mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
Add abstraction of IO aperture accessors. Add new functions gk20a_io_exists() and gk20a_io_valid_reg() to remove dependencies to aperture fields from common code. Implement Linux version of the abstraction by moving gk20a_readl() and gk20a_writel() to new Linux specific io.c. Move the fields defining IO aperture to nvgpu_os_linux. Add t19x specific IO aperture initialization functions and add t19x specific section to nvgpu_os_linux. JIRA NVGPU-259 Change-Id: I09e79cda60d11a20d1099a9aaa6d2375236e94ce Signed-off-by: Terje Bergstrom <tbergstrom@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1569698 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
588 lines
15 KiB
C
588 lines
15 KiB
C
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/page_allocator.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/vidmem.h>
|
|
|
|
#include <nvgpu/linux/dma.h>
|
|
#include <nvgpu/linux/vidmem.h>
|
|
|
|
#include "os_linux.h"
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/mm_gk20a.h"
|
|
|
|
u32 __nvgpu_aperture_mask(struct gk20a *g, enum nvgpu_aperture aperture,
|
|
u32 sysmem_mask, u32 vidmem_mask)
|
|
{
|
|
switch (aperture) {
|
|
case APERTURE_SYSMEM:
|
|
/* some igpus consider system memory vidmem */
|
|
return nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)
|
|
? sysmem_mask : vidmem_mask;
|
|
case APERTURE_VIDMEM:
|
|
/* for dgpus only */
|
|
return vidmem_mask;
|
|
case APERTURE_INVALID:
|
|
WARN_ON("Bad aperture");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
|
|
u32 sysmem_mask, u32 vidmem_mask)
|
|
{
|
|
return __nvgpu_aperture_mask(g, mem->aperture,
|
|
sysmem_mask, vidmem_mask);
|
|
}
|
|
|
|
int nvgpu_mem_begin(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
void *cpu_va;
|
|
|
|
if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
|
|
return 0;
|
|
|
|
/*
|
|
* A CPU mapping is implicitly made for all SYSMEM DMA allocations that
|
|
* don't have NVGPU_DMA_NO_KERNEL_MAPPING. Thus we don't need to make
|
|
* another CPU mapping.
|
|
*/
|
|
if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
|
|
return 0;
|
|
|
|
if (WARN_ON(mem->cpu_va)) {
|
|
nvgpu_warn(g, "nested");
|
|
return -EBUSY;
|
|
}
|
|
|
|
cpu_va = vmap(mem->priv.pages,
|
|
PAGE_ALIGN(mem->size) >> PAGE_SHIFT,
|
|
0, pgprot_writecombine(PAGE_KERNEL));
|
|
|
|
if (WARN_ON(!cpu_va))
|
|
return -ENOMEM;
|
|
|
|
mem->cpu_va = cpu_va;
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_mem_end(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
|
|
return;
|
|
|
|
/*
|
|
* Similar to nvgpu_mem_begin() we don't need to unmap the CPU mapping
|
|
* already made by the DMA API.
|
|
*/
|
|
if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
|
|
return;
|
|
|
|
vunmap(mem->cpu_va);
|
|
mem->cpu_va = NULL;
|
|
}
|
|
|
|
static void pramin_access_batch_rd_n(struct gk20a *g, u32 start, u32 words, u32 **arg)
|
|
{
|
|
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
|
|
u32 r = start, *dest_u32 = *arg;
|
|
|
|
if (!l->regs) {
|
|
__gk20a_warn_on_no_regs();
|
|
return;
|
|
}
|
|
|
|
while (words--) {
|
|
*dest_u32++ = gk20a_readl(g, r);
|
|
r += sizeof(u32);
|
|
}
|
|
|
|
*arg = dest_u32;
|
|
}
|
|
|
|
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
|
|
{
|
|
u32 data = 0;
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
|
|
u32 *ptr = mem->cpu_va;
|
|
|
|
WARN_ON(!ptr);
|
|
data = ptr[w];
|
|
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
|
|
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
|
|
#endif
|
|
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
|
|
u32 value;
|
|
u32 *p = &value;
|
|
|
|
nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
|
|
sizeof(u32), pramin_access_batch_rd_n, &p);
|
|
|
|
data = value;
|
|
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
|
|
{
|
|
WARN_ON(offset & 3);
|
|
return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
|
|
}
|
|
|
|
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
|
|
u32 offset, void *dest, u32 size)
|
|
{
|
|
WARN_ON(offset & 3);
|
|
WARN_ON(size & 3);
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
|
|
u8 *src = (u8 *)mem->cpu_va + offset;
|
|
|
|
WARN_ON(!mem->cpu_va);
|
|
memcpy(dest, src, size);
|
|
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
|
|
if (size)
|
|
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
|
|
src, *dest, size);
|
|
#endif
|
|
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
|
|
u32 *dest_u32 = dest;
|
|
|
|
nvgpu_pramin_access_batched(g, mem, offset, size,
|
|
pramin_access_batch_rd_n, &dest_u32);
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
static void pramin_access_batch_wr_n(struct gk20a *g, u32 start, u32 words, u32 **arg)
|
|
{
|
|
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
|
|
u32 r = start, *src_u32 = *arg;
|
|
|
|
if (!l->regs) {
|
|
__gk20a_warn_on_no_regs();
|
|
return;
|
|
}
|
|
|
|
while (words--) {
|
|
writel_relaxed(*src_u32++, l->regs + r);
|
|
r += sizeof(u32);
|
|
}
|
|
|
|
*arg = src_u32;
|
|
}
|
|
|
|
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
|
|
{
|
|
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
|
|
u32 *ptr = mem->cpu_va;
|
|
|
|
WARN_ON(!ptr);
|
|
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
|
|
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
|
|
#endif
|
|
ptr[w] = data;
|
|
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
|
|
u32 value = data;
|
|
u32 *p = &value;
|
|
|
|
nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
|
|
sizeof(u32), pramin_access_batch_wr_n, &p);
|
|
if (!mem->skip_wmb)
|
|
wmb();
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
|
|
{
|
|
WARN_ON(offset & 3);
|
|
nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
|
|
}
|
|
|
|
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
|
|
void *src, u32 size)
|
|
{
|
|
WARN_ON(offset & 3);
|
|
WARN_ON(size & 3);
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
|
|
u8 *dest = (u8 *)mem->cpu_va + offset;
|
|
|
|
WARN_ON(!mem->cpu_va);
|
|
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
|
|
if (size)
|
|
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
|
|
dest, *src, size);
|
|
#endif
|
|
memcpy(dest, src, size);
|
|
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
|
|
u32 *src_u32 = src;
|
|
|
|
nvgpu_pramin_access_batched(g, mem, offset, size,
|
|
pramin_access_batch_wr_n, &src_u32);
|
|
if (!mem->skip_wmb)
|
|
wmb();
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
static void pramin_access_batch_set(struct gk20a *g, u32 start, u32 words, u32 **arg)
|
|
{
|
|
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
|
|
u32 r = start, repeat = **arg;
|
|
|
|
if (!l->regs) {
|
|
__gk20a_warn_on_no_regs();
|
|
return;
|
|
}
|
|
|
|
while (words--) {
|
|
writel_relaxed(repeat, l->regs + r);
|
|
r += sizeof(u32);
|
|
}
|
|
}
|
|
|
|
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
|
|
u32 c, u32 size)
|
|
{
|
|
WARN_ON(offset & 3);
|
|
WARN_ON(size & 3);
|
|
WARN_ON(c & ~0xff);
|
|
|
|
c &= 0xff;
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
|
|
u8 *dest = (u8 *)mem->cpu_va + offset;
|
|
|
|
WARN_ON(!mem->cpu_va);
|
|
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
|
|
if (size)
|
|
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x [times %d]",
|
|
dest, c, size);
|
|
#endif
|
|
memset(dest, c, size);
|
|
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
|
|
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
|
|
u32 *p = &repeat_value;
|
|
|
|
nvgpu_pramin_access_batched(g, mem, offset, size,
|
|
pramin_access_batch_set, &p);
|
|
if (!mem->skip_wmb)
|
|
wmb();
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Obtain a SYSMEM address from a Linux SGL. This should eventually go away
|
|
* and/or become private to this file once all bad usages of Linux SGLs are
|
|
* cleaned up in the driver.
|
|
*/
|
|
u64 nvgpu_mem_get_addr_sgl(struct gk20a *g, struct scatterlist *sgl)
|
|
{
|
|
struct nvgpu_os_linux *l = container_of(g, struct nvgpu_os_linux, g);
|
|
|
|
if (!device_is_iommuable(l->dev))
|
|
return g->ops.mm.gpu_phys_addr(g, NULL, sg_phys(sgl));
|
|
|
|
if (sg_dma_address(sgl) == 0)
|
|
return g->ops.mm.gpu_phys_addr(g, NULL, sg_phys(sgl));
|
|
|
|
if (sg_dma_address(sgl) == DMA_ERROR_CODE)
|
|
return 0;
|
|
|
|
return nvgpu_mem_iommu_translate(g, sg_dma_address(sgl));
|
|
}
|
|
|
|
/*
|
|
* Obtain the address the GPU should use from the %mem assuming this is a SYSMEM
|
|
* allocation.
|
|
*/
|
|
static u64 nvgpu_mem_get_addr_sysmem(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_mem_get_addr_sgl(g, mem->priv.sgt->sgl);
|
|
}
|
|
|
|
/*
|
|
* Return the base address of %mem. Handles whether this is a VIDMEM or SYSMEM
|
|
* allocation.
|
|
*
|
|
* Note: this API does not make sense to use for _VIDMEM_ buffers with greater
|
|
* than one scatterlist chunk. If there's more than one scatterlist chunk then
|
|
* the buffer will not be contiguous. As such the base address probably isn't
|
|
* very useful. This is true for SYSMEM as well, if there's no IOMMU.
|
|
*
|
|
* However! It _is_ OK to use this on discontiguous sysmem buffers _if_ there's
|
|
* an IOMMU present and enabled for the GPU.
|
|
*
|
|
* %attrs can be NULL. If it is not NULL then it may be inspected to determine
|
|
* if the address needs to be modified before writing into a PTE.
|
|
*/
|
|
u64 nvgpu_mem_get_addr(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
struct nvgpu_page_alloc *alloc;
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM)
|
|
return nvgpu_mem_get_addr_sysmem(g, mem);
|
|
|
|
/*
|
|
* Otherwise get the vidmem address.
|
|
*/
|
|
alloc = mem->vidmem_alloc;
|
|
|
|
/* This API should not be used with > 1 chunks */
|
|
WARN_ON(alloc->nr_chunks != 1);
|
|
|
|
return alloc->base;
|
|
}
|
|
|
|
/*
|
|
* This should only be used on contiguous buffers regardless of whether
|
|
* there's an IOMMU present/enabled. This applies to both SYSMEM and
|
|
* VIDMEM.
|
|
*/
|
|
u64 nvgpu_mem_get_phys_addr(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
/*
|
|
* For a VIDMEM buf, this is identical to simply get_addr() so just fall
|
|
* back to that.
|
|
*/
|
|
if (mem->aperture == APERTURE_VIDMEM)
|
|
return nvgpu_mem_get_addr(g, mem);
|
|
|
|
return sg_phys(mem->priv.sgt->sgl);
|
|
}
|
|
|
|
/*
|
|
* Be careful how you use this! You are responsible for correctly freeing this
|
|
* memory.
|
|
*/
|
|
int nvgpu_mem_create_from_mem(struct gk20a *g,
|
|
struct nvgpu_mem *dest, struct nvgpu_mem *src,
|
|
int start_page, int nr_pages)
|
|
{
|
|
int ret;
|
|
u64 start = start_page * PAGE_SIZE;
|
|
u64 size = nr_pages * PAGE_SIZE;
|
|
dma_addr_t new_iova;
|
|
|
|
if (src->aperture != APERTURE_SYSMEM)
|
|
return -EINVAL;
|
|
|
|
/* Some silly things a caller might do... */
|
|
if (size > src->size)
|
|
return -EINVAL;
|
|
if ((start + size) > src->size)
|
|
return -EINVAL;
|
|
|
|
dest->mem_flags = src->mem_flags | NVGPU_MEM_FLAG_SHADOW_COPY;
|
|
dest->aperture = src->aperture;
|
|
dest->skip_wmb = src->skip_wmb;
|
|
dest->size = size;
|
|
|
|
/*
|
|
* Re-use the CPU mapping only if the mapping was made by the DMA API.
|
|
*/
|
|
if (!(src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
|
|
dest->cpu_va = src->cpu_va + (PAGE_SIZE * start_page);
|
|
|
|
dest->priv.pages = src->priv.pages + start_page;
|
|
dest->priv.flags = src->priv.flags;
|
|
|
|
new_iova = sg_dma_address(src->priv.sgt->sgl) ?
|
|
sg_dma_address(src->priv.sgt->sgl) + start : 0;
|
|
|
|
/*
|
|
* Make a new SG table that is based only on the subset of pages that
|
|
* is passed to us. This table gets freed by the dma free routines.
|
|
*/
|
|
if (src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING)
|
|
ret = nvgpu_get_sgtable_from_pages(g, &dest->priv.sgt,
|
|
src->priv.pages + start_page,
|
|
new_iova, size);
|
|
else
|
|
ret = nvgpu_get_sgtable(g, &dest->priv.sgt, dest->cpu_va,
|
|
new_iova, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __nvgpu_mem_create_from_pages(struct gk20a *g, struct nvgpu_mem *dest,
|
|
struct page **pages, int nr_pages)
|
|
{
|
|
struct sg_table *sgt;
|
|
struct page **our_pages =
|
|
nvgpu_kmalloc(g, sizeof(struct page *) * nr_pages);
|
|
|
|
if (!our_pages)
|
|
return -ENOMEM;
|
|
|
|
memcpy(our_pages, pages, sizeof(struct page *) * nr_pages);
|
|
|
|
if (nvgpu_get_sgtable_from_pages(g, &sgt, pages, 0,
|
|
nr_pages * PAGE_SIZE)) {
|
|
nvgpu_kfree(g, our_pages);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* If we are making an SGT from physical pages we can be reasonably
|
|
* certain that this should bypass the SMMU - thus we set the DMA (aka
|
|
* IOVA) address to 0. This tells the GMMU mapping code to not make a
|
|
* mapping directed to the SMMU.
|
|
*/
|
|
sg_dma_address(sgt->sgl) = 0;
|
|
|
|
dest->mem_flags = __NVGPU_MEM_FLAG_NO_DMA;
|
|
dest->aperture = APERTURE_SYSMEM;
|
|
dest->skip_wmb = 0;
|
|
dest->size = PAGE_SIZE * nr_pages;
|
|
|
|
dest->priv.flags = 0;
|
|
dest->priv.pages = our_pages;
|
|
dest->priv.sgt = sgt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __nvgpu_mem_create_from_phys(struct gk20a *g, struct nvgpu_mem *dest,
|
|
u64 src_phys, int nr_pages)
|
|
{
|
|
struct page **pages =
|
|
nvgpu_kmalloc(g, sizeof(struct page *) * nr_pages);
|
|
int i, ret = 0;
|
|
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nr_pages; i++)
|
|
pages[i] = phys_to_page(src_phys + PAGE_SIZE * i);
|
|
|
|
ret = __nvgpu_mem_create_from_pages(g, dest, pages, nr_pages);
|
|
nvgpu_kfree(g, pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *nvgpu_mem_linux_sgl_next(void *sgl)
|
|
{
|
|
return sg_next((struct scatterlist *)sgl);
|
|
}
|
|
|
|
static u64 nvgpu_mem_linux_sgl_phys(void *sgl)
|
|
{
|
|
return (u64)sg_phys((struct scatterlist *)sgl);
|
|
}
|
|
|
|
static u64 nvgpu_mem_linux_sgl_dma(void *sgl)
|
|
{
|
|
return (u64)sg_dma_address((struct scatterlist *)sgl);
|
|
}
|
|
|
|
static u64 nvgpu_mem_linux_sgl_length(void *sgl)
|
|
{
|
|
return (u64)((struct scatterlist *)sgl)->length;
|
|
}
|
|
|
|
static u64 nvgpu_mem_linux_sgl_gpu_addr(struct gk20a *g, void *sgl,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
if (sg_dma_address((struct scatterlist *)sgl) == 0)
|
|
return g->ops.mm.gpu_phys_addr(g, attrs,
|
|
sg_phys((struct scatterlist *)sgl));
|
|
|
|
if (sg_dma_address((struct scatterlist *)sgl) == DMA_ERROR_CODE)
|
|
return 0;
|
|
|
|
return nvgpu_mem_iommu_translate(g,
|
|
sg_dma_address((struct scatterlist *)sgl));
|
|
}
|
|
|
|
static void nvgpu_mem_linux_sgl_free(struct gk20a *g, struct nvgpu_sgt *sgt)
|
|
{
|
|
/*
|
|
* Free this SGT. All we do is free the passed SGT. The actual Linux
|
|
* SGT/SGL needs to be freed separately.
|
|
*/
|
|
nvgpu_kfree(g, sgt);
|
|
}
|
|
|
|
static const struct nvgpu_sgt_ops nvgpu_linux_sgt_ops = {
|
|
.sgl_next = nvgpu_mem_linux_sgl_next,
|
|
.sgl_phys = nvgpu_mem_linux_sgl_phys,
|
|
.sgl_dma = nvgpu_mem_linux_sgl_dma,
|
|
.sgl_length = nvgpu_mem_linux_sgl_length,
|
|
.sgl_gpu_addr = nvgpu_mem_linux_sgl_gpu_addr,
|
|
.sgt_free = nvgpu_mem_linux_sgl_free,
|
|
};
|
|
|
|
static struct nvgpu_sgt *__nvgpu_mem_get_sgl_from_vidmem(
|
|
struct gk20a *g,
|
|
struct scatterlist *linux_sgl)
|
|
{
|
|
struct nvgpu_page_alloc *vidmem_alloc;
|
|
|
|
vidmem_alloc = nvgpu_vidmem_get_page_alloc(linux_sgl);
|
|
if (!vidmem_alloc)
|
|
return NULL;
|
|
|
|
return &vidmem_alloc->sgt;
|
|
}
|
|
|
|
struct nvgpu_sgt *nvgpu_linux_sgt_create(struct gk20a *g, struct sg_table *sgt)
|
|
{
|
|
struct nvgpu_sgt *nvgpu_sgt;
|
|
struct scatterlist *linux_sgl = sgt->sgl;
|
|
|
|
if (nvgpu_addr_is_vidmem_page_alloc(sg_dma_address(linux_sgl)))
|
|
return __nvgpu_mem_get_sgl_from_vidmem(g, linux_sgl);
|
|
|
|
nvgpu_sgt = nvgpu_kzalloc(g, sizeof(*nvgpu_sgt));
|
|
if (!nvgpu_sgt)
|
|
return NULL;
|
|
|
|
nvgpu_log(g, gpu_dbg_sgl, "Making Linux SGL!");
|
|
|
|
nvgpu_sgt->sgl = sgt->sgl;
|
|
nvgpu_sgt->ops = &nvgpu_linux_sgt_ops;
|
|
|
|
return nvgpu_sgt;
|
|
}
|
|
|
|
struct nvgpu_sgt *nvgpu_sgt_create_from_mem(struct gk20a *g,
|
|
struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_linux_sgt_create(g, mem->priv.sgt);
|
|
}
|