Files
linux-nvgpu/drivers/gpu/nvgpu/common/pmu/clk/clk.c
Philip Elcan 767dc82ccf gpu: nvgpu: clk: clean up casts for MISRA 10.3
In a previous commit the macro NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET was
updated to be defined with the cast. This eliminates the need to cast
when used in clk.c.

JIRA NVGPU-1008

Change-Id: Iea2a42f3ec0d1c9e8e8e71f69bb87fc8231ad8da
Signed-off-by: Philip Elcan <pelcan@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2028634
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: Adeel Raza <araza@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-03-07 11:44:26 -08:00

1158 lines
33 KiB
C

/*
* Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/pmu.h>
#include <nvgpu/pmuif/nvgpu_gpmu_cmdif.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/pmuif/ctrlclk.h>
#include <nvgpu/pmuif/ctrlvolt.h>
#include <nvgpu/bug.h>
#include <nvgpu/pmuif/ctrlperf.h>
#include <nvgpu/pmu/pstate.h>
#include <nvgpu/pmu/volt.h>
#include <nvgpu/pmu/clk/clk.h>
#include <nvgpu/pmu/clk/clk_vf_point.h>
#include "clk.h"
#include <nvgpu/timers.h>
#define BOOT_MCLK_MHZ 3003U
struct clkrpc_pmucmdhandler_params {
struct nv_pmu_clk_rpc *prpccall;
u32 success;
};
static void clkrpc_pmucmdhandler(struct gk20a *g, struct pmu_msg *msg,
void *param, u32 handle, u32 status)
{
struct clkrpc_pmucmdhandler_params *phandlerparams =
(struct clkrpc_pmucmdhandler_params *)param;
nvgpu_log_info(g, " ");
if (msg->msg.clk.msg_type != NV_PMU_CLK_MSG_ID_RPC) {
nvgpu_err(g, "unsupported msg for VFE LOAD RPC %x",
msg->msg.clk.msg_type);
return;
}
if (phandlerparams->prpccall->b_supported) {
phandlerparams->success = 1;
}
}
int clk_pmu_freq_effective_avg_load(struct gk20a *g, bool bload)
{
struct pmu_cmd cmd;
struct pmu_payload payload;
int status;
u32 seqdesc;
struct nv_pmu_clk_rpc rpccall;
struct clkrpc_pmucmdhandler_params handler;
struct nv_pmu_clk_load *clkload;
(void) memset(&payload, 0, sizeof(struct pmu_payload));
(void) memset(&rpccall, 0, sizeof(struct nv_pmu_clk_rpc));
(void) memset(&handler, 0, sizeof(struct clkrpc_pmucmdhandler_params));
(void) memset(&cmd, 0, sizeof(struct pmu_cmd));
rpccall.function = NV_PMU_CLK_RPC_ID_LOAD;
clkload = &rpccall.params.clk_load;
clkload->feature = NV_NV_PMU_CLK_LOAD_FEATURE_FREQ_EFFECTIVE_AVG;
clkload->action_mask = bload ?
NV_NV_PMU_CLK_LOAD_ACTION_MASK_FREQ_EFFECTIVE_AVG_CALLBACK_YES :
NV_NV_PMU_CLK_LOAD_ACTION_MASK_FREQ_EFFECTIVE_AVG_CALLBACK_NO;
cmd.hdr.unit_id = PMU_UNIT_CLK;
cmd.hdr.size = (u32)sizeof(struct nv_pmu_clk_cmd) +
(u32)sizeof(struct pmu_hdr);
cmd.cmd.clk.cmd_type = NV_PMU_CLK_CMD_ID_RPC;
payload.in.buf = (u8 *)&rpccall;
payload.in.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.in.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
nvgpu_assert(NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET < U64(U32_MAX));
payload.in.offset = (u32)NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET;
payload.out.buf = (u8 *)&rpccall;
payload.out.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.out.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
payload.out.offset = NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET;
handler.prpccall = &rpccall;
handler.success = 0;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ,
clkrpc_pmucmdhandler, (void *)&handler,
&seqdesc);
if (status != 0) {
nvgpu_err(g, "unable to post clk RPC cmd %x",
cmd.cmd.clk.cmd_type);
goto done;
}
pmu_wait_message_cond(&g->pmu,
gk20a_get_gr_idle_timeout(g),
&handler.success, 1);
if (handler.success == 0U) {
nvgpu_err(g, "rpc call to load Effective avg clk domain freq failed");
status = -EINVAL;
}
done:
return status;
}
int clk_freq_effective_avg(struct gk20a *g, u32 *freqkHz, u32 clkDomainMask) {
struct pmu_cmd cmd;
struct pmu_payload payload;
int status = 0;
u32 seqdesc;
struct nv_pmu_clk_rpc rpccall;
struct clkrpc_pmucmdhandler_params handler;
struct nv_pmu_clk_freq_effective_avg *clk_freq_effective_avg;
(void) memset(&payload, 0, sizeof(struct pmu_payload));
(void) memset(&rpccall, 0, sizeof(struct nv_pmu_clk_rpc));
(void) memset(&handler, 0, sizeof(struct clkrpc_pmucmdhandler_params));
(void) memset(&cmd, 0, sizeof(struct pmu_cmd));
rpccall.function = NV_PMU_CLK_RPC_ID_CLK_FREQ_EFF_AVG;
clk_freq_effective_avg = &rpccall.params.clk_freq_effective_avg;
clk_freq_effective_avg->clkDomainMask = clkDomainMask;
cmd.hdr.unit_id = PMU_UNIT_CLK;
cmd.hdr.size = (u32)sizeof(struct nv_pmu_clk_cmd) +
(u32)sizeof(struct pmu_hdr);
cmd.cmd.clk.cmd_type = NV_PMU_CLK_CMD_ID_RPC;
payload.in.buf = (u8 *)&rpccall;
payload.in.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.in.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
nvgpu_assert(NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET < U64(U32_MAX));
payload.in.offset = (u32)NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET;
payload.out.buf = (u8 *)&rpccall;
payload.out.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.out.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
payload.out.offset = NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET;
handler.prpccall = &rpccall;
handler.success = 0;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ,
clkrpc_pmucmdhandler, (void *)&handler,
&seqdesc);
if (status != 0) {
nvgpu_err(g, "unable to post clk RPC cmd %x",
cmd.cmd.clk.cmd_type);
goto done;
}
pmu_wait_message_cond(&g->pmu,
gk20a_get_gr_idle_timeout(g),
&handler.success, 1);
if (handler.success == 0U) {
nvgpu_err(g, "rpc call to get clk frequency average failed");
status = -EINVAL;
goto done;
}
*freqkHz = rpccall.params.clk_freq_effective_avg.freqkHz[clkDomainMask];
done:
return status;
}
int clk_pmu_freq_controller_load(struct gk20a *g, bool bload, u8 bit_idx)
{
struct pmu_cmd cmd;
struct pmu_payload payload;
int status;
u32 seqdesc;
struct nv_pmu_clk_rpc rpccall;
struct clkrpc_pmucmdhandler_params handler;
struct nv_pmu_clk_load *clkload;
struct nvgpu_clk_freq_controllers *pclk_freq_controllers;
struct ctrl_boardobjgrp_mask_e32 *load_mask;
struct boardobjgrpmask_e32 isolate_cfc_mask;
(void) memset(&payload, 0, sizeof(struct pmu_payload));
(void) memset(&rpccall, 0, sizeof(struct nv_pmu_clk_rpc));
(void) memset(&handler, 0, sizeof(struct clkrpc_pmucmdhandler_params));
pclk_freq_controllers = &g->clk_pmu->clk_freq_controllers;
rpccall.function = NV_PMU_CLK_RPC_ID_LOAD;
clkload = &rpccall.params.clk_load;
clkload->feature = NV_NV_PMU_CLK_LOAD_FEATURE_FREQ_CONTROLLER;
clkload->action_mask = bload ?
NV_NV_PMU_CLK_LOAD_ACTION_MASK_FREQ_CONTROLLER_CALLBACK_YES :
NV_NV_PMU_CLK_LOAD_ACTION_MASK_FREQ_CONTROLLER_CALLBACK_NO;
load_mask = &rpccall.params.clk_load.payload.freq_controllers.load_mask;
status = boardobjgrpmask_e32_init(&isolate_cfc_mask, NULL);
if (bit_idx == CTRL_CLK_CLK_FREQ_CONTROLLER_ID_ALL) {
status = boardobjgrpmask_export(
&pclk_freq_controllers->
freq_ctrl_load_mask.super,
pclk_freq_controllers->
freq_ctrl_load_mask.super.bitcount,
&load_mask->super);
} else {
status = boardobjgrpmask_bitset(&isolate_cfc_mask.super,
bit_idx);
status = boardobjgrpmask_export(&isolate_cfc_mask.super,
isolate_cfc_mask.super.bitcount,
&load_mask->super);
if (bload) {
status = boardobjgrpmask_bitset(
&pclk_freq_controllers->
freq_ctrl_load_mask.super,
bit_idx);
} else {
status = boardobjgrpmask_bitclr(
&pclk_freq_controllers->
freq_ctrl_load_mask.super,
bit_idx);
}
}
if (status != 0) {
nvgpu_err(g, "Error in generating mask used to select CFC");
goto done;
}
cmd.hdr.unit_id = PMU_UNIT_CLK;
cmd.hdr.size = (u32)sizeof(struct nv_pmu_clk_cmd) +
(u32)sizeof(struct pmu_hdr);
cmd.cmd.clk.cmd_type = NV_PMU_CLK_CMD_ID_RPC;
payload.in.buf = (u8 *)&rpccall;
payload.in.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.in.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
nvgpu_assert(NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET < U64(U32_MAX));
payload.in.offset = (u32)NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET;
payload.out.buf = (u8 *)&rpccall;
payload.out.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.out.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
payload.out.offset = NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET;
handler.prpccall = &rpccall;
handler.success = 0;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ,
clkrpc_pmucmdhandler, (void *)&handler,
&seqdesc);
if (status != 0) {
nvgpu_err(g, "unable to post clk RPC cmd %x",
cmd.cmd.clk.cmd_type);
goto done;
}
pmu_wait_message_cond(&g->pmu,
gk20a_get_gr_idle_timeout(g),
&handler.success, 1);
if (handler.success == 0U) {
nvgpu_err(g, "rpc call to load freq cntlr cal failed");
status = -EINVAL;
}
done:
return status;
}
int nvgpu_clk_pmu_vin_load(struct gk20a *g)
{
struct pmu_cmd cmd;
struct pmu_payload payload;
int status;
u32 seqdesc;
struct nv_pmu_clk_rpc rpccall;
struct clkrpc_pmucmdhandler_params handler;
struct nv_pmu_clk_load *clkload;
(void) memset(&payload, 0, sizeof(struct pmu_payload));
(void) memset(&rpccall, 0, sizeof(struct nv_pmu_clk_rpc));
(void) memset(&handler, 0, sizeof(struct clkrpc_pmucmdhandler_params));
rpccall.function = NV_PMU_CLK_RPC_ID_LOAD;
clkload = &rpccall.params.clk_load;
clkload->feature = NV_NV_PMU_CLK_LOAD_FEATURE_VIN;
clkload->action_mask = NV_NV_PMU_CLK_LOAD_ACTION_MASK_VIN_HW_CAL_PROGRAM_YES << 4;
cmd.hdr.unit_id = PMU_UNIT_CLK;
cmd.hdr.size = (u32)sizeof(struct nv_pmu_clk_cmd) +
(u32)sizeof(struct pmu_hdr);
cmd.cmd.clk.cmd_type = NV_PMU_CLK_CMD_ID_RPC;
cmd.cmd.clk.generic.b_perf_daemon_cmd =false;
payload.in.buf = (u8 *)&rpccall;
payload.in.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.in.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
nvgpu_assert(NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET < U64(U32_MAX));
payload.in.offset = (u32)NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET;
payload.out.buf = (u8 *)&rpccall;
payload.out.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.out.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
payload.out.offset = NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET;
handler.prpccall = &rpccall;
handler.success = 0;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ,
clkrpc_pmucmdhandler, (void *)&handler,
&seqdesc);
if (status != 0) {
nvgpu_err(g, "unable to post clk RPC cmd %x",
cmd.cmd.clk.cmd_type);
goto done;
}
pmu_wait_message_cond(&g->pmu,
gk20a_get_gr_idle_timeout(g),
&handler.success, 1);
if (handler.success == 0U) {
nvgpu_err(g, "rpc call to load vin cal failed");
status = -EINVAL;
}
done:
return status;
}
int nvgpu_clk_pmu_clk_domains_load(struct gk20a *g)
{
struct pmu_cmd cmd;
struct pmu_payload payload;
struct nv_pmu_clk_rpc rpccall;
struct clkrpc_pmucmdhandler_params handler;
struct nv_pmu_clk_load *clkload;
int status;
u32 seqdesc;
(void) memset(&payload, 0, sizeof(struct pmu_payload));
(void) memset(&rpccall, 0, sizeof(struct nv_pmu_clk_rpc));
(void) memset(&handler, 0, sizeof(struct clkrpc_pmucmdhandler_params));
rpccall.function = NV_PMU_CLK_RPC_ID_LOAD;
clkload = &rpccall.params.clk_load;
clkload->feature = NV_NV_PMU_CLK_LOAD_FEATURE_CLK_DOMAIN;
cmd.hdr.unit_id = PMU_UNIT_CLK;
cmd.hdr.size = (u32)sizeof(struct nv_pmu_clk_cmd) +
(u32)sizeof(struct pmu_hdr);
cmd.cmd.clk.cmd_type = NV_PMU_CLK_CMD_ID_RPC;
cmd.cmd.clk.generic.b_perf_daemon_cmd = false;
payload.in.buf = (u8 *)&rpccall;
payload.in.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.in.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
nvgpu_assert(NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET < U64(U32_MAX));
payload.in.offset = (u32)NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET;
payload.out.buf = (u8 *)&rpccall;
payload.out.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.out.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
payload.out.offset = NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET;
handler.prpccall = &rpccall;
handler.success = 0;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ,
clkrpc_pmucmdhandler, (void *)&handler,
&seqdesc);
if (status != 0) {
nvgpu_err(g, "unable to post clk RPC cmd %x",
cmd.cmd.clk.cmd_type);
goto done;
}
(void) pmu_wait_message_cond(&g->pmu,
gk20a_get_gr_idle_timeout(g),
&handler.success, 1);
if (handler.success == 0U) {
nvgpu_err(g, "rpc call to load clk_domains cal failed");
status = -EINVAL;
}
done:
return status;
}
u32 nvgpu_clk_vf_change_inject_data_fill_gp10x(struct gk20a *g,
struct nv_pmu_clk_rpc *rpccall,
struct nvgpu_set_fll_clk *setfllclk)
{
struct nv_pmu_clk_vf_change_inject *vfchange;
vfchange = &rpccall->params.clk_vf_change_inject;
vfchange->flags = 0;
vfchange->clk_list.num_domains = 3;
vfchange->clk_list.clk_domains[0].clk_domain = CTRL_CLK_DOMAIN_GPCCLK;
vfchange->clk_list.clk_domains[0].clk_freq_khz =
(u32)setfllclk->gpc2clkmhz * 1000U;
vfchange->clk_list.clk_domains[0].clk_flags = 0;
vfchange->clk_list.clk_domains[0].current_regime_id =
setfllclk->current_regime_id_gpc;
vfchange->clk_list.clk_domains[0].target_regime_id =
setfllclk->target_regime_id_gpc;
vfchange->clk_list.clk_domains[1].clk_domain = CTRL_CLK_DOMAIN_XBARCLK;
vfchange->clk_list.clk_domains[1].clk_freq_khz =
(u32)setfllclk->xbar2clkmhz * 1000U;
vfchange->clk_list.clk_domains[1].clk_flags = 0;
vfchange->clk_list.clk_domains[1].current_regime_id =
setfllclk->current_regime_id_xbar;
vfchange->clk_list.clk_domains[1].target_regime_id =
setfllclk->target_regime_id_xbar;
vfchange->clk_list.clk_domains[2].clk_domain = CTRL_CLK_DOMAIN_SYSCLK;
vfchange->clk_list.clk_domains[2].clk_freq_khz =
(u32)setfllclk->sys2clkmhz * 1000U;
vfchange->clk_list.clk_domains[2].clk_flags = 0;
vfchange->clk_list.clk_domains[2].current_regime_id =
setfllclk->current_regime_id_sys;
vfchange->clk_list.clk_domains[2].target_regime_id =
setfllclk->target_regime_id_sys;
vfchange->volt_list.num_rails = 1;
vfchange->volt_list.rails[0].volt_domain = CTRL_VOLT_DOMAIN_LOGIC;
vfchange->volt_list.rails[0].voltage_uv = setfllclk->voltuv;
vfchange->volt_list.rails[0].voltage_min_noise_unaware_uv =
setfllclk->voltuv;
return 0;
}
u32 nvgpu_clk_vf_change_inject_data_fill_gv10x(struct gk20a *g,
struct nv_pmu_clk_rpc *rpccall,
struct nvgpu_set_fll_clk *setfllclk)
{
struct nv_pmu_clk_vf_change_inject_v1 *vfchange;
vfchange = &rpccall->params.clk_vf_change_inject_v1;
vfchange->flags = 0;
vfchange->clk_list.num_domains = 4;
vfchange->clk_list.clk_domains[0].clk_domain = CTRL_CLK_DOMAIN_GPCCLK;
vfchange->clk_list.clk_domains[0].clk_freq_khz =
(u32)setfllclk->gpc2clkmhz * 1000U;
vfchange->clk_list.clk_domains[1].clk_domain = CTRL_CLK_DOMAIN_XBARCLK;
vfchange->clk_list.clk_domains[1].clk_freq_khz =
(u32)setfllclk->xbar2clkmhz * 1000U;
vfchange->clk_list.clk_domains[2].clk_domain = CTRL_CLK_DOMAIN_SYSCLK;
vfchange->clk_list.clk_domains[2].clk_freq_khz =
(u32)setfllclk->sys2clkmhz * 1000U;
vfchange->clk_list.clk_domains[3].clk_domain = CTRL_CLK_DOMAIN_NVDCLK;
vfchange->clk_list.clk_domains[3].clk_freq_khz = 855 * 1000;
vfchange->volt_list.num_rails = 1;
vfchange->volt_list.rails[0].rail_idx = 0;
vfchange->volt_list.rails[0].voltage_uv = setfllclk->voltuv;
vfchange->volt_list.rails[0].voltage_min_noise_unaware_uv =
setfllclk->voltuv;
return 0;
}
static int clk_pmu_vf_inject(struct gk20a *g,
struct nvgpu_set_fll_clk *setfllclk)
{
struct pmu_cmd cmd;
struct pmu_payload payload;
int status;
u32 seqdesc;
struct nv_pmu_clk_rpc rpccall;
struct clkrpc_pmucmdhandler_params handler;
(void) memset(&payload, 0, sizeof(struct pmu_payload));
(void) memset(&rpccall, 0, sizeof(struct nv_pmu_clk_rpc));
(void) memset(&handler, 0, sizeof(struct clkrpc_pmucmdhandler_params));
(void) memset(&cmd, 0, sizeof(struct pmu_cmd));
if ((setfllclk->gpc2clkmhz == 0U) || (setfllclk->xbar2clkmhz == 0U) ||
(setfllclk->sys2clkmhz == 0U) || (setfllclk->voltuv == 0U)) {
return -EINVAL;
}
if ((setfllclk->target_regime_id_gpc > CTRL_CLK_FLL_REGIME_ID_FR) ||
(setfllclk->target_regime_id_sys > CTRL_CLK_FLL_REGIME_ID_FR) ||
(setfllclk->target_regime_id_xbar > CTRL_CLK_FLL_REGIME_ID_FR)) {
return -EINVAL;
}
rpccall.function = NV_PMU_CLK_RPC_ID_CLK_VF_CHANGE_INJECT;
g->ops.pmu_ver.clk.clk_vf_change_inject_data_fill(g,
&rpccall, setfllclk);
cmd.hdr.unit_id = PMU_UNIT_CLK;
cmd.hdr.size = (u32)sizeof(struct nv_pmu_clk_cmd) +
(u32)sizeof(struct pmu_hdr);
cmd.cmd.clk.cmd_type = NV_PMU_CLK_CMD_ID_RPC;
payload.in.buf = (u8 *)&rpccall;
payload.in.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.in.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
nvgpu_assert(NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET < U64(U32_MAX));
payload.in.offset = (u32)NV_PMU_CLK_CMD_RPC_ALLOC_OFFSET;
payload.out.buf = (u8 *)&rpccall;
payload.out.size = (u32)sizeof(struct nv_pmu_clk_rpc);
payload.out.fb_size = PMU_CMD_SUBMIT_PAYLOAD_PARAMS_FB_SIZE_UNUSED;
payload.out.offset = NV_PMU_CLK_MSG_RPC_ALLOC_OFFSET;
handler.prpccall = &rpccall;
handler.success = 0;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ,
clkrpc_pmucmdhandler, (void *)&handler,
&seqdesc);
if (status != 0) {
nvgpu_err(g, "unable to post clk RPC cmd %x",
cmd.cmd.clk.cmd_type);
goto done;
}
pmu_wait_message_cond(&g->pmu,
gk20a_get_gr_idle_timeout(g),
&handler.success, 1);
if (handler.success == 0U) {
nvgpu_err(g, "rpc call to inject clock failed");
status = -EINVAL;
}
done:
return status;
}
static u8 find_regime_id(struct gk20a *g, u32 domain, u16 clkmhz)
{
struct fll_device *pflldev;
u8 j;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
BOARDOBJGRP_FOR_EACH(&(pclk->avfs_fllobjs.super.super),
struct fll_device *, pflldev, j) {
if (pflldev->clk_domain == domain) {
if (pflldev->regime_desc.fixed_freq_regime_limit_mhz >=
clkmhz) {
return CTRL_CLK_FLL_REGIME_ID_FFR;
} else {
return CTRL_CLK_FLL_REGIME_ID_FR;
}
}
}
return CTRL_CLK_FLL_REGIME_ID_INVALID;
}
static int set_regime_id(struct gk20a *g, u32 domain, u8 regimeid)
{
struct fll_device *pflldev;
u8 j;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
BOARDOBJGRP_FOR_EACH(&(pclk->avfs_fllobjs.super.super),
struct fll_device *, pflldev, j) {
if (pflldev->clk_domain == domain) {
pflldev->regime_desc.regime_id = regimeid;
return 0;
}
}
return -EINVAL;
}
static int get_regime_id(struct gk20a *g, u32 domain, u8 *regimeid)
{
struct fll_device *pflldev;
u8 j;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
BOARDOBJGRP_FOR_EACH(&(pclk->avfs_fllobjs.super.super),
struct fll_device *, pflldev, j) {
if (pflldev->clk_domain == domain) {
*regimeid = pflldev->regime_desc.regime_id;
return 0;
}
}
return -EINVAL;
}
int clk_set_fll_clks(struct gk20a *g, struct nvgpu_set_fll_clk *setfllclk)
{
int status = -EINVAL;
/*set regime ids */
status = get_regime_id(g, CTRL_CLK_DOMAIN_GPCCLK,
&setfllclk->current_regime_id_gpc);
if (status != 0) {
goto done;
}
setfllclk->target_regime_id_gpc = find_regime_id(g,
CTRL_CLK_DOMAIN_GPCCLK, setfllclk->gpc2clkmhz);
status = get_regime_id(g, CTRL_CLK_DOMAIN_SYSCLK,
&setfllclk->current_regime_id_sys);
if (status != 0) {
goto done;
}
setfllclk->target_regime_id_sys = find_regime_id(g,
CTRL_CLK_DOMAIN_SYSCLK, setfllclk->sys2clkmhz);
status = get_regime_id(g, CTRL_CLK_DOMAIN_XBARCLK,
&setfllclk->current_regime_id_xbar);
if (status != 0) {
goto done;
}
setfllclk->target_regime_id_xbar = find_regime_id(g,
CTRL_CLK_DOMAIN_XBARCLK, setfllclk->xbar2clkmhz);
status = clk_pmu_vf_inject(g, setfllclk);
if (status != 0) {
nvgpu_err(g, "vf inject to change clk failed");
}
/* save regime ids */
status = set_regime_id(g, CTRL_CLK_DOMAIN_XBARCLK,
setfllclk->target_regime_id_xbar);
if (status != 0) {
goto done;
}
status = set_regime_id(g, CTRL_CLK_DOMAIN_GPCCLK,
setfllclk->target_regime_id_gpc);
if (status != 0) {
goto done;
}
status = set_regime_id(g, CTRL_CLK_DOMAIN_SYSCLK,
setfllclk->target_regime_id_sys);
if (status != 0) {
goto done;
}
done:
return status;
}
int nvgpu_clk_get_fll_clks(struct gk20a *g, struct nvgpu_set_fll_clk *setfllclk)
{
int status = -EINVAL;
struct nvgpu_clk_domain *pdomain;
u8 i;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
unsigned long bit;
u16 clkmhz = 0;
struct clk_domain_35_master *p35master;
struct clk_domain_35_slave *p35slave;
unsigned long slaveidxmask;
if (setfllclk->gpc2clkmhz == 0U) {
return -EINVAL;
}
BOARDOBJGRP_FOR_EACH(&(pclk->clk_domainobjs.super.super),
struct nvgpu_clk_domain *, pdomain, i) {
if (pdomain->api_domain == CTRL_CLK_DOMAIN_GPCCLK) {
if (!pdomain->super.implements(g, &pdomain->super,
CTRL_CLK_CLK_DOMAIN_TYPE_35_MASTER)) {
status = -EINVAL;
goto done;
}
p35master = (struct clk_domain_35_master *)pdomain;
slaveidxmask = p35master->master.slave_idxs_mask;
for_each_set_bit(bit, &slaveidxmask, 32U) {
i = (u8)bit;
p35slave = (struct clk_domain_35_slave *)
CLK_CLK_DOMAIN_GET(pclk, i);
clkmhz = 0;
status = p35slave->slave.clkdomainclkgetslaveclk(g,
pclk, (struct nvgpu_clk_domain *)(void *)p35slave,
&clkmhz, setfllclk->gpc2clkmhz);
if (status != 0) {
status = -EINVAL;
goto done;
}
if (p35slave->super.super.super.super.api_domain ==
CTRL_CLK_DOMAIN_XBARCLK) {
setfllclk->xbar2clkmhz = clkmhz;
}
if (p35slave->super.super.super.super.api_domain ==
CTRL_CLK_DOMAIN_SYSCLK) {
setfllclk->sys2clkmhz = clkmhz;
}
if (p35slave->super.super.super.super.api_domain ==
CTRL_CLK_DOMAIN_NVDCLK) {
setfllclk->nvdclkmhz = clkmhz;
}
if (p35slave->super.super.super.super.api_domain ==
CTRL_CLK_DOMAIN_HOSTCLK) {
setfllclk->hostclkmhz = clkmhz;
}
}
}
}
done:
return status;
}
int clk_domain_print_vf_table(struct gk20a *g, u32 clkapidomain)
{
int status = -EINVAL;
struct nvgpu_clk_domain *pdomain;
u8 i;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
u16 clkmhz = 0;
u32 volt = 0;
BOARDOBJGRP_FOR_EACH(&(pclk->clk_domainobjs.super.super),
struct nvgpu_clk_domain *, pdomain, i) {
if (pdomain->api_domain == clkapidomain) {
status = pdomain->clkdomainclkvfsearch(g, pclk,
pdomain, &clkmhz, &volt,
CLK_PROG_VFE_ENTRY_LOGIC);
status = pdomain->clkdomainclkvfsearch(g, pclk,
pdomain, &clkmhz, &volt,
CLK_PROG_VFE_ENTRY_SRAM);
}
}
return status;
}
static int clk_program_fllclks(struct gk20a *g, struct change_fll_clk *fllclk)
{
int status = -EINVAL;
struct nvgpu_clk_domain *pdomain;
u8 i;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
unsigned long bit;
u16 clkmhz = 0;
struct clk_domain_3x_master *p3xmaster;
struct clk_domain_3x_slave *p3xslave;
unsigned long slaveidxmask;
struct nvgpu_set_fll_clk setfllclk;
if (fllclk->api_clk_domain != CTRL_CLK_DOMAIN_GPCCLK) {
return -EINVAL;
}
if (fllclk->voltuv == 0U) {
return -EINVAL;
}
if (fllclk->clkmhz == 0U) {
return -EINVAL;
}
setfllclk.voltuv = fllclk->voltuv;
setfllclk.gpc2clkmhz = fllclk->clkmhz;
BOARDOBJGRP_FOR_EACH(&(pclk->clk_domainobjs.super.super),
struct nvgpu_clk_domain *, pdomain, i) {
if (pdomain->api_domain == fllclk->api_clk_domain) {
if (!pdomain->super.implements(g, &pdomain->super,
CTRL_CLK_CLK_DOMAIN_TYPE_3X_MASTER)) {
status = -EINVAL;
goto done;
}
p3xmaster = (struct clk_domain_3x_master *)pdomain;
slaveidxmask = p3xmaster->slave_idxs_mask;
for_each_set_bit(bit, &slaveidxmask, 32U) {
i = (u8)bit;
p3xslave = (struct clk_domain_3x_slave *)
CLK_CLK_DOMAIN_GET(pclk, i);
if ((p3xslave->super.super.super.api_domain !=
CTRL_CLK_DOMAIN_XBARCLK) &&
(p3xslave->super.super.super.api_domain !=
CTRL_CLK_DOMAIN_SYSCLK)) {
continue;
}
clkmhz = 0;
status = p3xslave->clkdomainclkgetslaveclk(g,
pclk,
(struct nvgpu_clk_domain *)p3xslave,
&clkmhz,
fllclk->clkmhz);
if (status != 0) {
status = -EINVAL;
goto done;
}
if (p3xslave->super.super.super.api_domain ==
CTRL_CLK_DOMAIN_XBARCLK) {
setfllclk.xbar2clkmhz = clkmhz;
}
if (p3xslave->super.super.super.api_domain ==
CTRL_CLK_DOMAIN_SYSCLK) {
setfllclk.sys2clkmhz = clkmhz;
}
}
}
}
/*set regime ids */
status = get_regime_id(g, CTRL_CLK_DOMAIN_GPCCLK,
&setfllclk.current_regime_id_gpc);
if (status != 0) {
goto done;
}
setfllclk.target_regime_id_gpc = find_regime_id(g,
CTRL_CLK_DOMAIN_GPCCLK, setfllclk.gpc2clkmhz);
status = get_regime_id(g, CTRL_CLK_DOMAIN_SYSCLK,
&setfllclk.current_regime_id_sys);
if (status != 0) {
goto done;
}
setfllclk.target_regime_id_sys = find_regime_id(g,
CTRL_CLK_DOMAIN_SYSCLK, setfllclk.sys2clkmhz);
status = get_regime_id(g, CTRL_CLK_DOMAIN_XBARCLK,
&setfllclk.current_regime_id_xbar);
if (status != 0) {
goto done;
}
setfllclk.target_regime_id_xbar = find_regime_id(g,
CTRL_CLK_DOMAIN_XBARCLK, setfllclk.xbar2clkmhz);
status = clk_pmu_vf_inject(g, &setfllclk);
if (status != 0) {
nvgpu_err(g,
"vf inject to change clk failed");
}
/* save regime ids */
status = set_regime_id(g, CTRL_CLK_DOMAIN_XBARCLK,
setfllclk.target_regime_id_xbar);
if (status != 0) {
goto done;
}
status = set_regime_id(g, CTRL_CLK_DOMAIN_GPCCLK,
setfllclk.target_regime_id_gpc);
if (status != 0) {
goto done;
}
status = set_regime_id(g, CTRL_CLK_DOMAIN_SYSCLK,
setfllclk.target_regime_id_sys);
if (status != 0) {
goto done;
}
done:
return status;
}
int nvgpu_clk_set_boot_fll_clk_gv10x(struct gk20a *g)
{
int status;
struct change_fll_clk bootfllclk;
u16 gpcclk_clkmhz = BOOT_GPCCLK_MHZ;
u32 gpcclk_voltuv = 0;
u32 voltuv = 0;
status = nvgpu_clk_vf_point_cache(g);
if (status != 0) {
nvgpu_err(g,"caching failed");
return status;
}
status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_GPCCLK,
&gpcclk_clkmhz, &gpcclk_voltuv, CTRL_VOLT_DOMAIN_LOGIC);
if (status != 0) {
return status;
}
voltuv = gpcclk_voltuv;
status = volt_set_voltage(g, voltuv, 0);
if (status != 0) {
nvgpu_err(g,
"attempt to set boot voltage failed %d",
voltuv);
}
bootfllclk.api_clk_domain = CTRL_CLK_DOMAIN_GPCCLK;
bootfllclk.clkmhz = gpcclk_clkmhz;
bootfllclk.voltuv = voltuv;
status = clk_program_fllclks(g, &bootfllclk);
if (status != 0) {
nvgpu_err(g, "attempt to set boot gpcclk failed");
}
status = clk_pmu_freq_effective_avg_load(g, true);
/*
* Read clocks after some delay with below method
* & extract clock data from buffer
* u32 freqkHz;
* status = clk_freq_effective_avg(g, &freqkHz, CTRL_CLK_DOMAIN_GPCCLK |
* CTRL_CLK_DOMAIN_XBARCLK |
* CTRL_CLK_DOMAIN_SYSCLK |
* CTRL_CLK_DOMAIN_NVDCLK)
* */
return status;
}
int nvgpu_clk_set_fll_clk_gv10x(struct gk20a *g)
{
int status;
struct change_fll_clk bootfllclk;
u16 gpcclk_clkmhz = BOOT_GPCCLK_MHZ;
u32 gpcclk_voltuv = 0U;
u32 voltuv = 0U;
status = nvgpu_clk_vf_point_cache(g);
if (status != 0) {
nvgpu_err(g, "caching failed");
return status;
}
status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_GPCCLK,
&gpcclk_clkmhz, &gpcclk_voltuv, CTRL_VOLT_DOMAIN_LOGIC);
if (status != 0) {
return status;
}
voltuv = gpcclk_voltuv;
status = volt_set_voltage(g, voltuv, 0U);
if (status != 0) {
nvgpu_err(g, "attempt to set max voltage failed %d", voltuv);
}
bootfllclk.api_clk_domain = CTRL_CLK_DOMAIN_GPCCLK;
bootfllclk.clkmhz = gpcclk_clkmhz;
bootfllclk.voltuv = voltuv;
status = clk_program_fllclks(g, &bootfllclk);
if (status != 0) {
nvgpu_err(g, "attempt to set max gpcclk failed");
}
return status;
}
int nvgpu_clk_set_boot_fll_clk_tu10x(struct gk20a *g)
{
struct nvgpu_pmu *pmu = &g->pmu;
struct nv_pmu_rpc_perf_change_seq_queue_change rpc;
struct ctrl_perf_change_seq_change_input change_input;
struct clk_set_info *p0_clk_set_info;
struct nvgpu_clk_domain *pclk_domain;
int status = 0;
u8 i = 0, gpcclk_domain=0;
u32 gpcclk_clkmhz=0, gpcclk_voltuv=0;
u32 vmin_uv = 0;
(void) memset(&change_input, 0,
sizeof(struct ctrl_perf_change_seq_change_input));
BOARDOBJGRP_FOR_EACH(&(g->clk_pmu->clk_domainobjs.super.super),
struct nvgpu_clk_domain *, pclk_domain, i) {
p0_clk_set_info = pstate_get_clk_set_info(g, CTRL_PERF_PSTATE_P0,
pclk_domain->domain);
switch (pclk_domain->api_domain) {
case CTRL_CLK_DOMAIN_GPCCLK:
gpcclk_domain = i;
gpcclk_clkmhz = p0_clk_set_info->max_mhz;
change_input.clk[i].clk_freq_khz =
p0_clk_set_info->max_mhz * 1000U;
change_input.clk_domains_mask.super.data[0] |= (u32) BIT(i);
break;
case CTRL_CLK_DOMAIN_XBARCLK:
case CTRL_CLK_DOMAIN_SYSCLK:
case CTRL_CLK_DOMAIN_NVDCLK:
case CTRL_CLK_DOMAIN_HOSTCLK:
change_input.clk[i].clk_freq_khz =
p0_clk_set_info->max_mhz * 1000U;
change_input.clk_domains_mask.super.data[0] |= (u32) BIT(i);
break;
default:
nvgpu_pmu_dbg(g, "Fixed clock domain");
break;
}
}
change_input.pstate_index = 0U;
change_input.flags = (u32)CTRL_PERF_CHANGE_SEQ_CHANGE_FORCE;
change_input.vf_points_cache_counter = 0xFFFFFFFFU;
status = clk_domain_freq_to_volt(g, gpcclk_domain,
&gpcclk_clkmhz, &gpcclk_voltuv, CTRL_VOLT_DOMAIN_LOGIC);
status = g->ops.pmu_ver.volt.volt_get_vmin(g, &vmin_uv);
if(status != 0)
{
nvgpu_pmu_dbg(g, "Get vmin failed, proceeding with freq_to_volt value");
}
if((status == 0) && (vmin_uv > gpcclk_voltuv)) {
gpcclk_voltuv = vmin_uv;
nvgpu_pmu_dbg(g, "Vmin is higher than evaluated Volt");
}
change_input.volt[0].voltage_uv = gpcclk_voltuv;
change_input.volt[0].voltage_min_noise_unaware_uv = gpcclk_voltuv;
change_input.volt_rails_mask.super.data[0] = 1U;
/* RPC to PMU to queue to execute change sequence request*/
(void) memset(&rpc, 0, sizeof(struct nv_pmu_rpc_perf_change_seq_queue_change ));
rpc.change = change_input;
rpc.change.pstate_index = 0;
PMU_RPC_EXECUTE_CPB(status, pmu, PERF, CHANGE_SEQ_QUEUE_CHANGE, &rpc, 0);
if (status != 0) {
nvgpu_err(g, "Failed to execute Change Seq RPC status=0x%x",
status);
}
/* Wait for sync change to complete. */
if ((rpc.change.flags & CTRL_PERF_CHANGE_SEQ_CHANGE_ASYNC) == 0U) {
nvgpu_msleep(20);
}
return status;
}
int clk_domain_volt_to_freq(struct gk20a *g, u8 clkdomain_idx,
u32 *pclkmhz, u32 *pvoltuv, u8 railidx)
{
struct nv_pmu_rpc_clk_domain_35_prog_freq_to_volt rpc;
struct nvgpu_pmu *pmu = &g->pmu;
int status = -EINVAL;
(void)memset(&rpc, 0, sizeof(struct nv_pmu_rpc_clk_domain_35_prog_freq_to_volt ));
rpc.volt_rail_idx = volt_rail_volt_domain_convert_to_idx(g, railidx);
rpc.clk_domain_idx = clkdomain_idx;
rpc.voltage_type = CTRL_VOLT_DOMAIN_LOGIC;
rpc.input.value = *pvoltuv;
PMU_RPC_EXECUTE_CPB(status, pmu, CLK, CLK_DOMAIN_35_PROG_VOLT_TO_FREQ, &rpc, 0);
if (status != 0) {
nvgpu_err(g, "Failed to execute Freq to Volt RPC status=0x%x",
status);
}
*pclkmhz = rpc.output.value;
return status;
}
int clk_domain_freq_to_volt(struct gk20a *g, u8 clkdomain_idx,
u32 *pclkmhz, u32 *pvoltuv, u8 railidx)
{
struct nv_pmu_rpc_clk_domain_35_prog_freq_to_volt rpc;
struct nvgpu_pmu *pmu = &g->pmu;
int status = -EINVAL;
(void)memset(&rpc, 0, sizeof(struct nv_pmu_rpc_clk_domain_35_prog_freq_to_volt ));
rpc.volt_rail_idx = volt_rail_volt_domain_convert_to_idx(g, railidx);
rpc.clk_domain_idx = clkdomain_idx;
rpc.voltage_type = CTRL_VOLT_DOMAIN_LOGIC;
rpc.input.value = *pclkmhz;
PMU_RPC_EXECUTE_CPB(status, pmu, CLK, CLK_DOMAIN_35_PROG_FREQ_TO_VOLT, &rpc, 0);
if (status != 0) {
nvgpu_err(g, "Failed to execute Freq to Volt RPC status=0x%x",
status);
}
*pvoltuv = rpc.output.value;
return status;
}
int clk_domain_get_f_or_v(struct gk20a *g, u32 clkapidomain,
u16 *pclkmhz, u32 *pvoltuv, u8 railidx)
{
int status = -EINVAL;
struct nvgpu_clk_domain *pdomain;
u8 i;
struct nvgpu_clk_pmupstate *pclk = g->clk_pmu;
u8 rail;
if ((pclkmhz == NULL) || (pvoltuv == NULL)) {
return -EINVAL;
}
if (railidx == CTRL_VOLT_DOMAIN_LOGIC) {
rail = CLK_PROG_VFE_ENTRY_LOGIC;
} else if (railidx == CTRL_VOLT_DOMAIN_SRAM) {
rail = CLK_PROG_VFE_ENTRY_SRAM;
} else {
return -EINVAL;
}
BOARDOBJGRP_FOR_EACH(&(pclk->clk_domainobjs.super.super),
struct nvgpu_clk_domain *, pdomain, i) {
if (pdomain->api_domain == clkapidomain) {
status = pdomain->clkdomainclkvfsearch(g, pclk,
pdomain, pclkmhz, pvoltuv, rail);
return status;
}
}
return status;
}
int nvgpu_clk_init_pmupstate(struct gk20a *g)
{
/* If already allocated, do not re-allocate */
if (g->clk_pmu != NULL) {
return 0;
}
g->clk_pmu = nvgpu_kzalloc(g, sizeof(*g->clk_pmu));
if (g->clk_pmu == NULL) {
return -ENOMEM;
}
return 0;
}
void nvgpu_clk_free_pmupstate(struct gk20a *g)
{
nvgpu_kfree(g, g->clk_pmu);
g->clk_pmu = NULL;
}