Files
linux-nvgpu/drivers/gpu/nvgpu/gv100/gr_gv100.c
Sai Nikhil 34ef8ee49f gpu: nvgpu: fix Misc MISRA Rule 10.4 Violations
MISRA Rule 10.4 only allows the usage of arithmetic operations on
operands of the same essential type category.

Adding "U" at the end of the integer literals to have same type of
operands when an arithmetic operation is performed.

This fixes violation where an arithmetic operation is performed on
signed and unsigned int types.

JIRA NVGPU-992

Change-Id: Icb724f3424c8161c12b69d373ff08c7648f79e56
Signed-off-by: Sai Nikhil <snikhil@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1834225
GVS: Gerrit_Virtual_Submit
Reviewed-by: Adeel Raza <araza@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-12-13 07:14:49 -08:00

519 lines
14 KiB
C

/*
* GV100 GPU GR
*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/log.h>
#include <nvgpu/debug.h>
#include <nvgpu/enabled.h>
#include <nvgpu/io.h>
#include <nvgpu/gk20a.h>
#include "gk20a/gr_gk20a.h"
#include "gk20a/gr_pri_gk20a.h"
#include "gv100/gr_gv100.h"
#include "gv11b/subctx_gv11b.h"
#include <nvgpu/hw/gv100/hw_gr_gv100.h>
#include <nvgpu/hw/gv100/hw_proj_gv100.h>
#include <nvgpu/hw/gv100/hw_top_gv100.h>
#include <nvgpu/hw/gv100/hw_perf_gv100.h>
/*
* Estimate performance if the given logical TPC in the given logical GPC were
* removed.
*/
static int gr_gv100_scg_estimate_perf(struct gk20a *g,
unsigned long *gpc_tpc_mask,
u32 disable_gpc_id, u32 disable_tpc_id,
int *perf)
{
struct gr_gk20a *gr = &g->gr;
int err = 0;
u32 scale_factor = 512U; /* Use fx23.9 */
u32 pix_scale = 1024U*1024U; /* Pix perf in [29:20] */
u32 world_scale = 1024U; /* World performance in [19:10] */
u32 tpc_scale = 1U; /* TPC balancing in [9:0] */
u32 scg_num_pes = 0U;
u32 min_scg_gpc_pix_perf = scale_factor; /* Init perf as maximum */
u32 average_tpcs = 0U; /* Average of # of TPCs per GPC */
u32 deviation; /* absolute diff between TPC# and
* average_tpcs, averaged across GPCs
*/
u32 norm_tpc_deviation; /* deviation/max_tpc_per_gpc */
u32 tpc_balance;
u32 scg_gpc_pix_perf;
u32 scg_world_perf;
u32 gpc_id;
u32 pes_id;
int diff;
bool is_tpc_removed_gpc = false;
bool is_tpc_removed_pes = false;
u32 max_tpc_gpc = 0U;
u32 num_tpc_mask;
u32 *num_tpc_gpc = nvgpu_kzalloc(g, sizeof(u32) *
nvgpu_get_litter_value(g, GPU_LIT_NUM_GPCS));
if (num_tpc_gpc == NULL) {
return -ENOMEM;
}
/* Calculate pix-perf-reduction-rate per GPC and find bottleneck TPC */
for (gpc_id = 0; gpc_id < gr->gpc_count; gpc_id++) {
num_tpc_mask = gpc_tpc_mask[gpc_id];
if ((gpc_id == disable_gpc_id) &&
((num_tpc_mask & BIT32(disable_tpc_id)) != 0U)) {
/* Safety check if a TPC is removed twice */
if (is_tpc_removed_gpc) {
err = -EINVAL;
goto free_resources;
}
/* Remove logical TPC from set */
num_tpc_mask &= ~(BIT32(disable_tpc_id));
is_tpc_removed_gpc = true;
}
/* track balancing of tpcs across gpcs */
num_tpc_gpc[gpc_id] = hweight32(num_tpc_mask);
average_tpcs += num_tpc_gpc[gpc_id];
/* save the maximum numer of gpcs */
max_tpc_gpc = num_tpc_gpc[gpc_id] > max_tpc_gpc ?
num_tpc_gpc[gpc_id] : max_tpc_gpc;
/*
* Calculate ratio between TPC count and post-FS and post-SCG
*
* ratio represents relative throughput of the GPC
*/
scg_gpc_pix_perf = scale_factor * num_tpc_gpc[gpc_id] /
gr->gpc_tpc_count[gpc_id];
if (min_scg_gpc_pix_perf > scg_gpc_pix_perf) {
min_scg_gpc_pix_perf = scg_gpc_pix_perf;
}
/* Calculate # of surviving PES */
for (pes_id = 0; pes_id < gr->gpc_ppc_count[gpc_id]; pes_id++) {
/* Count the number of TPC on the set */
num_tpc_mask = gr->pes_tpc_mask[pes_id][gpc_id] &
gpc_tpc_mask[gpc_id];
if ((gpc_id == disable_gpc_id) &&
((num_tpc_mask & BIT32(disable_tpc_id)) != 0U)) {
if (is_tpc_removed_pes) {
err = -EINVAL;
goto free_resources;
}
num_tpc_mask &= ~(BIT32(disable_tpc_id));
is_tpc_removed_pes = true;
}
if (hweight32(num_tpc_mask) != 0UL) {
scg_num_pes++;
}
}
}
if (!is_tpc_removed_gpc || !is_tpc_removed_pes) {
err = -EINVAL;
goto free_resources;
}
if (max_tpc_gpc == 0U) {
*perf = 0;
goto free_resources;
}
/* Now calculate perf */
scg_world_perf = (scale_factor * scg_num_pes) / gr->ppc_count;
deviation = 0;
average_tpcs = scale_factor * average_tpcs / gr->gpc_count;
for (gpc_id =0; gpc_id < gr->gpc_count; gpc_id++) {
diff = average_tpcs - scale_factor * num_tpc_gpc[gpc_id];
if (diff < 0) {
diff = -diff;
}
deviation += U32(diff);
}
deviation /= gr->gpc_count;
norm_tpc_deviation = deviation / max_tpc_gpc;
tpc_balance = scale_factor - norm_tpc_deviation;
if ((tpc_balance > scale_factor) ||
(scg_world_perf > scale_factor) ||
(min_scg_gpc_pix_perf > scale_factor) ||
(norm_tpc_deviation > scale_factor)) {
err = -EINVAL;
goto free_resources;
}
*perf = (pix_scale * min_scg_gpc_pix_perf) +
(world_scale * scg_world_perf) +
(tpc_scale * tpc_balance);
free_resources:
nvgpu_kfree(g, num_tpc_gpc);
return err;
}
void gr_gv100_bundle_cb_defaults(struct gk20a *g)
{
struct gr_gk20a *gr = &g->gr;
gr->bundle_cb_default_size =
gr_scc_bundle_cb_size_div_256b__prod_v();
gr->min_gpm_fifo_depth =
gr_pd_ab_dist_cfg2_state_limit_min_gpm_fifo_depths_v();
gr->bundle_cb_token_limit =
gr_pd_ab_dist_cfg2_token_limit_init_v();
}
void gr_gv100_cb_size_default(struct gk20a *g)
{
struct gr_gk20a *gr = &g->gr;
if (gr->attrib_cb_default_size == 0U) {
gr->attrib_cb_default_size =
gr_gpc0_ppc0_cbm_beta_cb_size_v_default_v();
}
gr->alpha_cb_default_size =
gr_gpc0_ppc0_cbm_alpha_cb_size_v_default_v();
}
void gr_gv100_set_gpc_tpc_mask(struct gk20a *g, u32 gpc_index)
{
}
int gr_gv100_init_sm_id_table(struct gk20a *g)
{
unsigned long tpc;
u32 gpc, sm, pes, gtpc;
u32 sm_id = 0;
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
u32 num_sm = sm_per_tpc * g->gr.tpc_count;
int perf, maxperf;
int err = 0;
unsigned long *gpc_tpc_mask;
u32 *tpc_table, *gpc_table;
gpc_table = nvgpu_kzalloc(g, g->gr.tpc_count * sizeof(u32));
tpc_table = nvgpu_kzalloc(g, g->gr.tpc_count * sizeof(u32));
gpc_tpc_mask = nvgpu_kzalloc(g, sizeof(unsigned long) *
nvgpu_get_litter_value(g, GPU_LIT_NUM_GPCS));
if ((gpc_table == NULL) ||
(tpc_table == NULL) ||
(gpc_tpc_mask == NULL)) {
nvgpu_err(g, "Error allocating memory for sm tables");
err = -ENOMEM;
goto exit_build_table;
}
for (gpc = 0; gpc < g->gr.gpc_count; gpc++) {
for (pes = 0; pes < g->gr.gpc_ppc_count[gpc]; pes++) {
gpc_tpc_mask[gpc] |= g->gr.pes_tpc_mask[pes][gpc];
}
}
for (gtpc = 0; gtpc < g->gr.tpc_count; gtpc++) {
maxperf = -1;
for (gpc = 0; gpc < g->gr.gpc_count; gpc++) {
for_each_set_bit(tpc, &gpc_tpc_mask[gpc],
g->gr.gpc_tpc_count[gpc]) {
perf = -1;
err = gr_gv100_scg_estimate_perf(g,
gpc_tpc_mask, gpc, tpc, &perf);
if (err != 0) {
nvgpu_err(g,
"Error while estimating perf");
goto exit_build_table;
}
if (perf >= maxperf) {
maxperf = perf;
gpc_table[gtpc] = gpc;
tpc_table[gtpc] = tpc;
}
}
}
gpc_tpc_mask[gpc_table[gtpc]] &= ~(BIT64(tpc_table[gtpc]));
}
for (tpc = 0, sm_id = 0; sm_id < num_sm; tpc++, sm_id += sm_per_tpc) {
for (sm = 0; sm < sm_per_tpc; sm++) {
u32 index = sm_id + sm;
g->gr.sm_to_cluster[index].gpc_index = gpc_table[tpc];
g->gr.sm_to_cluster[index].tpc_index = tpc_table[tpc];
g->gr.sm_to_cluster[index].sm_index = sm;
g->gr.sm_to_cluster[index].global_tpc_index = tpc;
nvgpu_log_info(g,
"gpc : %d tpc %d sm_index %d global_index: %d",
g->gr.sm_to_cluster[index].gpc_index,
g->gr.sm_to_cluster[index].tpc_index,
g->gr.sm_to_cluster[index].sm_index,
g->gr.sm_to_cluster[index].global_tpc_index);
}
}
g->gr.no_of_sm = num_sm;
nvgpu_log_info(g, " total number of sm = %d", g->gr.no_of_sm);
exit_build_table:
nvgpu_kfree(g, gpc_table);
nvgpu_kfree(g, tpc_table);
nvgpu_kfree(g, gpc_tpc_mask);
return err;
}
u32 gr_gv100_get_patch_slots(struct gk20a *g)
{
struct gr_gk20a *gr = &g->gr;
struct fifo_gk20a *f = &g->fifo;
u32 size = 0;
/*
* CMD to update PE table
*/
size++;
/*
* Update PE table contents
* for PE table, each patch buffer update writes 32 TPCs
*/
size += DIV_ROUND_UP(gr->tpc_count, 32U);
/*
* Update the PL table contents
* For PL table, each patch buffer update configures 4 TPCs
*/
size += DIV_ROUND_UP(gr->tpc_count, 4U);
/*
* We need this for all subcontexts
*/
size *= f->max_subctx_count;
/*
* Add space for a partition mode change as well
* reserve two slots since DYNAMIC -> STATIC requires
* DYNAMIC -> NONE -> STATIC
*/
size += 2U;
/*
* Add current patch buffer size
*/
size += gr_gk20a_get_patch_slots(g);
/*
* Align to 4K size
*/
size = ALIGN(size, PATCH_CTX_SLOTS_PER_PAGE);
/*
* Increase the size to accommodate for additional TPC partition update
*/
size += 2U * PATCH_CTX_SLOTS_PER_PAGE;
return size;
}
static u32 gr_gv100_get_active_fpba_mask(struct gk20a *g)
{
u32 active_fbpa_mask;
u32 num_fbpas, val;
val = nvgpu_readl(g, top_num_fbpas_r());
num_fbpas = top_num_fbpas_value_v(val);
/*
* Read active fbpa mask from fuse
* Note that 0:enable and 1:disable in value read from fuse so we've to
* flip the bits.
* Also set unused bits to zero
*/
active_fbpa_mask = g->ops.fuse.fuse_status_opt_fbio(g);
active_fbpa_mask = ~active_fbpa_mask;
active_fbpa_mask = active_fbpa_mask & (BIT32(num_fbpas) - 1U);
return active_fbpa_mask;
}
int gr_gv100_add_ctxsw_reg_pm_fbpa(struct gk20a *g,
struct ctxsw_buf_offset_map_entry *map,
struct netlist_aiv_list *regs,
u32 *count, u32 *offset,
u32 max_cnt, u32 base,
u32 num_fbpas, u32 stride, u32 mask)
{
u32 fbpa_id;
u32 idx;
u32 cnt = *count;
u32 off = *offset;
u32 active_fbpa_mask;
if ((cnt + (regs->count * num_fbpas)) > max_cnt) {
return -EINVAL;
}
active_fbpa_mask = gr_gv100_get_active_fpba_mask(g);
for (idx = 0; idx < regs->count; idx++) {
for (fbpa_id = 0; fbpa_id < num_fbpas; fbpa_id++) {
if ((active_fbpa_mask & BIT32(fbpa_id)) != 0U) {
map[cnt].addr = base +
(regs->l[idx].addr & mask) +
(fbpa_id * stride);
map[cnt++].offset = off;
off += 4U;
}
}
}
*count = cnt;
*offset = off;
return 0;
}
int gr_gv100_add_ctxsw_reg_perf_pma(struct ctxsw_buf_offset_map_entry *map,
struct netlist_aiv_list *regs,
u32 *count, u32 *offset,
u32 max_cnt, u32 base, u32 mask)
{
*offset = ALIGN(*offset, 256);
return gr_gk20a_add_ctxsw_reg_perf_pma(map, regs,
count, offset, max_cnt, base, mask);
}
void gr_gv100_split_fbpa_broadcast_addr(struct gk20a *g, u32 addr,
u32 num_fbpas,
u32 *priv_addr_table, u32 *t)
{
u32 active_fbpa_mask;
u32 fbpa_id;
active_fbpa_mask = gr_gv100_get_active_fpba_mask(g);
for (fbpa_id = 0; fbpa_id < num_fbpas; fbpa_id++) {
if ((active_fbpa_mask & BIT32(fbpa_id)) != 0U) {
priv_addr_table[(*t)++] = pri_fbpa_addr(g,
pri_fbpa_addr_mask(g, addr), fbpa_id);
}
}
}
void gr_gv100_set_pmm_register(struct gk20a *g, u32 offset, u32 val,
u32 num_chiplets, u32 num_perfmons)
{
u32 perfmon_index = 0;
u32 chiplet_index = 0;
u32 reg_offset = 0;
u32 chiplet_stride = g->ops.gr.get_pmm_per_chiplet_offset();
for (chiplet_index = 0; chiplet_index < num_chiplets; chiplet_index++) {
for (perfmon_index = 0; perfmon_index < num_perfmons;
perfmon_index++) {
reg_offset = offset + perfmon_index *
perf_pmmsys_perdomain_offset_v() +
chiplet_index * chiplet_stride;
nvgpu_writel(g, reg_offset, val);
}
}
}
void gr_gv100_get_num_hwpm_perfmon(struct gk20a *g, u32 *num_sys_perfmon,
u32 *num_fbp_perfmon, u32 *num_gpc_perfmon)
{
int err;
u32 buf_offset_lo, buf_offset_addr, num_offsets;
u32 perfmon_index = 0;
for (perfmon_index = 0; perfmon_index <
perf_pmmsys_engine_sel__size_1_v();
perfmon_index++) {
err = gr_gk20a_get_pm_ctx_buffer_offsets(g,
perf_pmmsys_engine_sel_r(perfmon_index),
1,
&buf_offset_lo,
&buf_offset_addr,
&num_offsets);
if (err != 0) {
break;
}
}
*num_sys_perfmon = perfmon_index;
for (perfmon_index = 0; perfmon_index <
perf_pmmfbp_engine_sel__size_1_v();
perfmon_index++) {
err = gr_gk20a_get_pm_ctx_buffer_offsets(g,
perf_pmmfbp_engine_sel_r(perfmon_index),
1,
&buf_offset_lo,
&buf_offset_addr,
&num_offsets);
if (err != 0) {
break;
}
}
*num_fbp_perfmon = perfmon_index;
for (perfmon_index = 0; perfmon_index <
perf_pmmgpc_engine_sel__size_1_v();
perfmon_index++) {
err = gr_gk20a_get_pm_ctx_buffer_offsets(g,
perf_pmmgpc_engine_sel_r(perfmon_index),
1,
&buf_offset_lo,
&buf_offset_addr,
&num_offsets);
if (err != 0) {
break;
}
}
*num_gpc_perfmon = perfmon_index;
}
void gr_gv100_init_hwpm_pmm_register(struct gk20a *g)
{
u32 num_sys_perfmon = 0;
u32 num_fbp_perfmon = 0;
u32 num_gpc_perfmon = 0;
g->ops.gr.get_num_hwpm_perfmon(g, &num_sys_perfmon,
&num_fbp_perfmon, &num_gpc_perfmon);
g->ops.gr.set_pmm_register(g, perf_pmmsys_engine_sel_r(0),
0xFFFFFFFFU, 1U, num_sys_perfmon);
g->ops.gr.set_pmm_register(g, perf_pmmfbp_engine_sel_r(0),
0xFFFFFFFFU, g->gr.num_fbps, num_fbp_perfmon);
g->ops.gr.set_pmm_register(g, perf_pmmgpc_engine_sel_r(0),
0xFFFFFFFFU, g->gr.gpc_count, num_gpc_perfmon);
}