Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/fecs_trace_gk20a.c
Deepak Nibade 0e32642508 gpu: nvgpu: fix trace ring read after invalid entry
gk20a_fecs_trace_poll() right now calls gk20a_fecs_trace_ring_read()
to read the trace ring buffer written by FECS
gk20a_fecs_trace_ring_read() returns number of trace entries written
to local buffer if successful, otherwise returns error

In case there is really an invalid entry, gk20a_fecs_trace_poll()
will just stop reading more entries, write current read pointer to
h/w and return

When gk20a_fecs_trace_poll() is called next time, we again read that
invalid entry, and again skip it, and again return
This keeps happening, and we never move on to read new entries

Fix this by always continuing to read next entry irrespective
of current entry is valid or not
gk20a_fecs_trace_poll() now just prints a debug message instead of
breaking the loop

Bug 200491708
Bug 200542611

Reviewed-on: https://git-master.nvidia.com/r/2020167
(cherry picked from commit decbbf3504)

Change-Id: If8b3c8af63ce662a41ada93a6986fa149e34f664
Signed-off-by: seshendra <sgadagottu@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2190151
GVS: Gerrit_Virtual_Submit
Reviewed-by: Vinod Gopalakrishnakurup <vinodg@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: Winnie Hsu <whsu@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-09-05 22:39:42 -07:00

745 lines
19 KiB
C

/*
* Copyright (c) 2016-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/kmem.h>
#include <nvgpu/dma.h>
#include <nvgpu/enabled.h>
#include <nvgpu/bug.h>
#include <nvgpu/hashtable.h>
#include <nvgpu/circ_buf.h>
#include <nvgpu/thread.h>
#include <nvgpu/barrier.h>
#include <nvgpu/mm.h>
#include <nvgpu/enabled.h>
#include <nvgpu/ctxsw_trace.h>
#include <nvgpu/io.h>
#include <nvgpu/utils.h>
#include <nvgpu/timers.h>
#include <nvgpu/channel.h>
#include "fecs_trace_gk20a.h"
#include "gk20a.h"
#include "gr_gk20a.h"
#include <nvgpu/log.h>
#include <nvgpu/fecs_trace.h>
#include <nvgpu/hw/gk20a/hw_ctxsw_prog_gk20a.h>
#include <nvgpu/hw/gk20a/hw_gr_gk20a.h>
struct gk20a_fecs_trace_hash_ent {
u32 context_ptr;
pid_t pid;
struct hlist_node node;
};
struct gk20a_fecs_trace {
DECLARE_HASHTABLE(pid_hash_table, GK20A_FECS_TRACE_HASH_BITS);
struct nvgpu_mutex hash_lock;
struct nvgpu_mutex poll_lock;
struct nvgpu_thread poll_task;
bool init;
struct nvgpu_mutex enable_lock;
u32 enable_count;
};
#ifdef CONFIG_GK20A_CTXSW_TRACE
u32 gk20a_fecs_trace_record_ts_tag_invalid_ts_v(void)
{
return ctxsw_prog_record_timestamp_timestamp_hi_tag_invalid_timestamp_v();
}
u32 gk20a_fecs_trace_record_ts_tag_v(u64 ts)
{
return ctxsw_prog_record_timestamp_timestamp_hi_tag_v((u32) (ts >> 32));
}
u64 gk20a_fecs_trace_record_ts_timestamp_v(u64 ts)
{
return ts & ~(((u64)ctxsw_prog_record_timestamp_timestamp_hi_tag_m()) << 32);
}
static u32 gk20a_fecs_trace_fecs_context_ptr(struct gk20a *g, struct channel_gk20a *ch)
{
return (u32) (nvgpu_inst_block_addr(g, &ch->inst_block) >> 12LL);
}
int gk20a_fecs_trace_num_ts(void)
{
return (ctxsw_prog_record_timestamp_record_size_in_bytes_v()
- sizeof(struct gk20a_fecs_trace_record)) / sizeof(u64);
}
struct gk20a_fecs_trace_record *gk20a_fecs_trace_get_record(
struct gk20a *g, int idx)
{
struct nvgpu_mem *mem = &g->gr.global_ctx_buffer[FECS_TRACE_BUFFER].mem;
return (struct gk20a_fecs_trace_record *)
((u8 *) mem->cpu_va
+ (idx * ctxsw_prog_record_timestamp_record_size_in_bytes_v()));
}
bool gk20a_fecs_trace_is_valid_record(struct gk20a_fecs_trace_record *r)
{
/*
* testing magic_hi should suffice. magic_lo is sometimes used
* as a sequence number in experimental ucode.
*/
return (r->magic_hi
== ctxsw_prog_record_timestamp_magic_value_hi_v_value_v());
}
int gk20a_fecs_trace_get_read_index(struct gk20a *g)
{
return gr_gk20a_elpg_protected_call(g,
gk20a_readl(g, gr_fecs_mailbox1_r()));
}
int gk20a_fecs_trace_get_write_index(struct gk20a *g)
{
return gr_gk20a_elpg_protected_call(g,
gk20a_readl(g, gr_fecs_mailbox0_r()));
}
static int gk20a_fecs_trace_set_read_index(struct gk20a *g, int index)
{
nvgpu_log(g, gpu_dbg_ctxsw, "set read=%d", index);
return gr_gk20a_elpg_protected_call(g,
(gk20a_writel(g, gr_fecs_mailbox1_r(), index), 0));
}
void gk20a_fecs_trace_hash_dump(struct gk20a *g)
{
u32 bkt;
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
nvgpu_log(g, gpu_dbg_ctxsw, "dumping hash table");
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each(trace->pid_hash_table, bkt, ent, node)
{
nvgpu_log(g, gpu_dbg_ctxsw, " ent=%p bkt=%x context_ptr=%x pid=%d",
ent, bkt, ent->context_ptr, ent->pid);
}
nvgpu_mutex_release(&trace->hash_lock);
}
static int gk20a_fecs_trace_hash_add(struct gk20a *g, u32 context_ptr, pid_t pid)
{
struct gk20a_fecs_trace_hash_ent *he;
struct gk20a_fecs_trace *trace = g->fecs_trace;
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw,
"adding hash entry context_ptr=%x -> pid=%d", context_ptr, pid);
he = nvgpu_kzalloc(g, sizeof(*he));
if (unlikely(!he)) {
nvgpu_warn(g,
"can't alloc new hash entry for context_ptr=%x pid=%d",
context_ptr, pid);
return -ENOMEM;
}
he->context_ptr = context_ptr;
he->pid = pid;
nvgpu_mutex_acquire(&trace->hash_lock);
hash_add(trace->pid_hash_table, &he->node, context_ptr);
nvgpu_mutex_release(&trace->hash_lock);
return 0;
}
static void gk20a_fecs_trace_hash_del(struct gk20a *g, u32 context_ptr)
{
struct hlist_node *tmp;
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw,
"freeing hash entry context_ptr=%x", context_ptr);
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each_possible_safe(trace->pid_hash_table, ent, tmp, node,
context_ptr) {
if (ent->context_ptr == context_ptr) {
hash_del(&ent->node);
nvgpu_log(g, gpu_dbg_ctxsw,
"freed hash entry=%p context_ptr=%x", ent,
ent->context_ptr);
nvgpu_kfree(g, ent);
break;
}
}
nvgpu_mutex_release(&trace->hash_lock);
}
static void gk20a_fecs_trace_free_hash_table(struct gk20a *g)
{
u32 bkt;
struct hlist_node *tmp;
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw, "trace=%p", trace);
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each_safe(trace->pid_hash_table, bkt, tmp, ent, node) {
hash_del(&ent->node);
nvgpu_kfree(g, ent);
}
nvgpu_mutex_release(&trace->hash_lock);
}
static pid_t gk20a_fecs_trace_find_pid(struct gk20a *g, u32 context_ptr)
{
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
pid_t pid = 0;
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each_possible(trace->pid_hash_table, ent, node, context_ptr) {
if (ent->context_ptr == context_ptr) {
nvgpu_log(g, gpu_dbg_ctxsw,
"found context_ptr=%x -> pid=%d",
ent->context_ptr, ent->pid);
pid = ent->pid;
break;
}
}
nvgpu_mutex_release(&trace->hash_lock);
return pid;
}
/*
* Converts HW entry format to userspace-facing format and pushes it to the
* queue.
*/
static int gk20a_fecs_trace_ring_read(struct gk20a *g, int index)
{
int i;
struct nvgpu_gpu_ctxsw_trace_entry entry = { };
struct gk20a_fecs_trace *trace = g->fecs_trace;
pid_t cur_pid;
pid_t new_pid;
int count = 0;
/* for now, only one VM */
const int vmid = 0;
struct gk20a_fecs_trace_record *r =
gk20a_fecs_trace_get_record(g, index);
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw,
"consuming record trace=%p read=%d record=%p", trace, index, r);
if (unlikely(!gk20a_fecs_trace_is_valid_record(r))) {
nvgpu_warn(g,
"trace=%p read=%d record=%p magic_lo=%08x magic_hi=%08x (invalid)",
trace, index, r, r->magic_lo, r->magic_hi);
return -EINVAL;
}
/* Clear magic_hi to detect cases where CPU could read write index
* before FECS record is actually written to DRAM. This should not
* as we force FECS writes to SYSMEM by reading through PRAMIN.
*/
r->magic_hi = 0;
cur_pid = gk20a_fecs_trace_find_pid(g, r->context_ptr);
new_pid = gk20a_fecs_trace_find_pid(g, r->new_context_ptr);
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw,
"context_ptr=%x (pid=%d) new_context_ptr=%x (pid=%d)",
r->context_ptr, cur_pid, r->new_context_ptr, new_pid);
entry.context_id = r->context_id;
entry.vmid = vmid;
/* break out FECS record into trace events */
for (i = 0; i < gk20a_fecs_trace_num_ts(); i++) {
entry.tag = gk20a_fecs_trace_record_ts_tag_v(r->ts[i]);
entry.timestamp = gk20a_fecs_trace_record_ts_timestamp_v(r->ts[i]);
entry.timestamp <<= GK20A_FECS_TRACE_PTIMER_SHIFT;
nvgpu_log(g, gpu_dbg_ctxsw,
"tag=%x timestamp=%llx context_id=%08x new_context_id=%08x",
entry.tag, entry.timestamp, r->context_id,
r->new_context_id);
switch (nvgpu_gpu_ctxsw_tags_to_common_tags(entry.tag)) {
case NVGPU_GPU_CTXSW_TAG_RESTORE_START:
case NVGPU_GPU_CTXSW_TAG_CONTEXT_START:
entry.context_id = r->new_context_id;
entry.pid = new_pid;
break;
case NVGPU_GPU_CTXSW_TAG_CTXSW_REQ_BY_HOST:
case NVGPU_GPU_CTXSW_TAG_FE_ACK:
case NVGPU_GPU_CTXSW_TAG_FE_ACK_WFI:
case NVGPU_GPU_CTXSW_TAG_FE_ACK_GFXP:
case NVGPU_GPU_CTXSW_TAG_FE_ACK_CTAP:
case NVGPU_GPU_CTXSW_TAG_FE_ACK_CILP:
case NVGPU_GPU_CTXSW_TAG_SAVE_END:
entry.context_id = r->context_id;
entry.pid = cur_pid;
break;
default:
/* tags are not guaranteed to start at the beginning */
WARN_ON(entry.tag && (entry.tag != NVGPU_GPU_CTXSW_TAG_INVALID_TIMESTAMP));
continue;
}
nvgpu_log(g, gpu_dbg_ctxsw, "tag=%x context_id=%x pid=%lld",
entry.tag, entry.context_id, entry.pid);
if (!entry.context_id)
continue;
gk20a_ctxsw_trace_write(g, &entry);
count++;
}
gk20a_ctxsw_trace_wake_up(g, vmid);
return count;
}
int gk20a_fecs_trace_poll(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
int read = 0;
int write = 0;
int cnt;
int err;
err = gk20a_busy(g);
if (unlikely(err))
return err;
nvgpu_mutex_acquire(&trace->poll_lock);
write = gk20a_fecs_trace_get_write_index(g);
if (unlikely((write < 0) || (write >= GK20A_FECS_TRACE_NUM_RECORDS))) {
nvgpu_err(g,
"failed to acquire write index, write=%d", write);
err = write;
goto done;
}
read = gk20a_fecs_trace_get_read_index(g);
cnt = CIRC_CNT(write, read, GK20A_FECS_TRACE_NUM_RECORDS);
if (!cnt)
goto done;
nvgpu_log(g, gpu_dbg_ctxsw,
"circular buffer: read=%d (mailbox=%d) write=%d cnt=%d",
read, gk20a_fecs_trace_get_read_index(g), write, cnt);
/* Ensure all FECS writes have made it to SYSMEM */
g->ops.mm.fb_flush(g);
if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) {
/* Bits 30:0 of MAILBOX1 represents actual read pointer value */
read = read & (~(BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT)));
}
while (read != write) {
cnt = gk20a_fecs_trace_ring_read(g, read);
if (cnt > 0) {
nvgpu_log(g, gpu_dbg_ctxsw,
"number of trace entries added: %d", cnt);
}
/* Get to next record. */
read = (read + 1) & (GK20A_FECS_TRACE_NUM_RECORDS - 1);
}
if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) {
/*
* In the next step, read pointer is going to be updated.
* So, MSB of read pointer should be set back to 1. This will
* keep FECS trace enabled.
*/
read = read | (BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT));
}
/* ensure FECS records has been updated before incrementing read index */
nvgpu_wmb();
gk20a_fecs_trace_set_read_index(g, read);
done:
nvgpu_mutex_release(&trace->poll_lock);
gk20a_idle(g);
return err;
}
static int gk20a_fecs_trace_periodic_polling(void *arg)
{
struct gk20a *g = (struct gk20a *)arg;
struct gk20a_fecs_trace *trace = g->fecs_trace;
pr_info("%s: running\n", __func__);
while (!nvgpu_thread_should_stop(&trace->poll_task)) {
nvgpu_usleep_range(GK20A_FECS_TRACE_FRAME_PERIOD_US,
GK20A_FECS_TRACE_FRAME_PERIOD_US * 2);
gk20a_fecs_trace_poll(g);
}
return 0;
}
size_t gk20a_fecs_trace_buffer_size(struct gk20a *g)
{
return GK20A_FECS_TRACE_NUM_RECORDS
* ctxsw_prog_record_timestamp_record_size_in_bytes_v();
}
int gk20a_fecs_trace_init(struct gk20a *g)
{
struct gk20a_fecs_trace *trace;
int err;
trace = nvgpu_kzalloc(g, sizeof(struct gk20a_fecs_trace));
if (!trace) {
nvgpu_warn(g, "failed to allocate fecs_trace");
return -ENOMEM;
}
g->fecs_trace = trace;
err = nvgpu_mutex_init(&trace->poll_lock);
if (err)
goto clean;
err = nvgpu_mutex_init(&trace->hash_lock);
if (err)
goto clean_poll_lock;
err = nvgpu_mutex_init(&trace->enable_lock);
if (err)
goto clean_hash_lock;
BUG_ON(!is_power_of_2(GK20A_FECS_TRACE_NUM_RECORDS));
hash_init(trace->pid_hash_table);
__nvgpu_set_enabled(g, NVGPU_SUPPORT_FECS_CTXSW_TRACE, true);
trace->enable_count = 0;
trace->init = true;
return 0;
clean_hash_lock:
nvgpu_mutex_destroy(&trace->hash_lock);
clean_poll_lock:
nvgpu_mutex_destroy(&trace->poll_lock);
clean:
nvgpu_kfree(g, trace);
g->fecs_trace = NULL;
return err;
}
int gk20a_fecs_trace_bind_channel(struct gk20a *g,
struct channel_gk20a *ch)
{
/*
* map our circ_buf to the context space and store the GPU VA
* in the context header.
*/
u32 lo;
u32 hi;
u64 addr;
struct tsg_gk20a *tsg;
struct nvgpu_gr_ctx *ch_ctx;
struct gk20a_fecs_trace *trace = g->fecs_trace;
struct nvgpu_mem *mem;
u32 context_ptr = gk20a_fecs_trace_fecs_context_ptr(g, ch);
u32 aperture_mask;
tsg = tsg_gk20a_from_ch(ch);
if (tsg == NULL) {
nvgpu_err(g, "chid: %d is not bound to tsg", ch->chid);
return -EINVAL;
}
nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw,
"chid=%d context_ptr=%x inst_block=%llx",
ch->chid, context_ptr,
nvgpu_inst_block_addr(g, &ch->inst_block));
tsg = tsg_gk20a_from_ch(ch);
if (!tsg)
return -EINVAL;
ch_ctx = &tsg->gr_ctx;
mem = &ch_ctx->mem;
if (!trace)
return -ENOMEM;
mem = &g->gr.global_ctx_buffer[FECS_TRACE_BUFFER].mem;
if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_VA)) {
addr = ch_ctx->global_ctx_buffer_va[FECS_TRACE_BUFFER_VA];
nvgpu_log(g, gpu_dbg_ctxsw, "gpu_va=%llx", addr);
aperture_mask = 0;
} else {
addr = nvgpu_inst_block_addr(g, mem);
nvgpu_log(g, gpu_dbg_ctxsw, "pa=%llx", addr);
aperture_mask = nvgpu_aperture_mask(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_target_sys_mem_noncoherent_f(),
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_target_sys_mem_coherent_f(),
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_target_vid_mem_f());
}
if (!addr)
return -ENOMEM;
lo = u64_lo32(addr);
hi = u64_hi32(addr);
mem = &ch_ctx->mem;
nvgpu_log(g, gpu_dbg_ctxsw, "addr_hi=%x addr_lo=%x count=%d", hi,
lo, GK20A_FECS_TRACE_NUM_RECORDS);
nvgpu_mem_wr(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_control_o(),
ctxsw_prog_main_image_context_timestamp_buffer_control_num_records_f(
GK20A_FECS_TRACE_NUM_RECORDS));
if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_VA))
mem = &ch->ctx_header;
nvgpu_mem_wr(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_ptr_o(),
lo);
nvgpu_mem_wr(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_o(),
ctxsw_prog_main_image_context_timestamp_buffer_ptr_v_f(hi) |
aperture_mask);
/* pid (process identifier) in user space, corresponds to tgid (thread
* group id) in kernel space.
*/
gk20a_fecs_trace_hash_add(g, context_ptr, tsg->tgid);
return 0;
}
int gk20a_fecs_trace_unbind_channel(struct gk20a *g, struct channel_gk20a *ch)
{
u32 context_ptr = gk20a_fecs_trace_fecs_context_ptr(g, ch);
if (g->fecs_trace) {
nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw,
"ch=%p context_ptr=%x", ch, context_ptr);
if (g->ops.fecs_trace.is_enabled(g)) {
if (g->ops.fecs_trace.flush)
g->ops.fecs_trace.flush(g);
gk20a_fecs_trace_poll(g);
}
gk20a_fecs_trace_hash_del(g, context_ptr);
}
return 0;
}
int gk20a_fecs_trace_reset(struct gk20a *g)
{
nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw, " ");
if (!g->ops.fecs_trace.is_enabled(g))
return 0;
gk20a_fecs_trace_poll(g);
return gk20a_fecs_trace_set_read_index(g, 0);
}
int gk20a_fecs_trace_deinit(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
if (!trace->init)
return 0;
/*
* Check if tracer was enabled before attempting to stop the
* tracer thread.
*/
if (trace->enable_count > 0) {
nvgpu_thread_stop(&trace->poll_task);
}
gk20a_fecs_trace_free_hash_table(g);
nvgpu_mutex_destroy(&g->fecs_trace->hash_lock);
nvgpu_mutex_destroy(&g->fecs_trace->poll_lock);
nvgpu_mutex_destroy(&g->fecs_trace->enable_lock);
nvgpu_kfree(g, g->fecs_trace);
g->fecs_trace = NULL;
return 0;
}
int gk20a_gr_max_entries(struct gk20a *g,
struct nvgpu_gpu_ctxsw_trace_filter *filter)
{
int n;
int tag;
/* Compute number of entries per record, with given filter */
for (n = 0, tag = 0; tag < gk20a_fecs_trace_num_ts(); tag++)
n += (NVGPU_GPU_CTXSW_FILTER_ISSET(tag, filter) != 0);
/* Return max number of entries generated for the whole ring */
return n * GK20A_FECS_TRACE_NUM_RECORDS;
}
int gk20a_fecs_trace_enable(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
int write;
int err = 0;
if (!trace)
return -EINVAL;
nvgpu_mutex_acquire(&trace->enable_lock);
trace->enable_count++;
if (trace->enable_count == 1U) {
/* drop data in hw buffer */
if (g->ops.fecs_trace.flush)
g->ops.fecs_trace.flush(g);
write = gk20a_fecs_trace_get_write_index(g);
if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) {
/*
* For enabling FECS trace support, MAILBOX1's MSB
* (Bit 31:31) should be set to 1. Bits 30:0 represents
* actual pointer value.
*/
write = write |
(BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT));
}
gk20a_fecs_trace_set_read_index(g, write);
/*
* FECS ucode does a priv holdoff around the assertion of
* context reset. So, pri transactions (e.g. mailbox1 register
* write) might fail due to this. Hence, do write with ack
* i.e. write and read it back to make sure write happened for
* mailbox1.
*/
while (gk20a_fecs_trace_get_read_index(g) != write) {
nvgpu_log(g, gpu_dbg_ctxsw, "mailbox1 update failed");
gk20a_fecs_trace_set_read_index(g, write);
}
err = nvgpu_thread_create(&trace->poll_task, g,
gk20a_fecs_trace_periodic_polling, __func__);
if (err) {
nvgpu_warn(g,
"failed to create FECS polling task");
goto done;
}
}
done:
nvgpu_mutex_release(&trace->enable_lock);
return err;
}
int gk20a_fecs_trace_disable(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
int read = 0;
if (trace == NULL) {
return -EINVAL;
}
nvgpu_mutex_acquire(&trace->enable_lock);
if (trace->enable_count <= 0U) {
nvgpu_mutex_release(&trace->enable_lock);
return 0;
}
trace->enable_count--;
if (trace->enable_count == 0U) {
if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) {
/*
* For disabling FECS trace support, MAILBOX1's MSB
* (Bit 31:31) should be set to 0.
*/
read = gk20a_fecs_trace_get_read_index(g) &
(~(BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT)));
gk20a_fecs_trace_set_read_index(g, read);
/*
* FECS ucode does a priv holdoff around the assertion
* of context reset. So, pri transactions (e.g.
* mailbox1 register write) might fail due to this.
* Hence, do write with ack i.e. write and read it back
* to make sure write happened for mailbox1.
*/
while (gk20a_fecs_trace_get_read_index(g) != read) {
nvgpu_log(g, gpu_dbg_ctxsw,
"mailbox1 update failed");
gk20a_fecs_trace_set_read_index(g, read);
}
}
nvgpu_thread_stop(&trace->poll_task);
}
nvgpu_mutex_release(&trace->enable_lock);
return -EPERM;
}
bool gk20a_fecs_trace_is_enabled(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
return (trace && nvgpu_thread_is_running(&trace->poll_task));
}
void gk20a_fecs_trace_reset_buffer(struct gk20a *g)
{
nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw, " ");
gk20a_fecs_trace_set_read_index(g,
gk20a_fecs_trace_get_write_index(g));
}
#endif /* CONFIG_GK20A_CTXSW_TRACE */