = nvgpu_pd_cache_alloc_new(g, cache, pd, bytes);
|
|
} else {
|
|
err = nvgpu_pd_cache_alloc_from_partial(g, cache, pentry, pd);
|
|
}
|
|
|
|
if (err) {
|
|
nvgpu_err(g, "PD-Alloc [C] Failed!");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Allocate the DMA memory for a page directory. This handles the necessary PD
|
|
* cache logistics. Since on Parker and later GPUs some of the page directories
|
|
* are smaller than a page packing these PDs together saves a lot of memory.
|
|
*/
|
|
int nvgpu_pd_alloc(struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
u32 bytes)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
int err;
|
|
|
|
/*
|
|
* Simple case: PD is bigger than or equal to NVGPU_PD_CACHE_SIZE so
|
|
* just do a regular DMA alloc.
|
|
*/
|
|
if (bytes >= NVGPU_PD_CACHE_SIZE) {
|
|
err = nvgpu_pd_cache_alloc_direct(g, pd, bytes);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (WARN_ON(g->mm.pd_cache == NULL)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
|
|
err = nvgpu_pd_cache_alloc(g, g->mm.pd_cache, pd, bytes);
|
|
nvgpu_mutex_release(&g->mm.pd_cache->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
void nvgpu_pd_cache_free_direct(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
pd_dbg(g, "PD-Free [D] 0x%p", pd->mem);
|
|
|
|
if (pd->mem == NULL) {
|
|
return;
|
|
}
|
|
|
|
nvgpu_dma_free(g, pd->mem);
|
|
nvgpu_kfree(g, pd->mem);
|
|
pd->mem = NULL;
|
|
}
|
|
|
|
static void nvgpu_pd_cache_free_mem_entry(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_pd_mem_entry *pentry)
|
|
{
|
|
nvgpu_dma_free(g, &pentry->mem);
|
|
nvgpu_list_del(&pentry->list_entry);
|
|
nvgpu_rbtree_unlink(&pentry->tree_entry, &cache->mem_tree);
|
|
nvgpu_kfree(g, pentry);
|
|
}
|
|
|
|
static void nvgpu_pd_cache_do_free(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_pd_mem_entry *pentry,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
u32 bit = pd->mem_offs / pentry->pd_size;
|
|
|
|
/* Mark entry as free. */
|
|
clear_bit(bit, pentry->alloc_map);
|
|
pentry->allocs--;
|
|
|
|
if (pentry->allocs > 0U) {
|
|
/*
|
|
* Partially full still. If it was already on the partial list
|
|
* this just re-adds it.
|
|
*
|
|
* Since the memory used for the entries is still mapped, if
|
|
* iommu is being used, make sure PTE entries in particular
|
|
* are invalidated so that the hw doesn't accidentally try to
|
|
* prefetch non-existent fb memory.
|
|
*
|
|
* Notes:
|
|
* - The check for NVGPU_PD_CACHE_SIZE > PAGE_SIZE effectively
|
|
* determines whether PTE entries use the cache.
|
|
* - In the case where PTE entries ues the cache, we also
|
|
* end up invalidating the PDE entries, but that's a minor
|
|
* performance hit, as there are far fewer of those
|
|
* typically than there are PTE entries.
|
|
*/
|
|
if (nvgpu_iommuable(g) && (NVGPU_PD_CACHE_SIZE > PAGE_SIZE)) {
|
|
memset((void *)((u64)pd->mem->cpu_va + pd->mem_offs), 0,
|
|
pentry->pd_size);
|
|
}
|
|
|
|
nvgpu_list_del(&pentry->list_entry);
|
|
nvgpu_list_add(&pentry->list_entry,
|
|
&cache->partial[nvgpu_pd_cache_nr(pentry->pd_size)]);
|
|
} else {
|
|
/* Empty now so free it. */
|
|
nvgpu_pd_cache_free_mem_entry(g, cache, pentry);
|
|
}
|
|
|
|
pd->mem = NULL;
|
|
}
|
|
|
|
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_look_up(
|
|
struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
struct nvgpu_rbtree_node *node;
|
|
|
|
nvgpu_rbtree_search((u64)(uintptr_t)pd->mem, &node,
|
|
cache->mem_tree);
|
|
if (node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return nvgpu_pd_mem_entry_from_tree_entry(node);
|
|
}
|
|
|
|
static void nvgpu_pd_cache_free(struct gk20a *g, struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
struct nvgpu_pd_mem_entry *pentry;
|
|
|
|
pd_dbg(g, "PD-Free [C] 0x%p", pd->mem);
|
|
|
|
pentry = nvgpu_pd_cache_look_up(g, cache, pd);
|
|
if (pentry == NULL) {
|
|
WARN(1, "Attempting to free non-existent pd");
|
|
return;
|
|
}
|
|
|
|
nvgpu_pd_cache_do_free(g, cache, pentry, pd);
|
|
}
|
|
|
|
void nvgpu_pd_free(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
/*
|
|
* Simple case: just DMA free.
|
|
*/
|
|
if (!pd->cached) {
|
|
return nvgpu_pd_cache_free_direct(g, pd);
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
|
|
nvgpu_pd_cache_free(g, g->mm.pd_cache, pd);
|
|
nvgpu_mutex_release(&g->mm.pd_cache->lock);
|
|
}
|