mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
Remove the Linux includes that are included from <nvgpu/linux/kmem.h>. These includes leak into the core code and make it easy for Linux specific functions and APIs to be accidentally called. The only place that includes the Linux headers is now the Linux API implementation code. Change-Id: I2af8153a81408fe3b762c03c9504e41d0309aea9 Signed-off-by: Alex Waterman <alexw@nvidia.com> Reviewed-on: http://git-master/r/1472370 Reviewed-by: Automatic_Commit_Validation_User Reviewed-by: svccoveritychecker <svccoveritychecker@nvidia.com> GVS: Gerrit_Virtual_Submit Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
932 lines
23 KiB
C
932 lines
23 KiB
C
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/stacktrace.h>
|
|
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/atomic.h>
|
|
#include <nvgpu/bug.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
|
|
#include "kmem_priv.h"
|
|
|
|
/*
|
|
* Statically declared because this needs to be shared across all nvgpu driver
|
|
* instances. This makes sure that all kmem caches are _definitely_ uniquely
|
|
* named.
|
|
*/
|
|
static atomic_t kmem_cache_id;
|
|
|
|
void *__nvgpu_big_alloc(struct gk20a *g, size_t size, bool clear)
|
|
{
|
|
void *p;
|
|
|
|
if (size > PAGE_SIZE) {
|
|
if (clear)
|
|
p = nvgpu_vzalloc(g, size);
|
|
else
|
|
p = nvgpu_vmalloc(g, size);
|
|
} else {
|
|
if (clear)
|
|
p = nvgpu_kzalloc(g, size);
|
|
else
|
|
p = nvgpu_kmalloc(g, size);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void nvgpu_big_free(struct gk20a *g, void *p)
|
|
{
|
|
/*
|
|
* This will have to be fixed eventually. Allocs that use
|
|
* nvgpu_big_[mz]alloc() will need to remember the size of the alloc
|
|
* when freeing.
|
|
*/
|
|
if (virt_addr_valid(p))
|
|
nvgpu_kfree(g, p);
|
|
else
|
|
nvgpu_vfree(g, p);
|
|
}
|
|
|
|
void *__nvgpu_kmalloc(struct gk20a *g, size_t size, unsigned long ip)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
return __nvgpu_track_kmalloc(g, size, ip);
|
|
#else
|
|
return kmalloc(size, GFP_KERNEL);
|
|
#endif
|
|
}
|
|
|
|
void *__nvgpu_kzalloc(struct gk20a *g, size_t size, unsigned long ip)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
return __nvgpu_track_kzalloc(g, size, ip);
|
|
#else
|
|
return kzalloc(size, GFP_KERNEL);
|
|
#endif
|
|
}
|
|
|
|
void *__nvgpu_kcalloc(struct gk20a *g, size_t n, size_t size, unsigned long ip)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
return __nvgpu_track_kcalloc(g, n, size, ip);
|
|
#else
|
|
return kcalloc(n, size, GFP_KERNEL);
|
|
#endif
|
|
}
|
|
|
|
void *__nvgpu_vmalloc(struct gk20a *g, unsigned long size, unsigned long ip)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
return __nvgpu_track_vmalloc(g, size, ip);
|
|
#else
|
|
return vmalloc(size);
|
|
#endif
|
|
}
|
|
|
|
void *__nvgpu_vzalloc(struct gk20a *g, unsigned long size, unsigned long ip)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
return __nvgpu_track_vzalloc(g, size, ip);
|
|
#else
|
|
return vzalloc(size);
|
|
#endif
|
|
}
|
|
|
|
void __nvgpu_kfree(struct gk20a *g, void *addr)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
__nvgpu_track_kfree(g, addr);
|
|
#else
|
|
kfree(addr);
|
|
#endif
|
|
}
|
|
|
|
void __nvgpu_vfree(struct gk20a *g, void *addr)
|
|
{
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
__nvgpu_track_vfree(g, addr);
|
|
#else
|
|
vfree(addr);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
|
|
|
|
static void lock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
|
|
{
|
|
mutex_lock(&tracker->lock);
|
|
}
|
|
|
|
static void unlock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
|
|
{
|
|
mutex_unlock(&tracker->lock);
|
|
}
|
|
|
|
static void kmem_print_mem_alloc(struct gk20a *g,
|
|
struct nvgpu_mem_alloc *alloc,
|
|
struct seq_file *s)
|
|
{
|
|
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
|
|
int i;
|
|
|
|
__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld\n",
|
|
alloc->addr, alloc->size);
|
|
for (i = 0; i < alloc->stack_length; i++)
|
|
__pstat(s, " %3d [<%p>] %pS\n", i,
|
|
(void *)alloc->stack[i],
|
|
(void *)alloc->stack[i]);
|
|
__pstat(s, "\n");
|
|
#else
|
|
__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld src=%pF\n",
|
|
alloc->addr, alloc->size, alloc->ip);
|
|
#endif
|
|
}
|
|
|
|
static int nvgpu_add_alloc(struct nvgpu_mem_alloc_tracker *tracker,
|
|
struct nvgpu_mem_alloc *alloc)
|
|
{
|
|
alloc->allocs_entry.key_start = alloc->addr;
|
|
alloc->allocs_entry.key_end = alloc->addr + alloc->size;
|
|
|
|
nvgpu_rbtree_insert(&alloc->allocs_entry, &tracker->allocs);
|
|
return 0;
|
|
}
|
|
|
|
static struct nvgpu_mem_alloc *nvgpu_rem_alloc(
|
|
struct nvgpu_mem_alloc_tracker *tracker, u64 alloc_addr)
|
|
{
|
|
struct nvgpu_mem_alloc *alloc;
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
|
|
nvgpu_rbtree_search(alloc_addr, &node, tracker->allocs);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
alloc = nvgpu_mem_alloc_from_rbtree_node(node);
|
|
|
|
nvgpu_rbtree_unlink(node, &tracker->allocs);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
static int __nvgpu_save_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
|
|
unsigned long size, unsigned long real_size,
|
|
u64 addr, unsigned long ip)
|
|
{
|
|
int ret;
|
|
struct nvgpu_mem_alloc *alloc;
|
|
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
|
|
struct stack_trace stack_trace;
|
|
#endif
|
|
|
|
alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
|
|
if (!alloc)
|
|
return -ENOMEM;
|
|
|
|
alloc->owner = tracker;
|
|
alloc->size = size;
|
|
alloc->real_size = real_size;
|
|
alloc->addr = addr;
|
|
alloc->ip = (void *)(uintptr_t)ip;
|
|
|
|
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
|
|
stack_trace.max_entries = MAX_STACK_TRACE;
|
|
stack_trace.nr_entries = 0;
|
|
stack_trace.entries = alloc->stack;
|
|
/*
|
|
* This 4 here skips the 2 function calls that happen for all traced
|
|
* allocs due to nvgpu:
|
|
*
|
|
* __nvgpu_save_kmem_alloc+0x7c/0x128
|
|
* __nvgpu_track_kzalloc+0xcc/0xf8
|
|
*
|
|
* And the function calls that get made by the stack trace code itself.
|
|
* If the trace savings code changes this will likely have to change
|
|
* as well.
|
|
*/
|
|
stack_trace.skip = 4;
|
|
save_stack_trace(&stack_trace);
|
|
alloc->stack_length = stack_trace.nr_entries;
|
|
#endif
|
|
|
|
lock_tracker(tracker);
|
|
tracker->bytes_alloced += size;
|
|
tracker->bytes_alloced_real += real_size;
|
|
tracker->nr_allocs++;
|
|
|
|
/* Keep track of this for building a histogram later on. */
|
|
if (tracker->max_alloc < size)
|
|
tracker->max_alloc = size;
|
|
if (tracker->min_alloc > size)
|
|
tracker->min_alloc = size;
|
|
|
|
ret = nvgpu_add_alloc(tracker, alloc);
|
|
if (ret) {
|
|
WARN(1, "Duplicate alloc??? 0x%llx\n", addr);
|
|
kfree(alloc);
|
|
unlock_tracker(tracker);
|
|
return ret;
|
|
}
|
|
unlock_tracker(tracker);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __nvgpu_free_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
|
|
u64 addr)
|
|
{
|
|
struct nvgpu_mem_alloc *alloc;
|
|
|
|
lock_tracker(tracker);
|
|
alloc = nvgpu_rem_alloc(tracker, addr);
|
|
if (WARN(!alloc, "Possible double-free detected: 0x%llx!", addr)) {
|
|
unlock_tracker(tracker);
|
|
return -EINVAL;
|
|
}
|
|
|
|
tracker->nr_frees++;
|
|
tracker->bytes_freed += alloc->size;
|
|
tracker->bytes_freed_real += alloc->real_size;
|
|
unlock_tracker(tracker);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __nvgpu_check_valloc_size(unsigned long size)
|
|
{
|
|
WARN(size < PAGE_SIZE, "Alloc smaller than page size! (%lu)!\n", size);
|
|
}
|
|
|
|
static void __nvgpu_check_kalloc_size(size_t size)
|
|
{
|
|
WARN(size > PAGE_SIZE, "Alloc larger than page size! (%zu)!\n", size);
|
|
}
|
|
|
|
void *__nvgpu_track_vmalloc(struct gk20a *g, unsigned long size,
|
|
unsigned long ip)
|
|
{
|
|
void *alloc = vmalloc(size);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
kmem_dbg("vmalloc: size=%-6ld addr=0x%p", size, alloc);
|
|
__nvgpu_check_valloc_size(size);
|
|
|
|
/*
|
|
* Ignore the return message. If this fails let's not cause any issues
|
|
* for the rest of the driver.
|
|
*/
|
|
__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
|
|
(u64)(uintptr_t)alloc, ip);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void *__nvgpu_track_vzalloc(struct gk20a *g, unsigned long size,
|
|
unsigned long ip)
|
|
{
|
|
void *alloc = vzalloc(size);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
kmem_dbg("vzalloc: size=%-6ld addr=0x%p", size, alloc);
|
|
__nvgpu_check_valloc_size(size);
|
|
|
|
/*
|
|
* Ignore the return message. If this fails let's not cause any issues
|
|
* for the rest of the driver.
|
|
*/
|
|
__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
|
|
(u64)(uintptr_t)alloc, ip);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void *__nvgpu_track_kmalloc(struct gk20a *g, size_t size, unsigned long ip)
|
|
{
|
|
void *alloc = kmalloc(size, GFP_KERNEL);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
kmem_dbg("kmalloc: size=%-6ld addr=0x%p gfp=0x%08x",
|
|
size, alloc, GFP_KERNEL);
|
|
__nvgpu_check_kalloc_size(size);
|
|
|
|
__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
|
|
(u64)(uintptr_t)alloc, ip);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void *__nvgpu_track_kzalloc(struct gk20a *g, size_t size, unsigned long ip)
|
|
{
|
|
void *alloc = kzalloc(size, GFP_KERNEL);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
kmem_dbg("kzalloc: size=%-6ld addr=0x%p gfp=0x%08x",
|
|
size, alloc, GFP_KERNEL);
|
|
__nvgpu_check_kalloc_size(size);
|
|
|
|
__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
|
|
(u64)(uintptr_t)alloc, ip);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void *__nvgpu_track_kcalloc(struct gk20a *g, size_t n, size_t size,
|
|
unsigned long ip)
|
|
{
|
|
void *alloc = kcalloc(n, size, GFP_KERNEL);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
kmem_dbg("kcalloc: size=%-6ld addr=0x%p gfp=0x%08x",
|
|
n * size, alloc, GFP_KERNEL);
|
|
__nvgpu_check_kalloc_size(n * size);
|
|
|
|
__nvgpu_save_kmem_alloc(g->kmallocs, n * size,
|
|
roundup_pow_of_two(n * size),
|
|
(u64)(uintptr_t)alloc, ip);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void __nvgpu_track_vfree(struct gk20a *g, void *addr)
|
|
{
|
|
/*
|
|
* Often it is accepted practice to pass NULL pointers into free
|
|
* functions to save code.
|
|
*/
|
|
if (!addr)
|
|
return;
|
|
|
|
vfree(addr);
|
|
|
|
kmem_dbg("vfree: addr=0x%p", addr);
|
|
|
|
__nvgpu_free_kmem_alloc(g->vmallocs, (u64)(uintptr_t)addr);
|
|
}
|
|
|
|
void __nvgpu_track_kfree(struct gk20a *g, void *addr)
|
|
{
|
|
if (!addr)
|
|
return;
|
|
|
|
kfree(addr);
|
|
|
|
kmem_dbg("kfree: addr=0x%p", addr);
|
|
|
|
__nvgpu_free_kmem_alloc(g->kmallocs, (u64)(uintptr_t)addr);
|
|
}
|
|
|
|
/**
|
|
* to_human_readable_bytes - Determine suffix for passed size.
|
|
*
|
|
* @bytes - Number of bytes to generate a suffix for.
|
|
* @hr_bytes [out] - The human readable number of bytes.
|
|
* @hr_suffix [out] - The suffix for the HR number of bytes.
|
|
*
|
|
* Computes a human readable decomposition of the passed number of bytes. The
|
|
* suffix for the bytes is passed back through the @hr_suffix pointer. The right
|
|
* number of bytes is then passed back in @hr_bytes. This returns the following
|
|
* ranges:
|
|
*
|
|
* 0 - 1023 B
|
|
* 1 - 1023 KB
|
|
* 1 - 1023 MB
|
|
* 1 - 1023 GB
|
|
* 1 - 1023 TB
|
|
* 1 - ... PB
|
|
*/
|
|
static void __to_human_readable_bytes(u64 bytes, u64 *hr_bytes,
|
|
const char **hr_suffix)
|
|
{
|
|
static const char *suffixes[] =
|
|
{ "B", "KB", "MB", "GB", "TB", "PB" };
|
|
|
|
u64 suffix_ind = 0;
|
|
|
|
while (suffix_ind < ARRAY_SIZE(suffixes) && bytes >= 1024) {
|
|
bytes >>= 10;
|
|
suffix_ind++;
|
|
}
|
|
|
|
/*
|
|
* Handle case where bytes > 1023PB.
|
|
*/
|
|
suffix_ind = suffix_ind < ARRAY_SIZE(suffixes) ?
|
|
suffix_ind : ARRAY_SIZE(suffixes) - 1;
|
|
|
|
*hr_bytes = bytes;
|
|
*hr_suffix = suffixes[suffix_ind];
|
|
}
|
|
|
|
/**
|
|
* print_hr_bytes - Print human readable bytes
|
|
*
|
|
* @s - A seq_file to print to. May be NULL.
|
|
* @msg - A message to print before the bytes.
|
|
* @bytes - Number of bytes.
|
|
*
|
|
* Print @msg followed by the human readable decomposition of the passed number
|
|
* of bytes.
|
|
*
|
|
* If @s is NULL then this prints will be made to the kernel log.
|
|
*/
|
|
static void print_hr_bytes(struct seq_file *s, const char *msg, u64 bytes)
|
|
{
|
|
u64 hr_bytes;
|
|
const char *hr_suffix;
|
|
|
|
__to_human_readable_bytes(bytes, &hr_bytes, &hr_suffix);
|
|
__pstat(s, "%s%lld %s\n", msg, hr_bytes, hr_suffix);
|
|
}
|
|
|
|
/**
|
|
* print_histogram - Build a histogram of the memory usage.
|
|
*
|
|
* @tracker The tracking to pull data from.
|
|
* @s A seq_file to dump info into.
|
|
*/
|
|
static void print_histogram(struct nvgpu_mem_alloc_tracker *tracker,
|
|
struct seq_file *s)
|
|
{
|
|
int i;
|
|
u64 pot_min, pot_max;
|
|
u64 nr_buckets;
|
|
unsigned int *buckets;
|
|
unsigned int total_allocs;
|
|
struct nvgpu_rbtree_node *node;
|
|
static const char histogram_line[] =
|
|
"++++++++++++++++++++++++++++++++++++++++";
|
|
|
|
/*
|
|
* pot_min is essentially a round down to the nearest power of 2. This
|
|
* is the start of the histogram. pot_max is just a round up to the
|
|
* nearest power of two. Each histogram bucket is one power of two so
|
|
* the histogram buckets are exponential.
|
|
*/
|
|
pot_min = (u64)rounddown_pow_of_two(tracker->min_alloc);
|
|
pot_max = (u64)roundup_pow_of_two(tracker->max_alloc);
|
|
|
|
nr_buckets = __ffs(pot_max) - __ffs(pot_min);
|
|
|
|
buckets = kzalloc(sizeof(*buckets) * nr_buckets, GFP_KERNEL);
|
|
if (!buckets) {
|
|
__pstat(s, "OOM: could not allocate bucket storage!?\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Iterate across all of the allocs and determine what bucket they
|
|
* should go in. Round the size down to the nearest power of two to
|
|
* find the right bucket.
|
|
*/
|
|
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
|
|
while (node) {
|
|
int b;
|
|
u64 bucket_min;
|
|
struct nvgpu_mem_alloc *alloc =
|
|
nvgpu_mem_alloc_from_rbtree_node(node);
|
|
|
|
bucket_min = (u64)rounddown_pow_of_two(alloc->size);
|
|
if (bucket_min < tracker->min_alloc)
|
|
bucket_min = tracker->min_alloc;
|
|
|
|
b = __ffs(bucket_min) - __ffs(pot_min);
|
|
|
|
/*
|
|
* Handle the one case were there's an alloc exactly as big as
|
|
* the maximum bucket size of the largest bucket. Most of the
|
|
* buckets have an inclusive minimum and exclusive maximum. But
|
|
* the largest bucket needs to have an _inclusive_ maximum as
|
|
* well.
|
|
*/
|
|
if (b == (int)nr_buckets)
|
|
b--;
|
|
|
|
buckets[b]++;
|
|
|
|
nvgpu_rbtree_enum_next(&node, node);
|
|
}
|
|
|
|
total_allocs = 0;
|
|
for (i = 0; i < (int)nr_buckets; i++)
|
|
total_allocs += buckets[i];
|
|
|
|
__pstat(s, "Alloc histogram:\n");
|
|
|
|
/*
|
|
* Actually compute the histogram lines.
|
|
*/
|
|
for (i = 0; i < (int)nr_buckets; i++) {
|
|
char this_line[sizeof(histogram_line) + 1];
|
|
u64 line_length;
|
|
u64 hr_bytes;
|
|
const char *hr_suffix;
|
|
|
|
memset(this_line, 0, sizeof(this_line));
|
|
|
|
/*
|
|
* Compute the normalized line length. Cant use floating point
|
|
* so we will just multiply everything by 1000 and use fixed
|
|
* point.
|
|
*/
|
|
line_length = (1000 * buckets[i]) / total_allocs;
|
|
line_length *= sizeof(histogram_line);
|
|
line_length /= 1000;
|
|
|
|
memset(this_line, '+', line_length);
|
|
|
|
__to_human_readable_bytes(1 << (__ffs(pot_min) + i),
|
|
&hr_bytes, &hr_suffix);
|
|
__pstat(s, " [%-4lld %-4lld] %-2s %5u | %s\n",
|
|
hr_bytes, hr_bytes << 1,
|
|
hr_suffix, buckets[i], this_line);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
/**
|
|
* nvgpu_kmem_print_stats - Print kmem tracking stats.
|
|
*
|
|
* @tracker The tracking to pull data from.
|
|
* @s A seq_file to dump info into.
|
|
*
|
|
* Print stats from a tracker. If @s is non-null then seq_printf() will be
|
|
* used with @s. Otherwise the stats are pr_info()ed.
|
|
*/
|
|
void nvgpu_kmem_print_stats(struct nvgpu_mem_alloc_tracker *tracker,
|
|
struct seq_file *s)
|
|
{
|
|
lock_tracker(tracker);
|
|
|
|
__pstat(s, "Mem tracker: %s\n\n", tracker->name);
|
|
|
|
__pstat(s, "Basic Stats:\n");
|
|
__pstat(s, " Number of allocs %lld\n",
|
|
tracker->nr_allocs);
|
|
__pstat(s, " Number of frees %lld\n",
|
|
tracker->nr_frees);
|
|
print_hr_bytes(s, " Smallest alloc ", tracker->min_alloc);
|
|
print_hr_bytes(s, " Largest alloc ", tracker->max_alloc);
|
|
print_hr_bytes(s, " Bytes allocated ", tracker->bytes_alloced);
|
|
print_hr_bytes(s, " Bytes freed ", tracker->bytes_freed);
|
|
print_hr_bytes(s, " Bytes allocated (real) ",
|
|
tracker->bytes_alloced_real);
|
|
print_hr_bytes(s, " Bytes freed (real) ",
|
|
tracker->bytes_freed_real);
|
|
__pstat(s, "\n");
|
|
|
|
print_histogram(tracker, s);
|
|
|
|
unlock_tracker(tracker);
|
|
}
|
|
|
|
static int __kmem_tracking_show(struct seq_file *s, void *unused)
|
|
{
|
|
struct nvgpu_mem_alloc_tracker *tracker = s->private;
|
|
|
|
nvgpu_kmem_print_stats(tracker, s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kmem_tracking_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, __kmem_tracking_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations __kmem_tracking_fops = {
|
|
.open = __kmem_tracking_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static int __kmem_traces_dump_tracker(struct gk20a *g,
|
|
struct nvgpu_mem_alloc_tracker *tracker,
|
|
struct seq_file *s)
|
|
{
|
|
struct nvgpu_rbtree_node *node;
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
|
|
while (node) {
|
|
struct nvgpu_mem_alloc *alloc =
|
|
nvgpu_mem_alloc_from_rbtree_node(node);
|
|
|
|
kmem_print_mem_alloc(g, alloc, s);
|
|
|
|
nvgpu_rbtree_enum_next(&node, node);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kmem_traces_show(struct seq_file *s, void *unused)
|
|
{
|
|
struct gk20a *g = s->private;
|
|
|
|
lock_tracker(g->vmallocs);
|
|
seq_puts(s, "Oustanding vmallocs:\n");
|
|
__kmem_traces_dump_tracker(g, g->vmallocs, s);
|
|
seq_puts(s, "\n");
|
|
unlock_tracker(g->vmallocs);
|
|
|
|
lock_tracker(g->kmallocs);
|
|
seq_puts(s, "Oustanding kmallocs:\n");
|
|
__kmem_traces_dump_tracker(g, g->kmallocs, s);
|
|
unlock_tracker(g->kmallocs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kmem_traces_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, __kmem_traces_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations __kmem_traces_fops = {
|
|
.open = __kmem_traces_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
void nvgpu_kmem_debugfs_init(struct device *dev)
|
|
{
|
|
struct gk20a_platform *plat = dev_get_drvdata(dev);
|
|
struct gk20a *g = get_gk20a(dev);
|
|
struct dentry *gpu_root = plat->debugfs;
|
|
struct dentry *node;
|
|
|
|
g->debugfs_kmem = debugfs_create_dir("kmem_tracking", gpu_root);
|
|
if (IS_ERR_OR_NULL(g->debugfs_kmem))
|
|
return;
|
|
|
|
node = debugfs_create_file(g->vmallocs->name, S_IRUGO,
|
|
g->debugfs_kmem,
|
|
g->vmallocs, &__kmem_tracking_fops);
|
|
node = debugfs_create_file(g->kmallocs->name, S_IRUGO,
|
|
g->debugfs_kmem,
|
|
g->kmallocs, &__kmem_tracking_fops);
|
|
node = debugfs_create_file("traces", S_IRUGO,
|
|
g->debugfs_kmem,
|
|
g, &__kmem_traces_fops);
|
|
}
|
|
#else
|
|
void nvgpu_kmem_debugfs_init(struct device *dev)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __do_check_for_outstanding_allocs(
|
|
struct gk20a *g,
|
|
struct nvgpu_mem_alloc_tracker *tracker,
|
|
const char *type, bool silent)
|
|
{
|
|
struct nvgpu_rbtree_node *node;
|
|
int count = 0;
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
|
|
while (node) {
|
|
struct nvgpu_mem_alloc *alloc =
|
|
nvgpu_mem_alloc_from_rbtree_node(node);
|
|
|
|
if (!silent)
|
|
kmem_print_mem_alloc(g, alloc, NULL);
|
|
|
|
count++;
|
|
nvgpu_rbtree_enum_next(&node, node);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* check_for_outstanding_allocs - Count and display outstanding allocs
|
|
*
|
|
* @g - The GPU.
|
|
* @silent - If set don't print anything about the allocs.
|
|
*
|
|
* Dump (or just count) the number of allocations left outstanding.
|
|
*/
|
|
static int check_for_outstanding_allocs(struct gk20a *g, bool silent)
|
|
{
|
|
int count = 0;
|
|
|
|
count += __do_check_for_outstanding_allocs(g, g->kmallocs, "kmalloc",
|
|
silent);
|
|
count += __do_check_for_outstanding_allocs(g, g->vmallocs, "vmalloc",
|
|
silent);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void do_nvgpu_kmem_cleanup(struct nvgpu_mem_alloc_tracker *tracker,
|
|
void (*force_free_func)(const void *))
|
|
{
|
|
struct nvgpu_rbtree_node *node;
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
|
|
while (node) {
|
|
struct nvgpu_mem_alloc *alloc =
|
|
nvgpu_mem_alloc_from_rbtree_node(node);
|
|
|
|
if (force_free_func)
|
|
force_free_func((void *)alloc->addr);
|
|
|
|
nvgpu_rbtree_unlink(node, &tracker->allocs);
|
|
kfree(alloc);
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nvgpu_kmem_cleanup - Cleanup the kmem tracking
|
|
*
|
|
* @g - The GPU.
|
|
* @force_free - If set will also free leaked objects if possible.
|
|
*
|
|
* Cleanup all of the allocs made by nvgpu_kmem tracking code. If @force_free
|
|
* is non-zero then the allocation made by nvgpu is also freed. This is risky,
|
|
* though, as it is possible that the memory is still in use by other parts of
|
|
* the GPU driver not aware that this has happened.
|
|
*
|
|
* In theory it should be fine if the GPU driver has been deinitialized and
|
|
* there are no bugs in that code. However, if there are any bugs in that code
|
|
* then they could likely manifest as odd crashes indeterminate amounts of time
|
|
* in the future. So use @force_free at your own risk.
|
|
*/
|
|
static void nvgpu_kmem_cleanup(struct gk20a *g, bool force_free)
|
|
{
|
|
do_nvgpu_kmem_cleanup(g->kmallocs, force_free ? kfree : NULL);
|
|
do_nvgpu_kmem_cleanup(g->vmallocs, force_free ? vfree : NULL);
|
|
}
|
|
|
|
void nvgpu_kmem_fini(struct gk20a *g, int flags)
|
|
{
|
|
int count;
|
|
bool silent, force_free;
|
|
|
|
if (!flags)
|
|
return;
|
|
|
|
silent = !(flags & NVGPU_KMEM_FINI_DUMP_ALLOCS);
|
|
force_free = !!(flags & NVGPU_KMEM_FINI_FORCE_CLEANUP);
|
|
|
|
count = check_for_outstanding_allocs(g, silent);
|
|
nvgpu_kmem_cleanup(g, force_free);
|
|
|
|
/*
|
|
* If we leak objects we can either BUG() out or just WARN(). In general
|
|
* it doesn't make sense to BUG() on here since leaking a few objects
|
|
* won't crash the kernel but it can be helpful for development.
|
|
*
|
|
* If neither flag is set then we just silently do nothing.
|
|
*/
|
|
if (count > 0) {
|
|
if (flags & NVGPU_KMEM_FINI_WARN) {
|
|
WARN(1, "Letting %d allocs leak!!\n", count);
|
|
} else if (flags & NVGPU_KMEM_FINI_BUG) {
|
|
nvgpu_err(g, "Letting %d allocs leak!!\n", count);
|
|
BUG();
|
|
}
|
|
}
|
|
}
|
|
|
|
int nvgpu_kmem_init(struct gk20a *g)
|
|
{
|
|
int err;
|
|
|
|
g->vmallocs = kzalloc(sizeof(*g->vmallocs), GFP_KERNEL);
|
|
g->kmallocs = kzalloc(sizeof(*g->kmallocs), GFP_KERNEL);
|
|
|
|
if (!g->vmallocs || !g->kmallocs) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
g->vmallocs->name = "vmalloc";
|
|
g->kmallocs->name = "kmalloc";
|
|
|
|
g->vmallocs->allocs = NULL;
|
|
g->kmallocs->allocs = NULL;
|
|
|
|
mutex_init(&g->vmallocs->lock);
|
|
mutex_init(&g->kmallocs->lock);
|
|
|
|
g->vmallocs->min_alloc = PAGE_SIZE;
|
|
g->kmallocs->min_alloc = KMALLOC_MIN_SIZE;
|
|
|
|
/*
|
|
* This needs to go after all the other initialization since they use
|
|
* the nvgpu_kzalloc() API.
|
|
*/
|
|
g->vmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
|
|
sizeof(struct nvgpu_mem_alloc));
|
|
g->kmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
|
|
sizeof(struct nvgpu_mem_alloc));
|
|
|
|
if (!g->vmallocs->allocs_cache || !g->kmallocs->allocs_cache) {
|
|
err = -ENOMEM;
|
|
if (g->vmallocs->allocs_cache)
|
|
nvgpu_kmem_cache_destroy(g->vmallocs->allocs_cache);
|
|
if (g->kmallocs->allocs_cache)
|
|
nvgpu_kmem_cache_destroy(g->kmallocs->allocs_cache);
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (g->vmallocs)
|
|
kfree(g->vmallocs);
|
|
if (g->kmallocs)
|
|
kfree(g->kmallocs);
|
|
return err;
|
|
}
|
|
|
|
#else /* !CONFIG_NVGPU_TRACK_MEM_USAGE */
|
|
|
|
int nvgpu_kmem_init(struct gk20a *g)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_kmem_fini(struct gk20a *g, int flags)
|
|
{
|
|
}
|
|
#endif /* CONFIG_NVGPU_TRACK_MEM_USAGE */
|
|
|
|
struct nvgpu_kmem_cache *nvgpu_kmem_cache_create(struct gk20a *g, size_t size)
|
|
{
|
|
struct nvgpu_kmem_cache *cache =
|
|
nvgpu_kzalloc(g, sizeof(struct nvgpu_kmem_cache));
|
|
|
|
if (!cache)
|
|
return NULL;
|
|
|
|
cache->g = g;
|
|
|
|
snprintf(cache->name, sizeof(cache->name),
|
|
"nvgpu-cache-0x%p-%d-%d", g, (int)size,
|
|
atomic_inc_return(&kmem_cache_id));
|
|
cache->cache = kmem_cache_create(cache->name,
|
|
size, size, 0, NULL);
|
|
if (!cache->cache) {
|
|
nvgpu_kfree(g, cache);
|
|
return NULL;
|
|
}
|
|
|
|
return cache;
|
|
}
|
|
|
|
void nvgpu_kmem_cache_destroy(struct nvgpu_kmem_cache *cache)
|
|
{
|
|
struct gk20a *g = cache->g;
|
|
|
|
kmem_cache_destroy(cache->cache);
|
|
nvgpu_kfree(g, cache);
|
|
}
|
|
|
|
void *nvgpu_kmem_cache_alloc(struct nvgpu_kmem_cache *cache)
|
|
{
|
|
return kmem_cache_alloc(cache->cache, GFP_KERNEL);
|
|
}
|
|
|
|
void nvgpu_kmem_cache_free(struct nvgpu_kmem_cache *cache, void *ptr)
|
|
{
|
|
kmem_cache_free(cache->cache, ptr);
|
|
}
|