Files
linux-nvgpu/drivers/gpu/nvgpu/hal/clk/clk_mon_tu104.c
Jinesh Parakh bb73cf9597 gpu: nvgpu: Fixed out-of-bounds Coverity Defects
Fix following Coverity Defects:
clk_mon_tu104.c : Out-of-bounds read and Out-of-bounds access

CID 10061400
CID 10061401

Bug 3460991

Changed the datatype of domain_mask from u32 to unsigned long
to solve the out-of-bounds defect.

Signed-off-by: Jinesh Parakh <jparakh@nvidia.com>
Change-Id: I1c43bd90053264ee4104ca8c3a33d9ea07f04045
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2708765
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2022-05-25 11:44:59 -07:00

299 lines
8.7 KiB
C

/*
* TU104 Clocks Monitor
*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/kmem.h>
#include <nvgpu/io.h>
#include <nvgpu/list.h>
#include <nvgpu/soc.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/clk_mon.h>
#include <nvgpu/hw/tu104/hw_trim_tu104.h>
#include "clk_mon_tu104.h"
/**
* Mapping between the clk domain and the various clock monitor registers
* The rows represent clock domains starting from index 0 and column represent
* the various registers each domain has, non available domains are set to 0
* for easy accessing, refer nvgpu_clk_mon_init_domains() for valid domains.
*/
static u32 clock_mon_map_tu104[CLK_CLOCK_MON_DOMAIN_COUNT]
[CLK_CLOCK_MON_REG_TYPE_COUNT] = {
{
trim_gpcclk_fault_threshold_high_r(),
trim_gpcclk_fault_threshold_low_r(),
trim_gpcclk_fault_status_r(),
trim_gpcclk_fault_priv_level_mask_r(),
},
{
trim_xbarclk_fault_threshold_high_r(),
trim_xbarclk_fault_threshold_low_r(),
trim_xbarclk_fault_status_r(),
trim_xbarclk_fault_priv_level_mask_r(),
},
{
trim_sysclk_fault_threshold_high_r(),
trim_sysclk_fault_threshold_low_r(),
trim_sysclk_fault_status_r(),
trim_sysclk_fault_priv_level_mask_r(),
},
{
trim_hubclk_fault_threshold_high_r(),
trim_hubclk_fault_threshold_low_r(),
trim_hubclk_fault_status_r(),
trim_hubclk_fault_priv_level_mask_r(),
},
{
trim_dramclk_fault_threshold_high_r(),
trim_dramclk_fault_threshold_low_r(),
trim_dramclk_fault_status_r(),
trim_dramclk_fault_priv_level_mask_r(),
},
{
trim_hostclk_fault_threshold_high_r(),
trim_hostclk_fault_threshold_low_r(),
trim_hostclk_fault_status_r(),
trim_hostclk_fault_priv_level_mask_r(),
},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{
trim_utilsclk_fault_threshold_high_r(),
trim_utilsclk_fault_threshold_low_r(),
trim_utilsclk_fault_status_r(),
trim_utilsclk_fault_priv_level_mask_r(),
},
{
trim_pwrclk_fault_threshold_high_r(),
trim_pwrclk_fault_threshold_low_r(),
trim_pwrclk_fault_status_r(),
trim_pwrclk_fault_priv_level_mask_r(),
},
{
trim_nvdclk_fault_threshold_high_r(),
trim_nvdclk_fault_threshold_low_r(),
trim_nvdclk_fault_status_r(),
trim_nvdclk_fault_priv_level_mask_r(),
},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{
trim_xclk_fault_threshold_high_r(),
trim_xclk_fault_threshold_low_r(),
trim_xclk_fault_status_r(),
trim_xclk_fault_priv_level_mask_r(),
},
{
trim_nvl_commonclk_fault_threshold_high_r(),
trim_nvl_commonclk_fault_threshold_low_r(),
trim_nvl_commonclk_fault_status_r(),
trim_nvl_commonclk_fault_priv_level_mask_r(),
},
{
trim_pex_refclk_fault_threshold_high_r(),
trim_pex_refclk_fault_threshold_low_r(),
trim_pex_refclk_fault_status_r(),
trim_pex_refclk_fault_priv_level_mask_r(),
},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}
};
static u32 nvgpu_check_for_dc_fault(u32 data)
{
return (trim_fault_status_dc_v(data) ==
trim_fault_status_dc_true_v()) ?
trim_fault_status_dc_m() : 0U;
}
static u32 nvgpu_check_for_lower_threshold_fault(u32 data)
{
return (trim_fault_status_lower_threshold_v(data) ==
trim_fault_status_lower_threshold_true_v()) ?
trim_fault_status_lower_threshold_m() : 0U;
}
static u32 nvgpu_check_for_higher_threshold_fault(u32 data)
{
return (trim_fault_status_higher_threshold_v(data) ==
trim_fault_status_higher_threshold_true_v()) ?
trim_fault_status_higher_threshold_m() : 0U;
}
static u32 nvgpu_check_for_overflow_err(u32 data)
{
return (trim_fault_status_overflow_v(data) ==
trim_fault_status_overflow_true_v()) ?
trim_fault_status_overflow_m() : 0U;
}
static int nvgpu_clk_mon_get_fault(struct gk20a *g, u32 i, u32 data,
struct clk_domains_mon_status_params *clk_mon_status)
{
u32 reg_address;
int status = 0;
/* Fields for faults are same for all clock domains */
clk_mon_status->clk_mon_list[i].clk_domain_fault_status =
((nvgpu_check_for_dc_fault(data)) |
(nvgpu_check_for_lower_threshold_fault(data)) |
(nvgpu_check_for_higher_threshold_fault(data)) |
(nvgpu_check_for_overflow_err(data)));
nvgpu_err(g, "FMON faulted domain 0x%x value 0x%x",
clk_mon_status->clk_mon_list[i].clk_api_domain,
clk_mon_status->clk_mon_list[i].
clk_domain_fault_status);
/* Get the low threshold limit */
reg_address = clock_mon_map_tu104[i][FMON_THRESHOLD_LOW];
data = nvgpu_readl(g, reg_address);
clk_mon_status->clk_mon_list[i].low_threshold =
trim_fault_threshold_low_count_v(data);
/* Get the high threshold limit */
reg_address = clock_mon_map_tu104[i][FMON_THRESHOLD_HIGH];
data = nvgpu_readl(g, reg_address);
clk_mon_status->clk_mon_list[i].high_threshold =
trim_fault_threshold_high_count_v(data);
return status;
}
bool tu104_clk_mon_check_master_fault_status(struct gk20a *g)
{
u32 fmon_master_status = nvgpu_readl(g, trim_fmon_master_status_r());
if (trim_fmon_master_status_fault_out_v(fmon_master_status) ==
trim_fmon_master_status_fault_out_true_v()) {
return true;
}
return false;
}
int nvgpu_clk_mon_alloc_memory(struct gk20a *g)
{
struct clk_gk20a *clk = &g->clk;
/* If already allocated, do not re-allocate */
if (clk->clk_mon_status != NULL) {
return 0;
}
clk->clk_mon_status = nvgpu_kzalloc(g,
sizeof(struct clk_domains_mon_status_params));
if (clk->clk_mon_status == NULL) {
return -ENOMEM;
}
return 0;
}
int tu104_clk_mon_check_status(struct gk20a *g, unsigned long domain_mask)
{
u32 reg_address, bit_pos;
u32 data;
int status;
struct clk_domains_mon_status_params *clk_mon_status;
clk_mon_status = g->clk.clk_mon_status;
clk_mon_status->clk_mon_domain_mask = domain_mask;
/*
* Parse through each domain and check for faults, each bit set
* represents a domain here
*/
for (bit_pos = 0U; bit_pos < (sizeof(domain_mask) * BITS_PER_BYTE);
bit_pos++) {
if (nvgpu_test_bit(bit_pos, (void *)&domain_mask)) {
clk_mon_status->clk_mon_list[bit_pos].clk_api_domain =
BIT(bit_pos);
reg_address = clock_mon_map_tu104[bit_pos]
[FMON_FAULT_STATUS];
data = nvgpu_readl(g, reg_address);
clk_mon_status->clk_mon_list[bit_pos].
clk_domain_fault_status = 0U;
/* Check FMON fault status, field is same for all */
if (trim_fault_status_fault_out_v(data) ==
trim_fault_status_fault_out_true_v()) {
status = nvgpu_clk_mon_get_fault(g, bit_pos,
data, clk_mon_status);
if (status != 0) {
nvgpu_err(g, "Failed to get status");
return -EINVAL;
}
}
}
}
return 0;
}
bool tu104_clk_mon_check_clk_good(struct gk20a *g)
{
u32 clk_status = nvgpu_readl(g, trim_xtal4x_cfg5_r());
if (trim_xtal4x_cfg5_curr_state_v(clk_status) !=
trim_xtal4x_cfg5_curr_state_good_v()) {
return true;
}
return false;
}
bool tu104_clk_mon_check_pll_lock(struct gk20a *g)
{
u32 clk_status = nvgpu_readl(g, trim_xtal4x_cfg_r());
/* check xtal4 */
if (trim_xtal4x_cfg_pll_lock_v(clk_status) !=
trim_xtal4x_cfg_pll_lock_true_v()) {
return true;
}
/* check mem pll */
clk_status = nvgpu_readl(g, trim_mem_pll_status_r());
if (trim_mem_pll_status_dram_curr_state_v(clk_status) !=
trim_mem_pll_status_dram_curr_state_good_v()) {
return true;
}
if (trim_mem_pll_status_refm_curr_state_v(clk_status) !=
trim_mem_pll_status_refm_curr_state_good_v()) {
return true;
}
/* check sppll0,1 */
clk_status = nvgpu_readl(g, trim_sppll0_cfg_r());
if (trim_sppll0_cfg_curr_state_v(clk_status) !=
trim_sppll0_cfg_curr_state_good_v()) {
return true;
}
clk_status = nvgpu_readl(g, trim_sppll1_cfg_r());
if (trim_sppll1_cfg_curr_state_v(clk_status) !=
trim_sppll1_cfg_curr_state_good_v()) {
return true;
}
return false;
}