Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/nvgpu_mem.c
Nicolas Benech cb2a05dd92 gpu: nvgpu: Fix LibC MISRA 17.7 in common
MISRA Rule-17.7 requires the return value of all functions to be used.
Fix is either to use the return value or change the function to return
void. This patch contains fix for all 17.7 violations instandard C functions
in common code.

JIRA NVGPU-1036

Change-Id: Id6dea92df371e71b22b54cd7a521fc22812f9b69
Signed-off-by: Nicolas Benech <nbenech@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1929899
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-11-01 17:15:37 -07:00

320 lines
8.6 KiB
C

/*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/kmem.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/dma.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/gk20a.h>
/*
* Make sure to use the right coherency aperture if you use this function! This
* will not add any checks. If you want to simply use the default coherency then
* use nvgpu_aperture_mask().
*/
u32 nvgpu_aperture_mask_coh(struct gk20a *g, enum nvgpu_aperture aperture,
u32 sysmem_mask, u32 sysmem_coh_mask,
u32 vidmem_mask)
{
/*
* Some iGPUs treat sysmem (i.e SoC DRAM) as vidmem. In these cases the
* "sysmem" aperture should really be translated to VIDMEM.
*/
if (!nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)) {
aperture = APERTURE_VIDMEM;
}
switch (aperture) {
case APERTURE_SYSMEM_COH:
return sysmem_coh_mask;
case APERTURE_SYSMEM:
return sysmem_mask;
case APERTURE_VIDMEM:
return vidmem_mask;
case APERTURE_INVALID:
WARN_ON("Bad aperture");
}
return 0;
}
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask)
{
enum nvgpu_aperture ap = mem->aperture;
/*
* Handle the coherent aperture: ideally most of the driver is not
* aware of the difference between coherent and non-coherent sysmem so
* we add this translation step here.
*/
if (nvgpu_is_enabled(g, NVGPU_USE_COHERENT_SYSMEM) &&
ap == APERTURE_SYSMEM) {
ap = APERTURE_SYSMEM_COH;
}
return nvgpu_aperture_mask_coh(g, ap,
sysmem_mask,
sysmem_coh_mask,
vidmem_mask);
}
bool nvgpu_aperture_is_sysmem(enum nvgpu_aperture ap)
{
return ap == APERTURE_SYSMEM_COH || ap == APERTURE_SYSMEM;
}
bool nvgpu_mem_is_sysmem(struct nvgpu_mem *mem)
{
return nvgpu_aperture_is_sysmem(mem->aperture);
}
struct nvgpu_sgl *nvgpu_sgt_get_next(struct nvgpu_sgt *sgt,
struct nvgpu_sgl *sgl)
{
return sgt->ops->sgl_next(sgl);
}
u64 nvgpu_sgt_get_phys(struct gk20a *g, struct nvgpu_sgt *sgt,
struct nvgpu_sgl *sgl)
{
return sgt->ops->sgl_phys(g, sgl);
}
u64 nvgpu_sgt_get_ipa(struct gk20a *g, struct nvgpu_sgt *sgt,
struct nvgpu_sgl *sgl)
{
return sgt->ops->sgl_ipa(g, sgl);
}
u64 nvgpu_sgt_ipa_to_pa(struct gk20a *g, struct nvgpu_sgt *sgt,
struct nvgpu_sgl *sgl, u64 ipa, u64 *pa_len)
{
return sgt->ops->sgl_ipa_to_pa(g, sgl, ipa, pa_len);
}
u64 nvgpu_sgt_get_dma(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl)
{
return sgt->ops->sgl_dma(sgl);
}
u64 nvgpu_sgt_get_length(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl)
{
return sgt->ops->sgl_length(sgl);
}
u64 nvgpu_sgt_get_gpu_addr(struct gk20a *g, struct nvgpu_sgt *sgt,
struct nvgpu_sgl *sgl,
struct nvgpu_gmmu_attrs *attrs)
{
return sgt->ops->sgl_gpu_addr(g, sgl, attrs);
}
bool nvgpu_sgt_iommuable(struct gk20a *g, struct nvgpu_sgt *sgt)
{
if (sgt->ops->sgt_iommuable != NULL) {
return sgt->ops->sgt_iommuable(g, sgt);
}
return false;
}
void nvgpu_sgt_free(struct gk20a *g, struct nvgpu_sgt *sgt)
{
if (sgt != NULL && sgt->ops->sgt_free != NULL) {
sgt->ops->sgt_free(g, sgt);
}
}
u64 nvgpu_mem_iommu_translate(struct gk20a *g, u64 phys)
{
/* ensure it is not vidmem allocation */
WARN_ON(nvgpu_addr_is_vidmem_page_alloc(phys));
if (nvgpu_iommuable(g) && g->ops.mm.get_iommu_bit != NULL) {
return phys | 1ULL << g->ops.mm.get_iommu_bit(g);
}
return phys;
}
/*
* Determine alignment for a passed buffer. Necessary since the buffer may
* appear big enough to map with large pages but the SGL may have chunks that
* are not aligned on a 64/128kB large page boundary. There's also the
* possibility chunks are odd sizes which will necessitate small page mappings
* to correctly glue them together into a contiguous virtual mapping.
*/
u64 nvgpu_sgt_alignment(struct gk20a *g, struct nvgpu_sgt *sgt)
{
u64 align = 0, chunk_align = 0;
struct nvgpu_sgl *sgl;
/*
* If this SGT is iommuable and we want to use the IOMMU address then
* the SGT's first entry has the IOMMU address. We will align on this
* and double check length of buffer later. Also, since there's an
* IOMMU we know that this DMA address is contiguous.
*/
if (nvgpu_iommuable(g) &&
nvgpu_sgt_iommuable(g, sgt) &&
nvgpu_sgt_get_dma(sgt, sgt->sgl) != 0ULL) {
return 1ULL << __ffs(nvgpu_sgt_get_dma(sgt, sgt->sgl));
}
/*
* Otherwise the buffer is not iommuable (VIDMEM, for example) or we are
* bypassing the IOMMU and need to use the underlying physical entries
* of the SGT.
*/
nvgpu_sgt_for_each_sgl(sgl, sgt) {
chunk_align = 1ULL << __ffs(nvgpu_sgt_get_phys(g, sgt, sgl) |
nvgpu_sgt_get_length(sgt, sgl));
if (align) {
align = min(align, chunk_align);
} else {
align = chunk_align;
}
}
return align;
}
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
{
u32 data = 0;
if (mem->aperture == APERTURE_SYSMEM) {
u32 *ptr = mem->cpu_va;
WARN_ON(ptr == NULL);
data = ptr[w];
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_rd_n(g, mem, w * sizeof(u32), sizeof(u32), &data);
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
return data;
}
u64 nvgpu_mem_rd32_pair(struct gk20a *g, struct nvgpu_mem *mem, u32 lo, u32 hi)
{
u64 lo_data = U64(nvgpu_mem_rd32(g, mem, lo));
u64 hi_data = U64(nvgpu_mem_rd32(g, mem, hi));
return lo_data | (hi_data << 32ULL);
}
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
{
WARN_ON((offset & 3U) != 0U);
return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
}
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
u32 offset, void *dest, u32 size)
{
WARN_ON((offset & 3U) != 0U);
WARN_ON((size & 3U) != 0U);
if (mem->aperture == APERTURE_SYSMEM) {
u8 *src = (u8 *)mem->cpu_va + offset;
WARN_ON(mem->cpu_va == NULL);
(void) memcpy(dest, src, size);
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_rd_n(g, mem, offset, size, dest);
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
{
if (mem->aperture == APERTURE_SYSMEM) {
u32 *ptr = mem->cpu_va;
WARN_ON(ptr == NULL);
ptr[w] = data;
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_wr_n(g, mem, w * sizeof(u32), sizeof(u32), &data);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
{
WARN_ON((offset & 3U) != 0U);
nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
}
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
void *src, u32 size)
{
WARN_ON((offset & 3U) != 0U);
WARN_ON((size & 3U) != 0U);
if (mem->aperture == APERTURE_SYSMEM) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(mem->cpu_va == NULL);
(void) memcpy(dest, src, size);
} else if (mem->aperture == APERTURE_VIDMEM) {
nvgpu_pramin_wr_n(g, mem, offset, size, src);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
u32 c, u32 size)
{
WARN_ON((offset & 3U) != 0U);
WARN_ON((size & 3U) != 0U);
WARN_ON((c & ~0xffU) != 0U);
c &= 0xffU;
if (mem->aperture == APERTURE_SYSMEM) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(mem->cpu_va == NULL);
(void) memset(dest, c, size);
} else if (mem->aperture == APERTURE_VIDMEM) {
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
nvgpu_pramin_memset(g, mem, offset, size, repeat_value);
if (!mem->skip_wmb) {
nvgpu_wmb();
}
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}