Files
linux-nvgpu/drivers/gpu/nvgpu/common/linux/channel.c
Konsta Holtta bac51e8081 gpu: nvgpu: allow syncfds as prefences on deterministic
Accept submits on deterministic channels even when the prefence is a
syncfd, but only if it has just one fence inside.

Because NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE is shared between pre- and
postfences, a postfence (SUBMIT_GPFIFO_FLAGS_FENCE_GET) is not allowed
at the same time though.

The sync framework is problematic for deterministic channels due to
certain allocations that are not controlled by nvgpu. However, that only
applies for postfences, yet we've disallowed FLAGS_SYNC_FENCE for
deterministic channels even when a postfence is not needed.

Bug 200390539

Change-Id: I099bbadc11cc2f093fb2c585f3bd909143238d57
Signed-off-by: Konsta Holtta <kholtta@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1680271
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-03-23 17:18:15 -07:00

940 lines
25 KiB
C

/*
* Copyright (c) 2017, NVIDIA Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <nvgpu/enabled.h>
#include <nvgpu/debug.h>
#include <nvgpu/ltc.h>
#include <nvgpu/error_notifier.h>
/*
* This is required for nvgpu_vm_find_buf() which is used in the tracing
* code. Once we can get and access userspace buffers without requiring
* direct dma_buf usage this can be removed.
*/
#include <nvgpu/linux/vm.h>
#include "gk20a/gk20a.h"
#include "channel.h"
#include "ioctl_channel.h"
#include "os_linux.h"
#include <nvgpu/hw/gk20a/hw_pbdma_gk20a.h>
#include <linux/uaccess.h>
#include <linux/dma-buf.h>
#include <trace/events/gk20a.h>
#include <uapi/linux/nvgpu.h>
/*
* API to convert error_notifiers in common code and of the form
* NVGPU_ERR_NOTIFIER_* into Linux specific error_notifiers exposed to user
* space and of the form NVGPU_CHANNEL_*
*/
static u32 nvgpu_error_notifier_to_channel_notifier(u32 error_notifier)
{
switch (error_notifier) {
case NVGPU_ERR_NOTIFIER_FIFO_ERROR_IDLE_TIMEOUT:
return NVGPU_CHANNEL_FIFO_ERROR_IDLE_TIMEOUT;
case NVGPU_ERR_NOTIFIER_GR_ERROR_SW_METHOD:
return NVGPU_CHANNEL_GR_ERROR_SW_METHOD;
case NVGPU_ERR_NOTIFIER_GR_ERROR_SW_NOTIFY:
return NVGPU_CHANNEL_GR_ERROR_SW_NOTIFY;
case NVGPU_ERR_NOTIFIER_GR_EXCEPTION:
return NVGPU_CHANNEL_GR_EXCEPTION;
case NVGPU_ERR_NOTIFIER_GR_SEMAPHORE_TIMEOUT:
return NVGPU_CHANNEL_GR_SEMAPHORE_TIMEOUT;
case NVGPU_ERR_NOTIFIER_GR_ILLEGAL_NOTIFY:
return NVGPU_CHANNEL_GR_ILLEGAL_NOTIFY;
case NVGPU_ERR_NOTIFIER_FIFO_ERROR_MMU_ERR_FLT:
return NVGPU_CHANNEL_FIFO_ERROR_MMU_ERR_FLT;
case NVGPU_ERR_NOTIFIER_PBDMA_ERROR:
return NVGPU_CHANNEL_PBDMA_ERROR;
case NVGPU_ERR_NOTIFIER_FECS_ERR_UNIMP_FIRMWARE_METHOD:
return NVGPU_CHANNEL_FECS_ERR_UNIMP_FIRMWARE_METHOD;
case NVGPU_ERR_NOTIFIER_RESETCHANNEL_VERIF_ERROR:
return NVGPU_CHANNEL_RESETCHANNEL_VERIF_ERROR;
case NVGPU_ERR_NOTIFIER_PBDMA_PUSHBUFFER_CRC_MISMATCH:
return NVGPU_CHANNEL_PBDMA_PUSHBUFFER_CRC_MISMATCH;
}
pr_warn("%s: invalid error_notifier requested %u\n", __func__, error_notifier);
return error_notifier;
}
/**
* nvgpu_set_error_notifier_locked()
* Should be called with ch->error_notifier_mutex held
*
* error should be of the form NVGPU_ERR_NOTIFIER_*
*/
void nvgpu_set_error_notifier_locked(struct channel_gk20a *ch, u32 error)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
error = nvgpu_error_notifier_to_channel_notifier(error);
if (priv->error_notifier.dmabuf) {
struct nvgpu_notification *notification =
priv->error_notifier.notification;
struct timespec time_data;
u64 nsec;
getnstimeofday(&time_data);
nsec = ((u64)time_data.tv_sec) * 1000000000u +
(u64)time_data.tv_nsec;
notification->time_stamp.nanoseconds[0] =
(u32)nsec;
notification->time_stamp.nanoseconds[1] =
(u32)(nsec >> 32);
notification->info32 = error;
notification->status = 0xffff;
nvgpu_err(ch->g,
"error notifier set to %d for ch %d", error, ch->chid);
}
}
/* error should be of the form NVGPU_ERR_NOTIFIER_* */
void nvgpu_set_error_notifier(struct channel_gk20a *ch, u32 error)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
nvgpu_mutex_acquire(&priv->error_notifier.mutex);
nvgpu_set_error_notifier_locked(ch, error);
nvgpu_mutex_release(&priv->error_notifier.mutex);
}
void nvgpu_set_error_notifier_if_empty(struct channel_gk20a *ch, u32 error)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
nvgpu_mutex_acquire(&priv->error_notifier.mutex);
if (priv->error_notifier.dmabuf) {
struct nvgpu_notification *notification =
priv->error_notifier.notification;
/* Don't overwrite error flag if it is already set */
if (notification->status != 0xffff)
nvgpu_set_error_notifier_locked(ch, error);
}
nvgpu_mutex_release(&priv->error_notifier.mutex);
}
/* error_notifier should be of the form NVGPU_ERR_NOTIFIER_* */
bool nvgpu_is_error_notifier_set(struct channel_gk20a *ch, u32 error_notifier)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
bool notifier_set = false;
error_notifier = nvgpu_error_notifier_to_channel_notifier(error_notifier);
nvgpu_mutex_acquire(&priv->error_notifier.mutex);
if (priv->error_notifier.dmabuf) {
struct nvgpu_notification *notification =
priv->error_notifier.notification;
u32 err = notification->info32;
if (err == error_notifier)
notifier_set = true;
}
nvgpu_mutex_release(&priv->error_notifier.mutex);
return notifier_set;
}
static void gk20a_channel_update_runcb_fn(struct work_struct *work)
{
struct nvgpu_channel_completion_cb *completion_cb =
container_of(work, struct nvgpu_channel_completion_cb, work);
struct nvgpu_channel_linux *priv =
container_of(completion_cb,
struct nvgpu_channel_linux, completion_cb);
struct channel_gk20a *ch = priv->ch;
void (*fn)(struct channel_gk20a *, void *);
void *user_data;
nvgpu_spinlock_acquire(&completion_cb->lock);
fn = completion_cb->fn;
user_data = completion_cb->user_data;
nvgpu_spinlock_release(&completion_cb->lock);
if (fn)
fn(ch, user_data);
}
static void nvgpu_channel_work_completion_init(struct channel_gk20a *ch)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
priv->completion_cb.fn = NULL;
priv->completion_cb.user_data = NULL;
nvgpu_spinlock_init(&priv->completion_cb.lock);
INIT_WORK(&priv->completion_cb.work, gk20a_channel_update_runcb_fn);
}
static void nvgpu_channel_work_completion_clear(struct channel_gk20a *ch)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
nvgpu_spinlock_acquire(&priv->completion_cb.lock);
priv->completion_cb.fn = NULL;
priv->completion_cb.user_data = NULL;
nvgpu_spinlock_release(&priv->completion_cb.lock);
cancel_work_sync(&priv->completion_cb.work);
}
static void nvgpu_channel_work_completion_signal(struct channel_gk20a *ch)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
if (priv->completion_cb.fn)
schedule_work(&priv->completion_cb.work);
}
static void nvgpu_channel_work_completion_cancel_sync(struct channel_gk20a *ch)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
if (priv->completion_cb.fn)
cancel_work_sync(&priv->completion_cb.work);
}
struct channel_gk20a *gk20a_open_new_channel_with_cb(struct gk20a *g,
void (*update_fn)(struct channel_gk20a *, void *),
void *update_fn_data,
int runlist_id,
bool is_privileged_channel)
{
struct channel_gk20a *ch;
struct nvgpu_channel_linux *priv;
ch = gk20a_open_new_channel(g, runlist_id, is_privileged_channel);
if (ch) {
priv = ch->os_priv;
nvgpu_spinlock_acquire(&priv->completion_cb.lock);
priv->completion_cb.fn = update_fn;
priv->completion_cb.user_data = update_fn_data;
nvgpu_spinlock_release(&priv->completion_cb.lock);
}
return ch;
}
static void nvgpu_channel_open_linux(struct channel_gk20a *ch)
{
}
static void nvgpu_channel_close_linux(struct channel_gk20a *ch)
{
nvgpu_channel_work_completion_clear(ch);
#if defined(CONFIG_GK20A_CYCLE_STATS)
gk20a_channel_free_cycle_stats_buffer(ch);
gk20a_channel_free_cycle_stats_snapshot(ch);
#endif
}
static int nvgpu_channel_alloc_linux(struct gk20a *g, struct channel_gk20a *ch)
{
struct nvgpu_channel_linux *priv;
int err;
priv = nvgpu_kzalloc(g, sizeof(*priv));
if (!priv)
return -ENOMEM;
ch->os_priv = priv;
priv->ch = ch;
err = nvgpu_mutex_init(&priv->error_notifier.mutex);
if (err) {
nvgpu_kfree(g, priv);
return err;
}
nvgpu_channel_work_completion_init(ch);
return 0;
}
static void nvgpu_channel_free_linux(struct gk20a *g, struct channel_gk20a *ch)
{
struct nvgpu_channel_linux *priv = ch->os_priv;
nvgpu_mutex_destroy(&priv->error_notifier.mutex);
nvgpu_kfree(g, priv);
}
int nvgpu_init_channel_support_linux(struct nvgpu_os_linux *l)
{
struct gk20a *g = &l->g;
struct fifo_gk20a *f = &g->fifo;
int chid;
int err;
for (chid = 0; chid < (int)f->num_channels; chid++) {
struct channel_gk20a *ch = &f->channel[chid];
err = nvgpu_channel_alloc_linux(g, ch);
if (err)
goto err_clean;
}
g->os_channel.open = nvgpu_channel_open_linux;
g->os_channel.close = nvgpu_channel_close_linux;
g->os_channel.work_completion_signal =
nvgpu_channel_work_completion_signal;
g->os_channel.work_completion_cancel_sync =
nvgpu_channel_work_completion_cancel_sync;
return 0;
err_clean:
for (; chid >= 0; chid--) {
struct channel_gk20a *ch = &f->channel[chid];
nvgpu_channel_free_linux(g, ch);
}
return err;
}
void nvgpu_remove_channel_support_linux(struct nvgpu_os_linux *l)
{
struct gk20a *g = &l->g;
struct fifo_gk20a *f = &g->fifo;
unsigned int chid;
for (chid = 0; chid < f->num_channels; chid++) {
struct channel_gk20a *ch = &f->channel[chid];
nvgpu_channel_free_linux(g, ch);
}
}
u32 nvgpu_get_gpfifo_entry_size(void)
{
return sizeof(struct nvgpu_gpfifo);
}
#ifdef CONFIG_DEBUG_FS
static void trace_write_pushbuffer(struct channel_gk20a *c,
struct nvgpu_gpfifo *g)
{
void *mem = NULL;
unsigned int words;
u64 offset;
struct dma_buf *dmabuf = NULL;
if (gk20a_debug_trace_cmdbuf) {
u64 gpu_va = (u64)g->entry0 |
(u64)((u64)pbdma_gp_entry1_get_hi_v(g->entry1) << 32);
int err;
words = pbdma_gp_entry1_length_v(g->entry1);
err = nvgpu_vm_find_buf(c->vm, gpu_va, &dmabuf, &offset);
if (!err)
mem = dma_buf_vmap(dmabuf);
}
if (mem) {
u32 i;
/*
* Write in batches of 128 as there seems to be a limit
* of how much you can output to ftrace at once.
*/
for (i = 0; i < words; i += 128U) {
trace_gk20a_push_cmdbuf(
c->g->name,
0,
min(words - i, 128U),
offset + i * sizeof(u32),
mem);
}
dma_buf_vunmap(dmabuf, mem);
}
}
#endif
static void trace_write_pushbuffer_range(struct channel_gk20a *c,
struct nvgpu_gpfifo *g,
struct nvgpu_gpfifo __user *user_gpfifo,
int offset,
int count)
{
#ifdef CONFIG_DEBUG_FS
u32 size;
int i;
struct nvgpu_gpfifo *gp;
bool gpfifo_allocated = false;
if (!gk20a_debug_trace_cmdbuf)
return;
if (!g && !user_gpfifo)
return;
if (!g) {
size = count * sizeof(struct nvgpu_gpfifo);
if (size) {
g = nvgpu_big_malloc(c->g, size);
if (!g)
return;
if (copy_from_user(g, user_gpfifo, size)) {
nvgpu_big_free(c->g, g);
return;
}
}
gpfifo_allocated = true;
}
gp = g + offset;
for (i = 0; i < count; i++, gp++)
trace_write_pushbuffer(c, gp);
if (gpfifo_allocated)
nvgpu_big_free(c->g, g);
#endif
}
/*
* Handle the submit synchronization - pre-fences and post-fences.
*/
static int gk20a_submit_prepare_syncs(struct channel_gk20a *c,
struct nvgpu_fence *fence,
struct channel_gk20a_job *job,
struct priv_cmd_entry **wait_cmd,
struct priv_cmd_entry **incr_cmd,
struct gk20a_fence **post_fence,
bool force_need_sync_fence,
bool register_irq,
u32 flags)
{
struct gk20a *g = c->g;
bool need_sync_fence = false;
bool new_sync_created = false;
int wait_fence_fd = -1;
int err = 0;
bool need_wfi = !(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SUPPRESS_WFI);
bool pre_alloc_enabled = channel_gk20a_is_prealloc_enabled(c);
/*
* If user wants to always allocate sync_fence_fds then respect that;
* otherwise, allocate sync_fence_fd based on user flags.
*/
if (force_need_sync_fence)
need_sync_fence = true;
if (g->aggressive_sync_destroy_thresh) {
nvgpu_mutex_acquire(&c->sync_lock);
if (!c->sync) {
c->sync = gk20a_channel_sync_create(c, false);
if (!c->sync) {
err = -ENOMEM;
nvgpu_mutex_release(&c->sync_lock);
goto fail;
}
new_sync_created = true;
}
nvgpu_atomic_inc(&c->sync->refcount);
nvgpu_mutex_release(&c->sync_lock);
}
if (g->ops.fifo.resetup_ramfc && new_sync_created) {
err = g->ops.fifo.resetup_ramfc(c);
if (err)
goto fail;
}
/*
* Optionally insert syncpt wait in the beginning of gpfifo submission
* when user requested and the wait hasn't expired. Validate that the id
* makes sense, elide if not. The only reason this isn't being
* unceremoniously killed is to keep running some tests which trigger
* this condition.
*/
if (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT) {
int max_wait_cmds = c->deterministic ? 1 : 0;
if (!pre_alloc_enabled)
job->wait_cmd = nvgpu_kzalloc(g,
sizeof(struct priv_cmd_entry));
if (!job->wait_cmd) {
err = -ENOMEM;
goto fail;
}
if (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE) {
wait_fence_fd = fence->id;
err = c->sync->wait_fd(c->sync, wait_fence_fd,
job->wait_cmd, max_wait_cmds);
} else {
err = c->sync->wait_syncpt(c->sync, fence->id,
fence->value,
job->wait_cmd);
}
if (err)
goto clean_up_wait_cmd;
if (job->wait_cmd->valid)
*wait_cmd = job->wait_cmd;
}
if ((flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET) &&
(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE))
need_sync_fence = true;
/*
* Always generate an increment at the end of a GPFIFO submission. This
* is used to keep track of method completion for idle railgating. The
* sync_pt/semaphore PB is added to the GPFIFO later on in submit.
*/
job->post_fence = gk20a_alloc_fence(c);
if (!job->post_fence) {
err = -ENOMEM;
goto clean_up_wait_cmd;
}
if (!pre_alloc_enabled)
job->incr_cmd = nvgpu_kzalloc(g, sizeof(struct priv_cmd_entry));
if (!job->incr_cmd) {
err = -ENOMEM;
goto clean_up_post_fence;
}
if (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET)
err = c->sync->incr_user(c->sync, wait_fence_fd, job->incr_cmd,
job->post_fence, need_wfi, need_sync_fence,
register_irq);
else
err = c->sync->incr(c->sync, job->incr_cmd,
job->post_fence, need_sync_fence,
register_irq);
if (!err) {
*incr_cmd = job->incr_cmd;
*post_fence = job->post_fence;
} else
goto clean_up_incr_cmd;
return 0;
clean_up_incr_cmd:
free_priv_cmdbuf(c, job->incr_cmd);
if (!pre_alloc_enabled)
job->incr_cmd = NULL;
clean_up_post_fence:
gk20a_fence_put(job->post_fence);
job->post_fence = NULL;
clean_up_wait_cmd:
free_priv_cmdbuf(c, job->wait_cmd);
if (!pre_alloc_enabled)
job->wait_cmd = NULL;
fail:
*wait_cmd = NULL;
return err;
}
static void gk20a_submit_append_priv_cmdbuf(struct channel_gk20a *c,
struct priv_cmd_entry *cmd)
{
struct gk20a *g = c->g;
struct nvgpu_mem *gpfifo_mem = &c->gpfifo.mem;
struct nvgpu_gpfifo x = {
.entry0 = u64_lo32(cmd->gva),
.entry1 = u64_hi32(cmd->gva) |
pbdma_gp_entry1_length_f(cmd->size)
};
nvgpu_mem_wr_n(g, gpfifo_mem, c->gpfifo.put * sizeof(x),
&x, sizeof(x));
if (cmd->mem->aperture == APERTURE_SYSMEM)
trace_gk20a_push_cmdbuf(g->name, 0, cmd->size, 0,
cmd->mem->cpu_va + cmd->off * sizeof(u32));
c->gpfifo.put = (c->gpfifo.put + 1) & (c->gpfifo.entry_num - 1);
}
/*
* Copy source gpfifo entries into the gpfifo ring buffer, potentially
* splitting into two memcpys to handle wrap-around.
*/
static int gk20a_submit_append_gpfifo(struct channel_gk20a *c,
struct nvgpu_gpfifo *kern_gpfifo,
struct nvgpu_gpfifo __user *user_gpfifo,
u32 num_entries)
{
/* byte offsets */
u32 gpfifo_size = c->gpfifo.entry_num * sizeof(struct nvgpu_gpfifo);
u32 len = num_entries * sizeof(struct nvgpu_gpfifo);
u32 start = c->gpfifo.put * sizeof(struct nvgpu_gpfifo);
u32 end = start + len; /* exclusive */
struct nvgpu_mem *gpfifo_mem = &c->gpfifo.mem;
struct nvgpu_gpfifo *cpu_src;
int err;
if (user_gpfifo && !c->gpfifo.pipe) {
/*
* This path (from userspace to sysmem) is special in order to
* avoid two copies unnecessarily (from user to pipe, then from
* pipe to gpu sysmem buffer).
*
* As a special case, the pipe buffer exists if PRAMIN writes
* are forced, although the buffers may not be in vidmem in
* that case.
*/
if (end > gpfifo_size) {
/* wrap-around */
int length0 = gpfifo_size - start;
int length1 = len - length0;
void __user *user2 = (u8 __user *)user_gpfifo + length0;
err = copy_from_user(gpfifo_mem->cpu_va + start,
user_gpfifo, length0);
if (err)
return err;
err = copy_from_user(gpfifo_mem->cpu_va,
user2, length1);
if (err)
return err;
} else {
err = copy_from_user(gpfifo_mem->cpu_va + start,
user_gpfifo, len);
if (err)
return err;
}
trace_write_pushbuffer_range(c, NULL, user_gpfifo,
0, num_entries);
goto out;
} else if (user_gpfifo) {
/* from userspace to vidmem or sysmem when pramin forced, use
* the common copy path below */
err = copy_from_user(c->gpfifo.pipe, user_gpfifo, len);
if (err)
return err;
cpu_src = c->gpfifo.pipe;
} else {
/* from kernel to either sysmem or vidmem, don't need
* copy_from_user so use the common path below */
cpu_src = kern_gpfifo;
}
if (end > gpfifo_size) {
/* wrap-around */
int length0 = gpfifo_size - start;
int length1 = len - length0;
void *src2 = (u8 *)cpu_src + length0;
nvgpu_mem_wr_n(c->g, gpfifo_mem, start, cpu_src, length0);
nvgpu_mem_wr_n(c->g, gpfifo_mem, 0, src2, length1);
} else {
nvgpu_mem_wr_n(c->g, gpfifo_mem, start, cpu_src, len);
}
trace_write_pushbuffer_range(c, cpu_src, NULL, 0, num_entries);
out:
c->gpfifo.put = (c->gpfifo.put + num_entries) &
(c->gpfifo.entry_num - 1);
return 0;
}
int gk20a_submit_channel_gpfifo(struct channel_gk20a *c,
struct nvgpu_gpfifo *gpfifo,
struct nvgpu_submit_gpfifo_args *args,
u32 num_entries,
u32 flags,
struct nvgpu_fence *fence,
struct gk20a_fence **fence_out,
bool force_need_sync_fence,
struct fifo_profile_gk20a *profile)
{
struct gk20a *g = c->g;
struct priv_cmd_entry *wait_cmd = NULL;
struct priv_cmd_entry *incr_cmd = NULL;
struct gk20a_fence *post_fence = NULL;
struct channel_gk20a_job *job = NULL;
/* we might need two extra gpfifo entries - one for pre fence
* and one for post fence. */
const int extra_entries = 2;
bool skip_buffer_refcounting = (flags &
NVGPU_SUBMIT_GPFIFO_FLAGS_SKIP_BUFFER_REFCOUNTING);
int err = 0;
bool need_job_tracking;
bool need_deferred_cleanup = false;
struct nvgpu_gpfifo __user *user_gpfifo = args ?
(struct nvgpu_gpfifo __user *)(uintptr_t)args->gpfifo : NULL;
if (nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING))
return -ENODEV;
if (c->has_timedout)
return -ETIMEDOUT;
if (!nvgpu_mem_is_valid(&c->gpfifo.mem))
return -ENOMEM;
/* fifo not large enough for request. Return error immediately.
* Kernel can insert gpfifo entries before and after user gpfifos.
* So, add extra_entries in user request. Also, HW with fifo size N
* can accept only N-1 entreis and so the below condition */
if (c->gpfifo.entry_num - 1 < num_entries + extra_entries) {
nvgpu_err(g, "not enough gpfifo space allocated");
return -ENOMEM;
}
if (!gpfifo && !args)
return -EINVAL;
if ((flags & (NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT |
NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET)) &&
!fence)
return -EINVAL;
/* an address space needs to have been bound at this point. */
if (!gk20a_channel_as_bound(c)) {
nvgpu_err(g,
"not bound to an address space at time of gpfifo"
" submission.");
return -EINVAL;
}
if (profile)
profile->timestamp[PROFILE_ENTRY] = sched_clock();
/* update debug settings */
nvgpu_ltc_sync_enabled(g);
gk20a_dbg_info("channel %d", c->chid);
/*
* Job tracking is necessary for any of the following conditions:
* - pre- or post-fence functionality
* - channel wdt
* - GPU rail-gating with non-deterministic channels
* - buffer refcounting
*
* If none of the conditions are met, then job tracking is not
* required and a fast submit can be done (ie. only need to write
* out userspace GPFIFO entries and update GP_PUT).
*/
need_job_tracking = (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT) ||
(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET) ||
c->timeout.enabled ||
(g->can_railgate && !c->deterministic) ||
!skip_buffer_refcounting;
if (need_job_tracking) {
bool need_sync_framework = false;
/*
* If the channel is to have deterministic latency and
* job tracking is required, the channel must have
* pre-allocated resources. Otherwise, we fail the submit here
*/
if (c->deterministic && !channel_gk20a_is_prealloc_enabled(c))
return -EINVAL;
need_sync_framework = force_need_sync_fence ||
gk20a_channel_sync_needs_sync_framework(g) ||
(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE &&
flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET);
/*
* Deferred clean-up is necessary for any of the following
* conditions:
* - channel's deterministic flag is not set
* - dependency on sync framework, which could make the
* behavior of the clean-up operation non-deterministic
* (should not be performed in the submit path)
* - channel wdt
* - GPU rail-gating with non-deterministic channels
* - buffer refcounting
*
* If none of the conditions are met, then deferred clean-up
* is not required, and we clean-up one job-tracking
* resource in the submit path.
*/
need_deferred_cleanup = !c->deterministic ||
need_sync_framework ||
c->timeout.enabled ||
(g->can_railgate &&
!c->deterministic) ||
!skip_buffer_refcounting;
/*
* For deterministic channels, we don't allow deferred clean_up
* processing to occur. In cases we hit this, we fail the submit
*/
if (c->deterministic && need_deferred_cleanup)
return -EINVAL;
if (!c->deterministic) {
/*
* Get a power ref unless this is a deterministic
* channel that holds them during the channel lifetime.
* This one is released by gk20a_channel_clean_up_jobs,
* via syncpt or sema interrupt, whichever is used.
*/
err = gk20a_busy(g);
if (err) {
nvgpu_err(g,
"failed to host gk20a to submit gpfifo, process %s",
current->comm);
return err;
}
}
if (!need_deferred_cleanup) {
/* clean up a single job */
gk20a_channel_clean_up_jobs(c, false);
}
}
/* Grab access to HW to deal with do_idle */
if (c->deterministic)
nvgpu_rwsem_down_read(&g->deterministic_busy);
if (c->deterministic && c->deterministic_railgate_allowed) {
/*
* Nope - this channel has dropped its own power ref. As
* deterministic submits don't hold power on per each submitted
* job like normal ones do, the GPU might railgate any time now
* and thus submit is disallowed.
*/
err = -EINVAL;
goto clean_up;
}
trace_gk20a_channel_submit_gpfifo(g->name,
c->chid,
num_entries,
flags,
fence ? fence->id : 0,
fence ? fence->value : 0);
gk20a_dbg_info("pre-submit put %d, get %d, size %d",
c->gpfifo.put, c->gpfifo.get, c->gpfifo.entry_num);
/*
* Make sure we have enough space for gpfifo entries. Check cached
* values first and then read from HW. If no space, return EAGAIN
* and let userpace decide to re-try request or not.
*/
if (nvgpu_gp_free_count(c) < num_entries + extra_entries) {
if (nvgpu_get_gp_free_count(c) < num_entries + extra_entries) {
err = -EAGAIN;
goto clean_up;
}
}
if (c->has_timedout) {
err = -ETIMEDOUT;
goto clean_up;
}
if (need_job_tracking) {
err = channel_gk20a_alloc_job(c, &job);
if (err)
goto clean_up;
err = gk20a_submit_prepare_syncs(c, fence, job,
&wait_cmd, &incr_cmd,
&post_fence,
force_need_sync_fence,
need_deferred_cleanup,
flags);
if (err)
goto clean_up_job;
}
if (profile)
profile->timestamp[PROFILE_JOB_TRACKING] = sched_clock();
if (wait_cmd)
gk20a_submit_append_priv_cmdbuf(c, wait_cmd);
if (gpfifo || user_gpfifo)
err = gk20a_submit_append_gpfifo(c, gpfifo, user_gpfifo,
num_entries);
if (err)
goto clean_up_job;
/*
* And here's where we add the incr_cmd we generated earlier. It should
* always run!
*/
if (incr_cmd)
gk20a_submit_append_priv_cmdbuf(c, incr_cmd);
if (fence_out)
*fence_out = gk20a_fence_get(post_fence);
if (need_job_tracking)
/* TODO! Check for errors... */
gk20a_channel_add_job(c, job, skip_buffer_refcounting);
if (profile)
profile->timestamp[PROFILE_APPEND] = sched_clock();
g->ops.fifo.userd_gp_put(g, c);
if ((NVGPU_SUBMIT_GPFIFO_FLAGS_RESCHEDULE_RUNLIST & flags) &&
g->ops.fifo.reschedule_runlist)
g->ops.fifo.reschedule_runlist(g, c->runlist_id);
/* No hw access beyond this point */
if (c->deterministic)
nvgpu_rwsem_up_read(&g->deterministic_busy);
trace_gk20a_channel_submitted_gpfifo(g->name,
c->chid,
num_entries,
flags,
post_fence ? post_fence->syncpt_id : 0,
post_fence ? post_fence->syncpt_value : 0);
gk20a_dbg_info("post-submit put %d, get %d, size %d",
c->gpfifo.put, c->gpfifo.get, c->gpfifo.entry_num);
if (profile)
profile->timestamp[PROFILE_END] = sched_clock();
gk20a_dbg_fn("done");
return err;
clean_up_job:
channel_gk20a_free_job(c, job);
clean_up:
gk20a_dbg_fn("fail");
gk20a_fence_put(post_fence);
if (c->deterministic)
nvgpu_rwsem_up_read(&g->deterministic_busy);
else if (need_deferred_cleanup)
gk20a_idle(g);
return err;
}