mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 01:50:07 +03:00
Move field "struct device *dev" from struct gk20a to struct nvgpu_os_linux. The field is valid only for Linux. JIRA NVGPU-38 Change-Id: I09286aa3a9c5a2406e5a27c1fbf21b2c515b4dd4 Signed-off-by: Terje Bergstrom <tbergstrom@nvidia.com> Reviewed-on: https://git-master/r/1514162 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2487 lines
60 KiB
C
2487 lines
60 KiB
C
/*
|
|
* GK20A memory management
|
|
*
|
|
* Copyright (c) 2011-2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-buf.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma-attrs.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/platform/tegra/tegra_fd.h>
|
|
#include <uapi/linux/nvgpu.h>
|
|
#include <trace/events/gk20a.h>
|
|
|
|
#include <nvgpu/vm.h>
|
|
#include <nvgpu/vm_area.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/timers.h>
|
|
#include <nvgpu/pramin.h>
|
|
#include <nvgpu/list.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/allocator.h>
|
|
#include <nvgpu/semaphore.h>
|
|
#include <nvgpu/page_allocator.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/log2.h>
|
|
#include <nvgpu/enabled.h>
|
|
|
|
#include <nvgpu/linux/dma.h>
|
|
|
|
#include "gk20a.h"
|
|
#include "platform_gk20a.h"
|
|
#include "mm_gk20a.h"
|
|
#include "fence_gk20a.h"
|
|
#include "kind_gk20a.h"
|
|
#include "bus_gk20a.h"
|
|
#include "common/linux/os_linux.h"
|
|
|
|
#include <nvgpu/hw/gk20a/hw_gmmu_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_ram_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_pram_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_mc_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_bus_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_flush_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_ltc_gk20a.h>
|
|
|
|
/*
|
|
* Necessary while transitioning to less coupled code. Will be removed once
|
|
* all the common APIs no longers have Linux stuff in them.
|
|
*/
|
|
#include "common/linux/vm_priv.h"
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
static void gk20a_vidmem_clear_mem_worker(struct work_struct *work);
|
|
#endif
|
|
|
|
void set_vidmem_page_alloc(struct scatterlist *sgl, u64 addr)
|
|
{
|
|
/* set bit 0 to indicate vidmem allocation */
|
|
sg_dma_address(sgl) = (addr | 1ULL);
|
|
}
|
|
|
|
bool is_vidmem_page_alloc(u64 addr)
|
|
{
|
|
return !!(addr & 1ULL);
|
|
}
|
|
|
|
struct nvgpu_page_alloc *get_vidmem_page_alloc(struct scatterlist *sgl)
|
|
{
|
|
u64 addr;
|
|
|
|
addr = sg_dma_address(sgl);
|
|
|
|
if (is_vidmem_page_alloc(addr))
|
|
addr = addr & ~1ULL;
|
|
else
|
|
WARN_ON(1);
|
|
|
|
return (struct nvgpu_page_alloc *)(uintptr_t)addr;
|
|
}
|
|
|
|
/*
|
|
* GPU mapping life cycle
|
|
* ======================
|
|
*
|
|
* Kernel mappings
|
|
* ---------------
|
|
*
|
|
* Kernel mappings are created through vm.map(..., false):
|
|
*
|
|
* - Mappings to the same allocations are reused and refcounted.
|
|
* - This path does not support deferred unmapping (i.e. kernel must wait for
|
|
* all hw operations on the buffer to complete before unmapping).
|
|
* - References to dmabuf are owned and managed by the (kernel) clients of
|
|
* the gk20a_vm layer.
|
|
*
|
|
*
|
|
* User space mappings
|
|
* -------------------
|
|
*
|
|
* User space mappings are created through as.map_buffer -> vm.map(..., true):
|
|
*
|
|
* - Mappings to the same allocations are reused and refcounted.
|
|
* - This path supports deferred unmapping (i.e. we delay the actual unmapping
|
|
* until all hw operations have completed).
|
|
* - References to dmabuf are owned and managed by the vm_gk20a
|
|
* layer itself. vm.map acquires these refs, and sets
|
|
* mapped_buffer->own_mem_ref to record that we must release the refs when we
|
|
* actually unmap.
|
|
*
|
|
*/
|
|
|
|
static int __must_check gk20a_init_system_vm(struct mm_gk20a *mm);
|
|
static int __must_check gk20a_init_bar1_vm(struct mm_gk20a *mm);
|
|
static int __must_check gk20a_init_hwpm(struct mm_gk20a *mm);
|
|
static int __must_check gk20a_init_cde_vm(struct mm_gk20a *mm);
|
|
static int __must_check gk20a_init_ce_vm(struct mm_gk20a *mm);
|
|
|
|
static struct gk20a *gk20a_vidmem_buf_owner(struct dma_buf *dmabuf);
|
|
|
|
struct gk20a_dmabuf_priv {
|
|
struct nvgpu_mutex lock;
|
|
|
|
struct gk20a *g;
|
|
|
|
struct gk20a_comptag_allocator *comptag_allocator;
|
|
struct gk20a_comptags comptags;
|
|
|
|
struct dma_buf_attachment *attach;
|
|
struct sg_table *sgt;
|
|
|
|
int pin_count;
|
|
|
|
struct nvgpu_list_node states;
|
|
|
|
u64 buffer_id;
|
|
};
|
|
|
|
struct gk20a_vidmem_buf {
|
|
struct gk20a *g;
|
|
struct nvgpu_mem *mem;
|
|
struct dma_buf *dmabuf;
|
|
void *dmabuf_priv;
|
|
void (*dmabuf_priv_delete)(void *);
|
|
};
|
|
|
|
static int gk20a_comptaglines_alloc(struct gk20a_comptag_allocator *allocator,
|
|
u32 *offset, u32 len)
|
|
{
|
|
unsigned long addr;
|
|
int err = 0;
|
|
|
|
nvgpu_mutex_acquire(&allocator->lock);
|
|
addr = bitmap_find_next_zero_area(allocator->bitmap, allocator->size,
|
|
0, len, 0);
|
|
if (addr < allocator->size) {
|
|
/* number zero is reserved; bitmap base is 1 */
|
|
*offset = 1 + addr;
|
|
bitmap_set(allocator->bitmap, addr, len);
|
|
} else {
|
|
err = -ENOMEM;
|
|
}
|
|
nvgpu_mutex_release(&allocator->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void gk20a_comptaglines_free(struct gk20a_comptag_allocator *allocator,
|
|
u32 offset, u32 len)
|
|
{
|
|
/* number zero is reserved; bitmap base is 1 */
|
|
u32 addr = offset - 1;
|
|
WARN_ON(offset == 0);
|
|
WARN_ON(addr > allocator->size);
|
|
WARN_ON(addr + len > allocator->size);
|
|
|
|
nvgpu_mutex_acquire(&allocator->lock);
|
|
bitmap_clear(allocator->bitmap, addr, len);
|
|
nvgpu_mutex_release(&allocator->lock);
|
|
}
|
|
|
|
static void gk20a_mm_delete_priv(void *_priv)
|
|
{
|
|
struct gk20a_buffer_state *s, *s_tmp;
|
|
struct gk20a_dmabuf_priv *priv = _priv;
|
|
struct gk20a *g;
|
|
|
|
if (!priv)
|
|
return;
|
|
|
|
g = priv->g;
|
|
|
|
if (priv->comptags.lines) {
|
|
BUG_ON(!priv->comptag_allocator);
|
|
gk20a_comptaglines_free(priv->comptag_allocator,
|
|
priv->comptags.offset,
|
|
priv->comptags.allocated_lines);
|
|
}
|
|
|
|
/* Free buffer states */
|
|
nvgpu_list_for_each_entry_safe(s, s_tmp, &priv->states,
|
|
gk20a_buffer_state, list) {
|
|
gk20a_fence_put(s->fence);
|
|
nvgpu_list_del(&s->list);
|
|
nvgpu_kfree(g, s);
|
|
}
|
|
|
|
nvgpu_kfree(g, priv);
|
|
}
|
|
|
|
struct sg_table *gk20a_mm_pin(struct device *dev, struct dma_buf *dmabuf)
|
|
{
|
|
struct gk20a_dmabuf_priv *priv;
|
|
|
|
priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
if (WARN_ON(!priv))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
nvgpu_mutex_acquire(&priv->lock);
|
|
|
|
if (priv->pin_count == 0) {
|
|
priv->attach = dma_buf_attach(dmabuf, dev);
|
|
if (IS_ERR(priv->attach)) {
|
|
nvgpu_mutex_release(&priv->lock);
|
|
return (struct sg_table *)priv->attach;
|
|
}
|
|
|
|
priv->sgt = dma_buf_map_attachment(priv->attach,
|
|
DMA_BIDIRECTIONAL);
|
|
if (IS_ERR(priv->sgt)) {
|
|
dma_buf_detach(dmabuf, priv->attach);
|
|
nvgpu_mutex_release(&priv->lock);
|
|
return priv->sgt;
|
|
}
|
|
}
|
|
|
|
priv->pin_count++;
|
|
nvgpu_mutex_release(&priv->lock);
|
|
return priv->sgt;
|
|
}
|
|
|
|
void gk20a_mm_unpin(struct device *dev, struct dma_buf *dmabuf,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct gk20a_dmabuf_priv *priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
dma_addr_t dma_addr;
|
|
|
|
if (IS_ERR(priv) || !priv)
|
|
return;
|
|
|
|
nvgpu_mutex_acquire(&priv->lock);
|
|
WARN_ON(priv->sgt != sgt);
|
|
priv->pin_count--;
|
|
WARN_ON(priv->pin_count < 0);
|
|
dma_addr = sg_dma_address(priv->sgt->sgl);
|
|
if (priv->pin_count == 0) {
|
|
dma_buf_unmap_attachment(priv->attach, priv->sgt,
|
|
DMA_BIDIRECTIONAL);
|
|
dma_buf_detach(dmabuf, priv->attach);
|
|
}
|
|
nvgpu_mutex_release(&priv->lock);
|
|
}
|
|
|
|
void gk20a_get_comptags(struct device *dev, struct dma_buf *dmabuf,
|
|
struct gk20a_comptags *comptags)
|
|
{
|
|
struct gk20a_dmabuf_priv *priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
|
|
if (!comptags)
|
|
return;
|
|
|
|
if (!priv) {
|
|
memset(comptags, 0, sizeof(*comptags));
|
|
return;
|
|
}
|
|
|
|
*comptags = priv->comptags;
|
|
}
|
|
|
|
int gk20a_alloc_comptags(struct gk20a *g,
|
|
struct device *dev,
|
|
struct dma_buf *dmabuf,
|
|
struct gk20a_comptag_allocator *allocator,
|
|
u32 lines, bool user_mappable,
|
|
u64 *ctag_map_win_size,
|
|
u32 *ctag_map_win_ctagline)
|
|
{
|
|
struct gk20a_dmabuf_priv *priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
u32 ctaglines_allocsize;
|
|
u32 ctagline_align;
|
|
u32 offset;
|
|
u32 alignment_lines;
|
|
const u32 aggregate_cacheline_sz =
|
|
g->gr.cacheline_size * g->gr.slices_per_ltc *
|
|
g->ltc_count;
|
|
const u32 small_pgsz = 4096;
|
|
int err;
|
|
|
|
if (!priv)
|
|
return -ENOSYS;
|
|
|
|
if (!lines)
|
|
return -EINVAL;
|
|
|
|
if (!user_mappable) {
|
|
ctaglines_allocsize = lines;
|
|
ctagline_align = 1;
|
|
} else {
|
|
/*
|
|
* For security, align the allocation on a page, and reserve
|
|
* whole pages. Unfortunately, we cannot ask the allocator to
|
|
* align here, since compbits per cacheline is not always a
|
|
* power of two. So, we just have to allocate enough extra that
|
|
* we're guaranteed to find a ctagline inside the allocation so
|
|
* that: 1) it is the first ctagline in a cacheline that starts
|
|
* at a page boundary, and 2) we can add enough overallocation
|
|
* that the ctaglines of the succeeding allocation are on
|
|
* different page than ours.
|
|
*/
|
|
|
|
ctagline_align =
|
|
(lcm(aggregate_cacheline_sz, small_pgsz) /
|
|
aggregate_cacheline_sz) *
|
|
g->gr.comptags_per_cacheline;
|
|
|
|
ctaglines_allocsize =
|
|
/* for alignment */
|
|
ctagline_align +
|
|
|
|
/* lines rounded up to cachelines */
|
|
DIV_ROUND_UP(lines, g->gr.comptags_per_cacheline) *
|
|
g->gr.comptags_per_cacheline +
|
|
|
|
/* trail-padding */
|
|
DIV_ROUND_UP(aggregate_cacheline_sz, small_pgsz) *
|
|
g->gr.comptags_per_cacheline;
|
|
|
|
if (ctaglines_allocsize < lines)
|
|
return -EINVAL; /* integer overflow */
|
|
}
|
|
|
|
/* store the allocator so we can use it when we free the ctags */
|
|
priv->comptag_allocator = allocator;
|
|
err = gk20a_comptaglines_alloc(allocator, &offset,
|
|
ctaglines_allocsize);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* offset needs to be at the start of a page/cacheline boundary;
|
|
* prune the preceding ctaglines that were allocated for alignment.
|
|
*/
|
|
alignment_lines =
|
|
DIV_ROUND_UP(offset, ctagline_align) * ctagline_align - offset;
|
|
if (alignment_lines) {
|
|
gk20a_comptaglines_free(allocator, offset, alignment_lines);
|
|
offset += alignment_lines;
|
|
ctaglines_allocsize -= alignment_lines;
|
|
}
|
|
|
|
/*
|
|
* check if we can prune the trailing, too; we just need to reserve
|
|
* whole pages and ctagcachelines.
|
|
*/
|
|
if (user_mappable) {
|
|
u32 needed_cachelines =
|
|
DIV_ROUND_UP(lines, g->gr.comptags_per_cacheline);
|
|
u32 needed_bytes = round_up(needed_cachelines *
|
|
aggregate_cacheline_sz,
|
|
small_pgsz);
|
|
u32 first_unneeded_cacheline =
|
|
DIV_ROUND_UP(needed_bytes, aggregate_cacheline_sz);
|
|
u32 needed_ctaglines = first_unneeded_cacheline *
|
|
g->gr.comptags_per_cacheline;
|
|
u64 win_size;
|
|
|
|
if (needed_ctaglines < ctaglines_allocsize) {
|
|
gk20a_comptaglines_free(allocator,
|
|
offset + needed_ctaglines,
|
|
ctaglines_allocsize - needed_ctaglines);
|
|
ctaglines_allocsize = needed_ctaglines;
|
|
}
|
|
|
|
*ctag_map_win_ctagline = offset;
|
|
win_size =
|
|
DIV_ROUND_UP(lines, g->gr.comptags_per_cacheline) *
|
|
aggregate_cacheline_sz;
|
|
|
|
*ctag_map_win_size = round_up(win_size, small_pgsz);
|
|
}
|
|
|
|
priv->comptags.offset = offset;
|
|
priv->comptags.lines = lines;
|
|
priv->comptags.allocated_lines = ctaglines_allocsize;
|
|
priv->comptags.user_mappable = user_mappable;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
static int gk20a_init_mm_reset_enable_hw(struct gk20a *g)
|
|
{
|
|
gk20a_dbg_fn("");
|
|
if (g->ops.fb.reset)
|
|
g->ops.fb.reset(g);
|
|
|
|
if (g->ops.clock_gating.slcg_fb_load_gating_prod)
|
|
g->ops.clock_gating.slcg_fb_load_gating_prod(g,
|
|
g->slcg_enabled);
|
|
if (g->ops.clock_gating.slcg_ltc_load_gating_prod)
|
|
g->ops.clock_gating.slcg_ltc_load_gating_prod(g,
|
|
g->slcg_enabled);
|
|
if (g->ops.clock_gating.blcg_fb_load_gating_prod)
|
|
g->ops.clock_gating.blcg_fb_load_gating_prod(g,
|
|
g->blcg_enabled);
|
|
if (g->ops.clock_gating.blcg_ltc_load_gating_prod)
|
|
g->ops.clock_gating.blcg_ltc_load_gating_prod(g,
|
|
g->blcg_enabled);
|
|
|
|
if (g->ops.fb.init_fs_state)
|
|
g->ops.fb.init_fs_state(g);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gk20a_vidmem_destroy(struct gk20a *g)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
if (nvgpu_alloc_initialized(&g->mm.vidmem.allocator))
|
|
nvgpu_alloc_destroy(&g->mm.vidmem.allocator);
|
|
#endif
|
|
}
|
|
|
|
static void gk20a_remove_mm_ce_support(struct mm_gk20a *mm)
|
|
{
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
|
|
if (mm->vidmem.ce_ctx_id != (u32)~0)
|
|
gk20a_ce_delete_context_priv(g, mm->vidmem.ce_ctx_id);
|
|
|
|
mm->vidmem.ce_ctx_id = (u32)~0;
|
|
|
|
nvgpu_vm_put(mm->ce.vm);
|
|
}
|
|
|
|
static void gk20a_remove_mm_support(struct mm_gk20a *mm)
|
|
{
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
|
|
if (g->ops.mm.remove_bar2_vm)
|
|
g->ops.mm.remove_bar2_vm(g);
|
|
|
|
if (g->ops.mm.is_bar1_supported(g)) {
|
|
gk20a_free_inst_block(g, &mm->bar1.inst_block);
|
|
nvgpu_vm_put(mm->bar1.vm);
|
|
}
|
|
|
|
gk20a_free_inst_block(g, &mm->pmu.inst_block);
|
|
gk20a_free_inst_block(g, &mm->hwpm.inst_block);
|
|
nvgpu_vm_put(mm->pmu.vm);
|
|
nvgpu_vm_put(mm->cde.vm);
|
|
|
|
gk20a_semaphore_sea_destroy(g);
|
|
gk20a_vidmem_destroy(g);
|
|
nvgpu_pd_cache_fini(g);
|
|
}
|
|
|
|
static int gk20a_alloc_sysmem_flush(struct gk20a *g)
|
|
{
|
|
return nvgpu_dma_alloc_sys(g, SZ_4K, &g->mm.sysmem_flush);
|
|
}
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
static int gk20a_vidmem_clear_all(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
struct gk20a_fence *gk20a_fence_out = NULL;
|
|
u64 region2_base = 0;
|
|
int err = 0;
|
|
|
|
if (mm->vidmem.ce_ctx_id == (u32)~0)
|
|
return -EINVAL;
|
|
|
|
err = gk20a_ce_execute_ops(g,
|
|
mm->vidmem.ce_ctx_id,
|
|
0,
|
|
mm->vidmem.base,
|
|
mm->vidmem.bootstrap_base - mm->vidmem.base,
|
|
0x00000000,
|
|
NVGPU_CE_DST_LOCATION_LOCAL_FB,
|
|
NVGPU_CE_MEMSET,
|
|
NULL,
|
|
0,
|
|
NULL);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Failed to clear vidmem region 1 : %d", err);
|
|
return err;
|
|
}
|
|
|
|
region2_base = mm->vidmem.bootstrap_base + mm->vidmem.bootstrap_size;
|
|
|
|
err = gk20a_ce_execute_ops(g,
|
|
mm->vidmem.ce_ctx_id,
|
|
0,
|
|
region2_base,
|
|
mm->vidmem.size - region2_base,
|
|
0x00000000,
|
|
NVGPU_CE_DST_LOCATION_LOCAL_FB,
|
|
NVGPU_CE_MEMSET,
|
|
NULL,
|
|
0,
|
|
&gk20a_fence_out);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Failed to clear vidmem region 2 : %d", err);
|
|
return err;
|
|
}
|
|
|
|
if (gk20a_fence_out) {
|
|
struct nvgpu_timeout timeout;
|
|
|
|
nvgpu_timeout_init(g, &timeout,
|
|
gk20a_get_gr_idle_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
err = gk20a_fence_wait(g, gk20a_fence_out,
|
|
gk20a_get_gr_idle_timeout(g));
|
|
} while (err == -ERESTARTSYS &&
|
|
!nvgpu_timeout_expired(&timeout));
|
|
|
|
gk20a_fence_put(gk20a_fence_out);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"fence wait failed for CE execute ops");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
mm->vidmem.cleared = true;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int gk20a_init_vidmem(struct mm_gk20a *mm)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
struct gk20a *g = mm->g;
|
|
size_t size = g->ops.mm.get_vidmem_size ?
|
|
g->ops.mm.get_vidmem_size(g) : 0;
|
|
u64 bootstrap_base, bootstrap_size, base;
|
|
u64 default_page_size = SZ_64K;
|
|
int err;
|
|
|
|
static struct nvgpu_alloc_carveout wpr_co =
|
|
NVGPU_CARVEOUT("wpr-region", 0, SZ_16M);
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
wpr_co.base = size - SZ_256M;
|
|
bootstrap_base = wpr_co.base;
|
|
bootstrap_size = SZ_16M;
|
|
base = default_page_size;
|
|
|
|
/*
|
|
* Bootstrap allocator for use before the CE is initialized (CE
|
|
* initialization requires vidmem but we want to use the CE to zero
|
|
* out vidmem before allocating it...
|
|
*/
|
|
err = nvgpu_page_allocator_init(g, &g->mm.vidmem.bootstrap_allocator,
|
|
"vidmem-bootstrap",
|
|
bootstrap_base, bootstrap_size,
|
|
SZ_4K, 0);
|
|
|
|
err = nvgpu_page_allocator_init(g, &g->mm.vidmem.allocator,
|
|
"vidmem",
|
|
base, size - base,
|
|
default_page_size,
|
|
GPU_ALLOC_4K_VIDMEM_PAGES);
|
|
if (err) {
|
|
nvgpu_err(g, "Failed to register vidmem for size %zu: %d",
|
|
size, err);
|
|
return err;
|
|
}
|
|
|
|
/* Reserve bootstrap region in vidmem allocator */
|
|
nvgpu_alloc_reserve_carveout(&g->mm.vidmem.allocator, &wpr_co);
|
|
|
|
mm->vidmem.base = base;
|
|
mm->vidmem.size = size - base;
|
|
mm->vidmem.bootstrap_base = bootstrap_base;
|
|
mm->vidmem.bootstrap_size = bootstrap_size;
|
|
|
|
nvgpu_mutex_init(&mm->vidmem.first_clear_mutex);
|
|
|
|
INIT_WORK(&mm->vidmem.clear_mem_worker, gk20a_vidmem_clear_mem_worker);
|
|
atomic64_set(&mm->vidmem.bytes_pending, 0);
|
|
nvgpu_init_list_node(&mm->vidmem.clear_list_head);
|
|
nvgpu_mutex_init(&mm->vidmem.clear_list_mutex);
|
|
|
|
gk20a_dbg_info("registered vidmem: %zu MB", size / SZ_1M);
|
|
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int gk20a_init_mm_setup_sw(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
int err;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
if (mm->sw_ready) {
|
|
gk20a_dbg_fn("skip init");
|
|
return 0;
|
|
}
|
|
|
|
mm->g = g;
|
|
nvgpu_mutex_init(&mm->l2_op_lock);
|
|
|
|
/*TBD: make channel vm size configurable */
|
|
mm->channel.user_size = NV_MM_DEFAULT_USER_SIZE -
|
|
NV_MM_DEFAULT_KERNEL_SIZE;
|
|
mm->channel.kernel_size = NV_MM_DEFAULT_KERNEL_SIZE;
|
|
|
|
gk20a_dbg_info("channel vm size: user %dMB kernel %dMB",
|
|
(int)(mm->channel.user_size >> 20),
|
|
(int)(mm->channel.kernel_size >> 20));
|
|
|
|
nvgpu_init_pramin(mm);
|
|
|
|
mm->vidmem.ce_ctx_id = (u32)~0;
|
|
|
|
err = gk20a_init_vidmem(mm);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* this requires fixed allocations in vidmem which must be
|
|
* allocated before all other buffers
|
|
*/
|
|
if (g->ops.pmu.alloc_blob_space
|
|
&& !nvgpu_is_enabled(g, NVGPU_MM_UNIFIED_MEMORY)) {
|
|
err = g->ops.pmu.alloc_blob_space(g, 0, &g->acr.ucode_blob);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = gk20a_alloc_sysmem_flush(g);
|
|
if (err)
|
|
return err;
|
|
|
|
if (g->ops.mm.is_bar1_supported(g)) {
|
|
err = gk20a_init_bar1_vm(mm);
|
|
if (err)
|
|
return err;
|
|
}
|
|
if (g->ops.mm.init_bar2_vm) {
|
|
err = g->ops.mm.init_bar2_vm(g);
|
|
if (err)
|
|
return err;
|
|
}
|
|
err = gk20a_init_system_vm(mm);
|
|
if (err)
|
|
return err;
|
|
|
|
err = gk20a_init_hwpm(mm);
|
|
if (err)
|
|
return err;
|
|
|
|
err = gk20a_init_cde_vm(mm);
|
|
if (err)
|
|
return err;
|
|
|
|
err = gk20a_init_ce_vm(mm);
|
|
if (err)
|
|
return err;
|
|
|
|
mm->remove_support = gk20a_remove_mm_support;
|
|
mm->remove_ce_support = gk20a_remove_mm_ce_support;
|
|
|
|
mm->sw_ready = true;
|
|
|
|
gk20a_dbg_fn("done");
|
|
return 0;
|
|
}
|
|
|
|
/* make sure gk20a_init_mm_support is called before */
|
|
int gk20a_init_mm_setup_hw(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
int err;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
g->ops.fb.set_mmu_page_size(g);
|
|
if (g->ops.fb.set_use_full_comp_tag_line)
|
|
mm->use_full_comp_tag_line =
|
|
g->ops.fb.set_use_full_comp_tag_line(g);
|
|
|
|
g->ops.fb.init_hw(g);
|
|
|
|
if (g->ops.bus.bar1_bind)
|
|
g->ops.bus.bar1_bind(g, &mm->bar1.inst_block);
|
|
|
|
if (g->ops.mm.init_bar2_mm_hw_setup) {
|
|
err = g->ops.mm.init_bar2_mm_hw_setup(g);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (gk20a_mm_fb_flush(g) || gk20a_mm_fb_flush(g))
|
|
return -EBUSY;
|
|
|
|
gk20a_dbg_fn("done");
|
|
return 0;
|
|
}
|
|
|
|
int gk20a_init_mm_support(struct gk20a *g)
|
|
{
|
|
u32 err;
|
|
|
|
err = gk20a_init_mm_reset_enable_hw(g);
|
|
if (err)
|
|
return err;
|
|
|
|
err = gk20a_init_mm_setup_sw(g);
|
|
if (err)
|
|
return err;
|
|
|
|
if (g->ops.mm.init_mm_setup_hw)
|
|
err = g->ops.mm.init_mm_setup_hw(g);
|
|
|
|
return err;
|
|
}
|
|
|
|
void gk20a_init_mm_ce_context(struct gk20a *g)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
if (g->mm.vidmem.size && (g->mm.vidmem.ce_ctx_id == (u32)~0)) {
|
|
g->mm.vidmem.ce_ctx_id =
|
|
gk20a_ce_create_context_with_cb(g,
|
|
gk20a_fifo_get_fast_ce_runlist_id(g),
|
|
-1,
|
|
-1,
|
|
-1,
|
|
NULL);
|
|
|
|
if (g->mm.vidmem.ce_ctx_id == (u32)~0)
|
|
nvgpu_err(g,
|
|
"Failed to allocate CE context for vidmem page clearing support");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int gk20a_mm_pde_coverage_bit_count(struct vm_gk20a *vm)
|
|
{
|
|
return vm->mmu_levels[0].lo_bit[0];
|
|
}
|
|
|
|
int nvgpu_vm_get_buffers(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf ***mapped_buffers,
|
|
int *num_buffers)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
struct nvgpu_mapped_buf **buffer_list;
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
int i = 0;
|
|
|
|
if (vm->userspace_managed) {
|
|
*mapped_buffers = NULL;
|
|
*num_buffers = 0;
|
|
return 0;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
buffer_list = nvgpu_big_zalloc(vm->mm->g, sizeof(*buffer_list) *
|
|
vm->num_user_mapped_buffers);
|
|
if (!buffer_list) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
|
|
while (node) {
|
|
mapped_buffer = mapped_buffer_from_rbtree_node(node);
|
|
if (mapped_buffer->user_mapped) {
|
|
buffer_list[i] = mapped_buffer;
|
|
kref_get(&mapped_buffer->ref);
|
|
i++;
|
|
}
|
|
nvgpu_rbtree_enum_next(&node, node);
|
|
}
|
|
|
|
BUG_ON(i != vm->num_user_mapped_buffers);
|
|
|
|
*num_buffers = vm->num_user_mapped_buffers;
|
|
*mapped_buffers = buffer_list;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void gk20a_vm_unmap_locked_kref(struct kref *ref)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer =
|
|
container_of(ref, struct nvgpu_mapped_buf, ref);
|
|
nvgpu_vm_unmap_locked(mapped_buffer, mapped_buffer->vm->kref_put_batch);
|
|
}
|
|
|
|
void nvgpu_vm_put_buffers(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf **mapped_buffers,
|
|
int num_buffers)
|
|
{
|
|
int i;
|
|
struct vm_gk20a_mapping_batch batch;
|
|
|
|
if (num_buffers == 0)
|
|
return;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
nvgpu_vm_mapping_batch_start(&batch);
|
|
vm->kref_put_batch = &batch;
|
|
|
|
for (i = 0; i < num_buffers; ++i)
|
|
kref_put(&mapped_buffers[i]->ref,
|
|
gk20a_vm_unmap_locked_kref);
|
|
|
|
vm->kref_put_batch = NULL;
|
|
nvgpu_vm_mapping_batch_finish_locked(vm, &batch);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
nvgpu_big_free(vm->mm->g, mapped_buffers);
|
|
}
|
|
|
|
static void nvgpu_vm_unmap_user(struct vm_gk20a *vm, u64 offset,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
struct gk20a *g = vm->mm->g;
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, offset);
|
|
if (!mapped_buffer) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g, "invalid addr to unmap 0x%llx", offset);
|
|
return;
|
|
}
|
|
|
|
if (mapped_buffer->flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) {
|
|
struct nvgpu_timeout timeout;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
nvgpu_timeout_init(vm->mm->g, &timeout, 10000,
|
|
NVGPU_TIMER_RETRY_TIMER);
|
|
do {
|
|
if (atomic_read(&mapped_buffer->ref.refcount) == 1)
|
|
break;
|
|
nvgpu_udelay(5);
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"sync-unmap failed on 0x%llx"));
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
}
|
|
|
|
if (mapped_buffer->user_mapped == 0) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g, "addr already unmapped from user 0x%llx", offset);
|
|
return;
|
|
}
|
|
|
|
mapped_buffer->user_mapped--;
|
|
if (mapped_buffer->user_mapped == 0)
|
|
vm->num_user_mapped_buffers--;
|
|
|
|
vm->kref_put_batch = batch;
|
|
kref_put(&mapped_buffer->ref, gk20a_vm_unmap_locked_kref);
|
|
vm->kref_put_batch = NULL;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
}
|
|
|
|
int setup_buffer_kind_and_compression(struct vm_gk20a *vm,
|
|
u32 flags,
|
|
struct buffer_attrs *bfr,
|
|
enum gmmu_pgsz_gk20a pgsz_idx)
|
|
{
|
|
bool kind_compressible;
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
int ctag_granularity = g->ops.fb.compression_page_size(g);
|
|
|
|
if (unlikely(bfr->kind_v == gmmu_pte_kind_invalid_v()))
|
|
bfr->kind_v = gmmu_pte_kind_pitch_v();
|
|
|
|
if (unlikely(!gk20a_kind_is_supported(bfr->kind_v))) {
|
|
nvgpu_err(g, "kind 0x%x not supported", bfr->kind_v);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bfr->uc_kind_v = gmmu_pte_kind_invalid_v();
|
|
/* find a suitable uncompressed kind if it becomes necessary later */
|
|
kind_compressible = gk20a_kind_is_compressible(bfr->kind_v);
|
|
if (kind_compressible) {
|
|
bfr->uc_kind_v = gk20a_get_uncompressed_kind(bfr->kind_v);
|
|
if (unlikely(bfr->uc_kind_v == gmmu_pte_kind_invalid_v())) {
|
|
/* shouldn't happen, but it is worth cross-checking */
|
|
nvgpu_err(g, "comptag kind 0x%x can't be"
|
|
" downgraded to uncompressed kind",
|
|
bfr->kind_v);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
/* comptags only supported for suitable kinds, 128KB pagesize */
|
|
if (kind_compressible &&
|
|
vm->gmmu_page_sizes[pgsz_idx] < g->ops.fb.compressible_page_size(g)) {
|
|
/* it is safe to fall back to uncompressed as
|
|
functionality is not harmed */
|
|
bfr->kind_v = bfr->uc_kind_v;
|
|
kind_compressible = false;
|
|
}
|
|
if (kind_compressible)
|
|
bfr->ctag_lines = DIV_ROUND_UP_ULL(bfr->size, ctag_granularity);
|
|
else
|
|
bfr->ctag_lines = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum nvgpu_aperture gk20a_dmabuf_aperture(struct gk20a *g,
|
|
struct dma_buf *dmabuf)
|
|
{
|
|
struct gk20a *buf_owner = gk20a_vidmem_buf_owner(dmabuf);
|
|
bool unified_memory = nvgpu_is_enabled(g, NVGPU_MM_UNIFIED_MEMORY);
|
|
|
|
if (buf_owner == NULL) {
|
|
/* Not nvgpu-allocated, assume system memory */
|
|
return APERTURE_SYSMEM;
|
|
} else if (WARN_ON(buf_owner == g && unified_memory)) {
|
|
/* Looks like our video memory, but this gpu doesn't support
|
|
* it. Warn about a bug and bail out */
|
|
nvgpu_warn(g,
|
|
"dmabuf is our vidmem but we don't have local vidmem");
|
|
return APERTURE_INVALID;
|
|
} else if (buf_owner != g) {
|
|
/* Someone else's vidmem */
|
|
return APERTURE_INVALID;
|
|
} else {
|
|
/* Yay, buf_owner == g */
|
|
return APERTURE_VIDMEM;
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
static struct sg_table *gk20a_vidbuf_map_dma_buf(
|
|
struct dma_buf_attachment *attach, enum dma_data_direction dir)
|
|
{
|
|
struct gk20a_vidmem_buf *buf = attach->dmabuf->priv;
|
|
|
|
return buf->mem->priv.sgt;
|
|
}
|
|
|
|
static void gk20a_vidbuf_unmap_dma_buf(struct dma_buf_attachment *attach,
|
|
struct sg_table *sgt,
|
|
enum dma_data_direction dir)
|
|
{
|
|
}
|
|
|
|
static void gk20a_vidbuf_release(struct dma_buf *dmabuf)
|
|
{
|
|
struct gk20a_vidmem_buf *buf = dmabuf->priv;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
if (buf->dmabuf_priv)
|
|
buf->dmabuf_priv_delete(buf->dmabuf_priv);
|
|
|
|
nvgpu_dma_free(buf->g, buf->mem);
|
|
nvgpu_kfree(buf->g, buf);
|
|
}
|
|
|
|
static void *gk20a_vidbuf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
|
|
{
|
|
WARN_ON("Not supported");
|
|
return NULL;
|
|
}
|
|
|
|
static void *gk20a_vidbuf_kmap_atomic(struct dma_buf *dmabuf,
|
|
unsigned long page_num)
|
|
{
|
|
WARN_ON("Not supported");
|
|
return NULL;
|
|
}
|
|
|
|
static int gk20a_vidbuf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gk20a_vidbuf_set_private(struct dma_buf *dmabuf,
|
|
struct device *dev, void *priv, void (*delete)(void *priv))
|
|
{
|
|
struct gk20a_vidmem_buf *buf = dmabuf->priv;
|
|
|
|
buf->dmabuf_priv = priv;
|
|
buf->dmabuf_priv_delete = delete;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *gk20a_vidbuf_get_private(struct dma_buf *dmabuf,
|
|
struct device *dev)
|
|
{
|
|
struct gk20a_vidmem_buf *buf = dmabuf->priv;
|
|
|
|
return buf->dmabuf_priv;
|
|
}
|
|
|
|
static const struct dma_buf_ops gk20a_vidbuf_ops = {
|
|
.map_dma_buf = gk20a_vidbuf_map_dma_buf,
|
|
.unmap_dma_buf = gk20a_vidbuf_unmap_dma_buf,
|
|
.release = gk20a_vidbuf_release,
|
|
.kmap_atomic = gk20a_vidbuf_kmap_atomic,
|
|
.kmap = gk20a_vidbuf_kmap,
|
|
.mmap = gk20a_vidbuf_mmap,
|
|
.set_drvdata = gk20a_vidbuf_set_private,
|
|
.get_drvdata = gk20a_vidbuf_get_private,
|
|
};
|
|
|
|
static struct dma_buf *gk20a_vidbuf_export(struct gk20a_vidmem_buf *buf)
|
|
{
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)
|
|
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
|
|
|
|
exp_info.priv = buf;
|
|
exp_info.ops = &gk20a_vidbuf_ops;
|
|
exp_info.size = buf->mem->size;
|
|
exp_info.flags = O_RDWR;
|
|
|
|
return dma_buf_export(&exp_info);
|
|
#else
|
|
return dma_buf_export(buf, &gk20a_vidbuf_ops, buf->mem->size,
|
|
O_RDWR, NULL);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static struct gk20a *gk20a_vidmem_buf_owner(struct dma_buf *dmabuf)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
struct gk20a_vidmem_buf *buf = dmabuf->priv;
|
|
|
|
if (dmabuf->ops != &gk20a_vidbuf_ops)
|
|
return NULL;
|
|
|
|
return buf->g;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
int gk20a_vidmem_buf_alloc(struct gk20a *g, size_t bytes)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
struct gk20a_vidmem_buf *buf;
|
|
int err = 0, fd;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
buf = nvgpu_kzalloc(g, sizeof(*buf));
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
buf->g = g;
|
|
|
|
if (!g->mm.vidmem.cleared) {
|
|
nvgpu_mutex_acquire(&g->mm.vidmem.first_clear_mutex);
|
|
if (!g->mm.vidmem.cleared) {
|
|
err = gk20a_vidmem_clear_all(g);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"failed to clear whole vidmem");
|
|
goto err_kfree;
|
|
}
|
|
}
|
|
nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex);
|
|
}
|
|
|
|
buf->mem = nvgpu_kzalloc(g, sizeof(struct nvgpu_mem));
|
|
if (!buf->mem)
|
|
goto err_kfree;
|
|
|
|
buf->mem->mem_flags |= NVGPU_MEM_FLAG_USER_MEM;
|
|
|
|
err = nvgpu_dma_alloc_vid(g, bytes, buf->mem);
|
|
if (err)
|
|
goto err_memfree;
|
|
|
|
buf->dmabuf = gk20a_vidbuf_export(buf);
|
|
if (IS_ERR(buf->dmabuf)) {
|
|
err = PTR_ERR(buf->dmabuf);
|
|
goto err_bfree;
|
|
}
|
|
|
|
fd = tegra_alloc_fd(current->files, 1024, O_RDWR);
|
|
if (fd < 0) {
|
|
/* ->release frees what we have done */
|
|
dma_buf_put(buf->dmabuf);
|
|
return fd;
|
|
}
|
|
|
|
/* fclose() on this drops one ref, freeing the dma buf */
|
|
fd_install(fd, buf->dmabuf->file);
|
|
|
|
return fd;
|
|
|
|
err_bfree:
|
|
nvgpu_dma_free(g, buf->mem);
|
|
err_memfree:
|
|
nvgpu_kfree(g, buf->mem);
|
|
err_kfree:
|
|
nvgpu_kfree(g, buf);
|
|
return err;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
int gk20a_vidmem_get_space(struct gk20a *g, u64 *space)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
struct nvgpu_allocator *allocator = &g->mm.vidmem.allocator;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
if (!nvgpu_alloc_initialized(allocator))
|
|
return -ENOSYS;
|
|
|
|
nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex);
|
|
*space = nvgpu_alloc_space(allocator) +
|
|
atomic64_read(&g->mm.vidmem.bytes_pending);
|
|
nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex);
|
|
return 0;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
int gk20a_vidbuf_access_memory(struct gk20a *g, struct dma_buf *dmabuf,
|
|
void *buffer, u64 offset, u64 size, u32 cmd)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
struct gk20a_vidmem_buf *vidmem_buf;
|
|
struct nvgpu_mem *mem;
|
|
int err = 0;
|
|
|
|
if (gk20a_dmabuf_aperture(g, dmabuf) != APERTURE_VIDMEM)
|
|
return -EINVAL;
|
|
|
|
vidmem_buf = dmabuf->priv;
|
|
mem = vidmem_buf->mem;
|
|
|
|
switch (cmd) {
|
|
case NVGPU_DBG_GPU_IOCTL_ACCESS_FB_MEMORY_CMD_READ:
|
|
nvgpu_mem_rd_n(g, mem, offset, buffer, size);
|
|
break;
|
|
|
|
case NVGPU_DBG_GPU_IOCTL_ACCESS_FB_MEMORY_CMD_WRITE:
|
|
nvgpu_mem_wr_n(g, mem, offset, buffer, size);
|
|
break;
|
|
|
|
default:
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
int nvgpu_vm_get_compbits_info(struct vm_gk20a *vm,
|
|
u64 mapping_gva,
|
|
u64 *compbits_win_size,
|
|
u32 *compbits_win_ctagline,
|
|
u32 *mapping_ctagline,
|
|
u32 *flags)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
struct gk20a *g = vm->mm->g;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, mapping_gva);
|
|
|
|
if (!mapped_buffer || !mapped_buffer->user_mapped)
|
|
{
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g, "%s: bad offset 0x%llx", __func__, mapping_gva);
|
|
return -EFAULT;
|
|
}
|
|
|
|
*compbits_win_size = 0;
|
|
*compbits_win_ctagline = 0;
|
|
*mapping_ctagline = 0;
|
|
*flags = 0;
|
|
|
|
if (mapped_buffer->ctag_offset)
|
|
*flags |= NVGPU_AS_GET_BUFFER_COMPBITS_INFO_FLAGS_HAS_COMPBITS;
|
|
|
|
if (mapped_buffer->ctags_mappable)
|
|
{
|
|
*flags |= NVGPU_AS_GET_BUFFER_COMPBITS_INFO_FLAGS_MAPPABLE;
|
|
*compbits_win_size = mapped_buffer->ctag_map_win_size;
|
|
*compbits_win_ctagline = mapped_buffer->ctag_map_win_ctagline;
|
|
*mapping_ctagline = mapped_buffer->ctag_offset;
|
|
}
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int nvgpu_vm_map_compbits(struct vm_gk20a *vm,
|
|
u64 mapping_gva,
|
|
u64 *compbits_win_gva,
|
|
u64 *mapping_iova,
|
|
u32 flags)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
const bool fixed_mapping =
|
|
(flags & NVGPU_AS_MAP_BUFFER_COMPBITS_FLAGS_FIXED_OFFSET) != 0;
|
|
|
|
if (vm->userspace_managed && !fixed_mapping) {
|
|
nvgpu_err(g,
|
|
"%s: non-fixed-offset mapping is not available on userspace managed address spaces",
|
|
__func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (fixed_mapping && !vm->userspace_managed) {
|
|
nvgpu_err(g,
|
|
"%s: fixed-offset mapping is available only on userspace managed address spaces",
|
|
__func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, mapping_gva);
|
|
|
|
if (!mapped_buffer || !mapped_buffer->user_mapped) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g, "%s: bad offset 0x%llx", __func__, mapping_gva);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!mapped_buffer->ctags_mappable) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g, "%s: comptags not mappable, offset 0x%llx",
|
|
__func__, mapping_gva);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!mapped_buffer->ctag_map_win_addr) {
|
|
const u32 small_pgsz_index = 0; /* small pages, 4K */
|
|
const u32 aggregate_cacheline_sz =
|
|
g->gr.cacheline_size * g->gr.slices_per_ltc *
|
|
g->ltc_count;
|
|
|
|
/* first aggregate cacheline to map */
|
|
u32 cacheline_start; /* inclusive */
|
|
|
|
/* offset of the start cacheline (will be page aligned) */
|
|
u64 cacheline_offset_start;
|
|
|
|
if (!mapped_buffer->ctag_map_win_size) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g,
|
|
"%s: mapping 0x%llx does not have "
|
|
"mappable comptags",
|
|
__func__, mapping_gva);
|
|
return -EFAULT;
|
|
}
|
|
|
|
cacheline_start = mapped_buffer->ctag_offset /
|
|
g->gr.comptags_per_cacheline;
|
|
cacheline_offset_start =
|
|
(u64)cacheline_start * aggregate_cacheline_sz;
|
|
|
|
if (fixed_mapping) {
|
|
struct buffer_attrs bfr;
|
|
int err;
|
|
struct nvgpu_vm_area *vm_area = NULL;
|
|
|
|
memset(&bfr, 0, sizeof(bfr));
|
|
|
|
bfr.pgsz_idx = small_pgsz_index;
|
|
|
|
err = nvgpu_vm_area_validate_buffer(
|
|
vm, *compbits_win_gva, mapped_buffer->ctag_map_win_size,
|
|
bfr.pgsz_idx, &vm_area);
|
|
|
|
if (err) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
return err;
|
|
}
|
|
|
|
if (vm_area) {
|
|
/* this would create a dangling GPU VA
|
|
* pointer if the space is freed
|
|
* before before the buffer is
|
|
* unmapped */
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g,
|
|
"%s: comptags cannot be mapped into allocated space",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
mapped_buffer->ctag_map_win_addr =
|
|
g->ops.mm.gmmu_map(
|
|
vm,
|
|
!fixed_mapping ? 0 : *compbits_win_gva, /* va */
|
|
g->gr.compbit_store.mem.priv.sgt,
|
|
cacheline_offset_start, /* sg offset */
|
|
mapped_buffer->ctag_map_win_size, /* size */
|
|
small_pgsz_index,
|
|
0, /* kind */
|
|
0, /* ctag_offset */
|
|
NVGPU_MAP_BUFFER_FLAGS_CACHEABLE_TRUE,
|
|
gk20a_mem_flag_read_only,
|
|
false, /* clear_ctags */
|
|
false, /* sparse */
|
|
false, /* priv */
|
|
NULL, /* mapping_batch handle */
|
|
g->gr.compbit_store.mem.aperture);
|
|
|
|
if (!mapped_buffer->ctag_map_win_addr) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g,
|
|
"%s: failed to map comptags for mapping 0x%llx",
|
|
__func__, mapping_gva);
|
|
return -ENOMEM;
|
|
}
|
|
} else if (fixed_mapping && *compbits_win_gva &&
|
|
mapped_buffer->ctag_map_win_addr != *compbits_win_gva) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
nvgpu_err(g,
|
|
"%s: re-requesting comptags map into mismatching address. buffer offset 0x"
|
|
"%llx, existing comptag map at 0x%llx, requested remap 0x%llx",
|
|
__func__, mapping_gva,
|
|
mapped_buffer->ctag_map_win_addr, *compbits_win_gva);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*mapping_iova = gk20a_mm_iova_addr(g, mapped_buffer->sgt->sgl, 0);
|
|
*compbits_win_gva = mapped_buffer->ctag_map_win_addr;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
static int gk20a_gmmu_clear_vidmem_mem(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
struct gk20a_fence *gk20a_fence_out = NULL;
|
|
struct gk20a_fence *gk20a_last_fence = NULL;
|
|
struct nvgpu_page_alloc *alloc = NULL;
|
|
struct page_alloc_chunk *chunk = NULL;
|
|
int err = 0;
|
|
|
|
if (g->mm.vidmem.ce_ctx_id == (u32)~0)
|
|
return -EINVAL;
|
|
|
|
alloc = get_vidmem_page_alloc(mem->priv.sgt->sgl);
|
|
|
|
nvgpu_list_for_each_entry(chunk, &alloc->alloc_chunks,
|
|
page_alloc_chunk, list_entry) {
|
|
if (gk20a_last_fence)
|
|
gk20a_fence_put(gk20a_last_fence);
|
|
|
|
err = gk20a_ce_execute_ops(g,
|
|
g->mm.vidmem.ce_ctx_id,
|
|
0,
|
|
chunk->base,
|
|
chunk->length,
|
|
0x00000000,
|
|
NVGPU_CE_DST_LOCATION_LOCAL_FB,
|
|
NVGPU_CE_MEMSET,
|
|
NULL,
|
|
0,
|
|
&gk20a_fence_out);
|
|
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Failed gk20a_ce_execute_ops[%d]", err);
|
|
return err;
|
|
}
|
|
|
|
gk20a_last_fence = gk20a_fence_out;
|
|
}
|
|
|
|
if (gk20a_last_fence) {
|
|
struct nvgpu_timeout timeout;
|
|
|
|
nvgpu_timeout_init(g, &timeout,
|
|
gk20a_get_gr_idle_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
err = gk20a_fence_wait(g, gk20a_last_fence,
|
|
gk20a_get_gr_idle_timeout(g));
|
|
} while (err == -ERESTARTSYS &&
|
|
!nvgpu_timeout_expired(&timeout));
|
|
|
|
gk20a_fence_put(gk20a_last_fence);
|
|
if (err)
|
|
nvgpu_err(g,
|
|
"fence wait failed for CE execute ops");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If mem is in VIDMEM, return base address in vidmem
|
|
* else return IOVA address for SYSMEM
|
|
*/
|
|
u64 nvgpu_mem_get_base_addr(struct gk20a *g, struct nvgpu_mem *mem,
|
|
u32 flags)
|
|
{
|
|
struct nvgpu_page_alloc *alloc;
|
|
u64 addr;
|
|
|
|
if (mem->aperture == APERTURE_VIDMEM) {
|
|
alloc = get_vidmem_page_alloc(mem->priv.sgt->sgl);
|
|
|
|
/* This API should not be used with > 1 chunks */
|
|
WARN_ON(alloc->nr_chunks != 1);
|
|
|
|
addr = alloc->base;
|
|
} else {
|
|
addr = g->ops.mm.get_iova_addr(g, mem->priv.sgt->sgl, flags);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
static struct nvgpu_mem *get_pending_mem_desc(struct mm_gk20a *mm)
|
|
{
|
|
struct nvgpu_mem *mem = NULL;
|
|
|
|
nvgpu_mutex_acquire(&mm->vidmem.clear_list_mutex);
|
|
if (!nvgpu_list_empty(&mm->vidmem.clear_list_head)) {
|
|
mem = nvgpu_list_first_entry(&mm->vidmem.clear_list_head,
|
|
nvgpu_mem, clear_list_entry);
|
|
nvgpu_list_del(&mem->clear_list_entry);
|
|
}
|
|
nvgpu_mutex_release(&mm->vidmem.clear_list_mutex);
|
|
|
|
return mem;
|
|
}
|
|
|
|
static void gk20a_vidmem_clear_mem_worker(struct work_struct *work)
|
|
{
|
|
struct mm_gk20a *mm = container_of(work, struct mm_gk20a,
|
|
vidmem.clear_mem_worker);
|
|
struct gk20a *g = mm->g;
|
|
struct nvgpu_mem *mem;
|
|
|
|
while ((mem = get_pending_mem_desc(mm)) != NULL) {
|
|
gk20a_gmmu_clear_vidmem_mem(g, mem);
|
|
nvgpu_free(mem->allocator,
|
|
(u64)get_vidmem_page_alloc(mem->priv.sgt->sgl));
|
|
nvgpu_free_sgtable(g, &mem->priv.sgt);
|
|
|
|
WARN_ON(atomic64_sub_return(mem->size,
|
|
&g->mm.vidmem.bytes_pending) < 0);
|
|
mem->size = 0;
|
|
mem->aperture = APERTURE_INVALID;
|
|
|
|
nvgpu_kfree(g, mem);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
dma_addr_t gk20a_mm_gpuva_to_iova_base(struct vm_gk20a *vm, u64 gpu_vaddr)
|
|
{
|
|
struct nvgpu_mapped_buf *buffer;
|
|
dma_addr_t addr = 0;
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
buffer = __nvgpu_vm_find_mapped_buf(vm, gpu_vaddr);
|
|
if (buffer)
|
|
addr = g->ops.mm.get_iova_addr(g, buffer->sgt->sgl,
|
|
buffer->flags);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
return addr;
|
|
}
|
|
|
|
u64 gk20a_mm_smmu_vaddr_translate(struct gk20a *g, dma_addr_t iova)
|
|
{
|
|
/* ensure it is not vidmem allocation */
|
|
WARN_ON(is_vidmem_page_alloc((u64)iova));
|
|
|
|
if (device_is_iommuable(dev_from_gk20a(g)) &&
|
|
g->ops.mm.get_physical_addr_bits)
|
|
return iova | 1ULL << g->ops.mm.get_physical_addr_bits(g);
|
|
|
|
return iova;
|
|
}
|
|
|
|
u64 gk20a_mm_iova_addr(struct gk20a *g, struct scatterlist *sgl,
|
|
u32 flags)
|
|
{
|
|
if (!device_is_iommuable(dev_from_gk20a(g)))
|
|
return sg_phys(sgl);
|
|
|
|
if (sg_dma_address(sgl) == 0)
|
|
return sg_phys(sgl);
|
|
|
|
if (sg_dma_address(sgl) == DMA_ERROR_CODE)
|
|
return 0;
|
|
|
|
return gk20a_mm_smmu_vaddr_translate(g, sg_dma_address(sgl));
|
|
}
|
|
|
|
/* for gk20a the "video memory" apertures here are misnomers. */
|
|
static inline u32 big_valid_pde0_bits(struct gk20a *g,
|
|
struct nvgpu_gmmu_pd *pd, u64 addr)
|
|
{
|
|
u32 pde0_bits =
|
|
nvgpu_aperture_mask(g, pd->mem,
|
|
gmmu_pde_aperture_big_sys_mem_ncoh_f(),
|
|
gmmu_pde_aperture_big_video_memory_f()) |
|
|
gmmu_pde_address_big_sys_f(
|
|
(u32)(addr >> gmmu_pde_address_shift_v()));
|
|
|
|
return pde0_bits;
|
|
}
|
|
|
|
static inline u32 small_valid_pde1_bits(struct gk20a *g,
|
|
struct nvgpu_gmmu_pd *pd, u64 addr)
|
|
{
|
|
u32 pde1_bits =
|
|
nvgpu_aperture_mask(g, pd->mem,
|
|
gmmu_pde_aperture_small_sys_mem_ncoh_f(),
|
|
gmmu_pde_aperture_small_video_memory_f()) |
|
|
gmmu_pde_vol_small_true_f() | /* tbd: why? */
|
|
gmmu_pde_address_small_sys_f(
|
|
(u32)(addr >> gmmu_pde_address_shift_v()));
|
|
|
|
return pde1_bits;
|
|
}
|
|
|
|
static void update_gmmu_pde_locked(struct vm_gk20a *vm,
|
|
const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
u32 pd_idx,
|
|
u64 virt_addr,
|
|
u64 phys_addr,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
bool small_valid, big_valid;
|
|
u32 pd_offset = pd_offset_from_index(l, pd_idx);
|
|
u32 pde_v[2] = {0, 0};
|
|
|
|
small_valid = attrs->pgsz == gmmu_page_size_small;
|
|
big_valid = attrs->pgsz == gmmu_page_size_big;
|
|
|
|
pde_v[0] = gmmu_pde_size_full_f();
|
|
pde_v[0] |= big_valid ?
|
|
big_valid_pde0_bits(g, pd, phys_addr) :
|
|
gmmu_pde_aperture_big_invalid_f();
|
|
|
|
pde_v[1] |= (small_valid ? small_valid_pde1_bits(g, pd, phys_addr) :
|
|
(gmmu_pde_aperture_small_invalid_f() |
|
|
gmmu_pde_vol_small_false_f()))
|
|
|
|
|
(big_valid ? (gmmu_pde_vol_big_true_f()) :
|
|
gmmu_pde_vol_big_false_f());
|
|
|
|
pte_dbg(g, attrs,
|
|
"PDE: i=%-4u size=%-2u offs=%-4u pgsz: %c%c | "
|
|
"GPU %#-12llx phys %#-12llx "
|
|
"[0x%08x, 0x%08x]",
|
|
pd_idx, l->entry_size, pd_offset,
|
|
small_valid ? 'S' : '-',
|
|
big_valid ? 'B' : '-',
|
|
virt_addr, phys_addr,
|
|
pde_v[1], pde_v[0]);
|
|
|
|
pd_write(g, &vm->pdb, pd_offset + 0, pde_v[0]);
|
|
pd_write(g, &vm->pdb, pd_offset + 1, pde_v[1]);
|
|
}
|
|
|
|
static void __update_pte_sparse(u32 *pte_w)
|
|
{
|
|
pte_w[0] = gmmu_pte_valid_false_f();
|
|
pte_w[1] |= gmmu_pte_vol_true_f();
|
|
}
|
|
|
|
static void __update_pte(struct vm_gk20a *vm,
|
|
u32 *pte_w,
|
|
u64 phys_addr,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
u32 page_size = vm->gmmu_page_sizes[attrs->pgsz];
|
|
u32 pte_valid = attrs->valid ?
|
|
gmmu_pte_valid_true_f() :
|
|
gmmu_pte_valid_false_f();
|
|
u32 phys_shifted = phys_addr >> gmmu_pte_address_shift_v();
|
|
u32 addr = attrs->aperture == APERTURE_SYSMEM ?
|
|
gmmu_pte_address_sys_f(phys_shifted) :
|
|
gmmu_pte_address_vid_f(phys_shifted);
|
|
int ctag_shift = ilog2(g->ops.fb.compression_page_size(g));
|
|
|
|
pte_w[0] = pte_valid | addr;
|
|
|
|
if (attrs->priv)
|
|
pte_w[0] |= gmmu_pte_privilege_true_f();
|
|
|
|
pte_w[1] = __nvgpu_aperture_mask(g, attrs->aperture,
|
|
gmmu_pte_aperture_sys_mem_ncoh_f(),
|
|
gmmu_pte_aperture_video_memory_f()) |
|
|
gmmu_pte_kind_f(attrs->kind_v) |
|
|
gmmu_pte_comptagline_f((u32)(attrs->ctag >> ctag_shift));
|
|
|
|
if (attrs->ctag && vm->mm->use_full_comp_tag_line &&
|
|
phys_addr & 0x10000)
|
|
pte_w[1] |= gmmu_pte_comptagline_f(
|
|
1 << (gmmu_pte_comptagline_s() - 1));
|
|
|
|
if (attrs->rw_flag == gk20a_mem_flag_read_only) {
|
|
pte_w[0] |= gmmu_pte_read_only_true_f();
|
|
pte_w[1] |= gmmu_pte_write_disable_true_f();
|
|
} else if (attrs->rw_flag == gk20a_mem_flag_write_only) {
|
|
pte_w[1] |= gmmu_pte_read_disable_true_f();
|
|
}
|
|
|
|
if (!attrs->cacheable)
|
|
pte_w[1] |= gmmu_pte_vol_true_f();
|
|
|
|
if (attrs->ctag)
|
|
attrs->ctag += page_size;
|
|
}
|
|
|
|
static void update_gmmu_pte_locked(struct vm_gk20a *vm,
|
|
const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
u32 pd_idx,
|
|
u64 virt_addr,
|
|
u64 phys_addr,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
u32 page_size = vm->gmmu_page_sizes[attrs->pgsz];
|
|
u32 pd_offset = pd_offset_from_index(l, pd_idx);
|
|
u32 pte_w[2] = {0, 0};
|
|
int ctag_shift = ilog2(g->ops.fb.compression_page_size(g));
|
|
|
|
if (phys_addr)
|
|
__update_pte(vm, pte_w, phys_addr, attrs);
|
|
else if (attrs->sparse)
|
|
__update_pte_sparse(pte_w);
|
|
|
|
pte_dbg(g, attrs,
|
|
"PTE: i=%-4u size=%-2u offs=%-4u | "
|
|
"GPU %#-12llx phys %#-12llx "
|
|
"pgsz: %3dkb perm=%-2s kind=%#02x APT=%-6s %c%c%c%c%c "
|
|
"ctag=0x%08x "
|
|
"[0x%08x, 0x%08x]",
|
|
pd_idx, l->entry_size, pd_offset,
|
|
virt_addr, phys_addr,
|
|
page_size >> 10,
|
|
nvgpu_gmmu_perm_str(attrs->rw_flag),
|
|
attrs->kind_v,
|
|
nvgpu_aperture_str(attrs->aperture),
|
|
attrs->cacheable ? 'C' : 'v',
|
|
attrs->sparse ? 'S' : '-',
|
|
attrs->priv ? 'P' : '-',
|
|
attrs->coherent ? 'c' : '-',
|
|
attrs->valid ? 'V' : '-',
|
|
(u32)attrs->ctag >> ctag_shift,
|
|
pte_w[1], pte_w[0]);
|
|
|
|
pd_write(g, pd, pd_offset + 0, pte_w[0]);
|
|
pd_write(g, pd, pd_offset + 1, pte_w[1]);
|
|
}
|
|
|
|
/* NOTE! mapped_buffers lock must be held */
|
|
void nvgpu_vm_unmap_locked(struct nvgpu_mapped_buf *mapped_buffer,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
struct vm_gk20a *vm = mapped_buffer->vm;
|
|
struct gk20a *g = vm->mm->g;
|
|
|
|
if (mapped_buffer->ctag_map_win_addr) {
|
|
/* unmap compbits */
|
|
|
|
g->ops.mm.gmmu_unmap(vm,
|
|
mapped_buffer->ctag_map_win_addr,
|
|
mapped_buffer->ctag_map_win_size,
|
|
0, /* page size 4k */
|
|
true, /* va allocated */
|
|
gk20a_mem_flag_none,
|
|
false, /* not sparse */
|
|
batch); /* batch handle */
|
|
}
|
|
|
|
g->ops.mm.gmmu_unmap(vm,
|
|
mapped_buffer->addr,
|
|
mapped_buffer->size,
|
|
mapped_buffer->pgsz_idx,
|
|
mapped_buffer->va_allocated,
|
|
gk20a_mem_flag_none,
|
|
mapped_buffer->vm_area ?
|
|
mapped_buffer->vm_area->sparse : false,
|
|
batch);
|
|
|
|
gk20a_mm_unpin(dev_from_vm(vm), mapped_buffer->dmabuf,
|
|
mapped_buffer->sgt);
|
|
|
|
/* remove from mapped buffer tree and remove list, free */
|
|
nvgpu_remove_mapped_buf(vm, mapped_buffer);
|
|
if (!nvgpu_list_empty(&mapped_buffer->buffer_list))
|
|
nvgpu_list_del(&mapped_buffer->buffer_list);
|
|
|
|
/* keep track of mapped buffers */
|
|
if (mapped_buffer->user_mapped)
|
|
vm->num_user_mapped_buffers--;
|
|
|
|
if (mapped_buffer->own_mem_ref)
|
|
dma_buf_put(mapped_buffer->dmabuf);
|
|
|
|
nvgpu_kfree(g, mapped_buffer);
|
|
|
|
return;
|
|
}
|
|
|
|
const struct gk20a_mmu_level gk20a_mm_levels_64k[] = {
|
|
{.hi_bit = {NV_GMMU_VA_RANGE-1, NV_GMMU_VA_RANGE-1},
|
|
.lo_bit = {26, 26},
|
|
.update_entry = update_gmmu_pde_locked,
|
|
.entry_size = 8},
|
|
{.hi_bit = {25, 25},
|
|
.lo_bit = {12, 16},
|
|
.update_entry = update_gmmu_pte_locked,
|
|
.entry_size = 8},
|
|
{.update_entry = NULL}
|
|
};
|
|
|
|
const struct gk20a_mmu_level gk20a_mm_levels_128k[] = {
|
|
{.hi_bit = {NV_GMMU_VA_RANGE-1, NV_GMMU_VA_RANGE-1},
|
|
.lo_bit = {27, 27},
|
|
.update_entry = update_gmmu_pde_locked,
|
|
.entry_size = 8},
|
|
{.hi_bit = {26, 26},
|
|
.lo_bit = {12, 17},
|
|
.update_entry = update_gmmu_pte_locked,
|
|
.entry_size = 8},
|
|
{.update_entry = NULL}
|
|
};
|
|
|
|
/*
|
|
* Attempt to find a reserved memory area to determine PTE size for the passed
|
|
* mapping. If no reserved area can be found use small pages.
|
|
*/
|
|
enum gmmu_pgsz_gk20a __get_pte_size_fixed_map(struct vm_gk20a *vm,
|
|
u64 base, u64 size)
|
|
{
|
|
struct nvgpu_vm_area *vm_area;
|
|
|
|
vm_area = nvgpu_vm_area_find(vm, base);
|
|
if (!vm_area)
|
|
return gmmu_page_size_small;
|
|
|
|
return vm_area->pgsz_idx;
|
|
}
|
|
|
|
/*
|
|
* This is for when the address space does not support unified address spaces.
|
|
*/
|
|
static enum gmmu_pgsz_gk20a __get_pte_size_split_addr(struct vm_gk20a *vm,
|
|
u64 base, u64 size)
|
|
{
|
|
if (!base) {
|
|
if (size >= vm->gmmu_page_sizes[gmmu_page_size_big])
|
|
return gmmu_page_size_big;
|
|
return gmmu_page_size_small;
|
|
} else {
|
|
if (base < __nv_gmmu_va_small_page_limit())
|
|
return gmmu_page_size_small;
|
|
else
|
|
return gmmu_page_size_big;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This determines the PTE size for a given alloc. Used by both the GVA space
|
|
* allocator and the mm core code so that agreement can be reached on how to
|
|
* map allocations.
|
|
*
|
|
* The page size of a buffer is this:
|
|
*
|
|
* o If the VM doesn't support large pages then obviously small pages
|
|
* must be used.
|
|
* o If the base address is non-zero (fixed address map):
|
|
* - Attempt to find a reserved memory area and use the page size
|
|
* based on that.
|
|
* - If no reserved page size is available, default to small pages.
|
|
* o If the base is zero:
|
|
* - If the size is larger than or equal to the big page size, use big
|
|
* pages.
|
|
* - Otherwise use small pages.
|
|
*/
|
|
enum gmmu_pgsz_gk20a __get_pte_size(struct vm_gk20a *vm, u64 base, u64 size)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
if (!vm->big_pages)
|
|
return gmmu_page_size_small;
|
|
|
|
if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES))
|
|
return __get_pte_size_split_addr(vm, base, size);
|
|
|
|
if (base)
|
|
return __get_pte_size_fixed_map(vm, base, size);
|
|
|
|
if (size >= vm->gmmu_page_sizes[gmmu_page_size_big])
|
|
return gmmu_page_size_big;
|
|
return gmmu_page_size_small;
|
|
}
|
|
|
|
int __gk20a_vm_bind_channel(struct vm_gk20a *vm, struct channel_gk20a *ch)
|
|
{
|
|
int err = 0;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
nvgpu_vm_get(vm);
|
|
ch->vm = vm;
|
|
err = channel_gk20a_commit_va(ch);
|
|
if (err)
|
|
ch->vm = NULL;
|
|
|
|
nvgpu_log(gk20a_from_vm(vm), gpu_dbg_map, "Binding ch=%d -> VM:%s",
|
|
ch->chid, vm->name);
|
|
|
|
return err;
|
|
}
|
|
|
|
int gk20a_vm_bind_channel(struct gk20a_as_share *as_share,
|
|
struct channel_gk20a *ch)
|
|
{
|
|
return __gk20a_vm_bind_channel(as_share->vm, ch);
|
|
}
|
|
|
|
int gk20a_dmabuf_alloc_drvdata(struct dma_buf *dmabuf, struct device *dev)
|
|
{
|
|
struct gk20a *g = gk20a_get_platform(dev)->g;
|
|
struct gk20a_dmabuf_priv *priv;
|
|
static u64 priv_count = 0;
|
|
|
|
priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
if (likely(priv))
|
|
return 0;
|
|
|
|
nvgpu_mutex_acquire(&g->mm.priv_lock);
|
|
priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
if (priv)
|
|
goto priv_exist_or_err;
|
|
|
|
priv = nvgpu_kzalloc(g, sizeof(*priv));
|
|
if (!priv) {
|
|
priv = ERR_PTR(-ENOMEM);
|
|
goto priv_exist_or_err;
|
|
}
|
|
|
|
nvgpu_mutex_init(&priv->lock);
|
|
nvgpu_init_list_node(&priv->states);
|
|
priv->buffer_id = ++priv_count;
|
|
priv->g = g;
|
|
dma_buf_set_drvdata(dmabuf, dev, priv, gk20a_mm_delete_priv);
|
|
|
|
priv_exist_or_err:
|
|
nvgpu_mutex_release(&g->mm.priv_lock);
|
|
if (IS_ERR(priv))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gk20a_dmabuf_get_state(struct dma_buf *dmabuf, struct gk20a *g,
|
|
u64 offset, struct gk20a_buffer_state **state)
|
|
{
|
|
int err = 0;
|
|
struct gk20a_dmabuf_priv *priv;
|
|
struct gk20a_buffer_state *s;
|
|
struct device *dev = dev_from_gk20a(g);
|
|
|
|
if (WARN_ON(offset >= (u64)dmabuf->size))
|
|
return -EINVAL;
|
|
|
|
err = gk20a_dmabuf_alloc_drvdata(dmabuf, dev);
|
|
if (err)
|
|
return err;
|
|
|
|
priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
if (WARN_ON(!priv))
|
|
return -ENOSYS;
|
|
|
|
nvgpu_mutex_acquire(&priv->lock);
|
|
|
|
nvgpu_list_for_each_entry(s, &priv->states, gk20a_buffer_state, list)
|
|
if (s->offset == offset)
|
|
goto out;
|
|
|
|
/* State not found, create state. */
|
|
s = nvgpu_kzalloc(g, sizeof(*s));
|
|
if (!s) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
s->offset = offset;
|
|
nvgpu_init_list_node(&s->list);
|
|
nvgpu_mutex_init(&s->lock);
|
|
nvgpu_list_add_tail(&s->list, &priv->states);
|
|
|
|
out:
|
|
nvgpu_mutex_release(&priv->lock);
|
|
if (!err)
|
|
*state = s;
|
|
return err;
|
|
|
|
|
|
}
|
|
|
|
int nvgpu_vm_map_buffer(struct vm_gk20a *vm,
|
|
int dmabuf_fd,
|
|
u64 *offset_align,
|
|
u32 flags, /*NVGPU_AS_MAP_BUFFER_FLAGS_*/
|
|
int kind,
|
|
u64 buffer_offset,
|
|
u64 mapping_size,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
int err = 0;
|
|
struct dma_buf *dmabuf;
|
|
u64 ret_va;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
/* get ref to the mem handle (released on unmap_locked) */
|
|
dmabuf = dma_buf_get(dmabuf_fd);
|
|
if (IS_ERR(dmabuf)) {
|
|
nvgpu_warn(gk20a_from_vm(vm), "%s: fd %d is not a dmabuf",
|
|
__func__, dmabuf_fd);
|
|
return PTR_ERR(dmabuf);
|
|
}
|
|
|
|
err = gk20a_dmabuf_alloc_drvdata(dmabuf, dev_from_vm(vm));
|
|
if (err) {
|
|
dma_buf_put(dmabuf);
|
|
return err;
|
|
}
|
|
|
|
ret_va = nvgpu_vm_map(vm, dmabuf, *offset_align,
|
|
flags, kind, true,
|
|
gk20a_mem_flag_none,
|
|
buffer_offset,
|
|
mapping_size,
|
|
batch);
|
|
|
|
*offset_align = ret_va;
|
|
if (!ret_va) {
|
|
dma_buf_put(dmabuf);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int nvgpu_vm_unmap_buffer(struct vm_gk20a *vm, u64 offset,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
gk20a_dbg_fn("");
|
|
|
|
nvgpu_vm_unmap_user(vm, offset, batch);
|
|
return 0;
|
|
}
|
|
|
|
int gk20a_alloc_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block)
|
|
{
|
|
int err;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
err = nvgpu_dma_alloc(g, ram_in_alloc_size_v(), inst_block);
|
|
if (err) {
|
|
nvgpu_err(g, "%s: memory allocation failed", __func__);
|
|
return err;
|
|
}
|
|
|
|
gk20a_dbg_fn("done");
|
|
return 0;
|
|
}
|
|
|
|
void gk20a_free_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block)
|
|
{
|
|
if (inst_block->size)
|
|
nvgpu_dma_free(g, inst_block);
|
|
}
|
|
|
|
u64 gk20a_mm_inst_block_addr(struct gk20a *g, struct nvgpu_mem *inst_block)
|
|
{
|
|
u64 addr;
|
|
if (g->mm.has_physical_mode)
|
|
addr = gk20a_mem_phys(inst_block);
|
|
else
|
|
addr = nvgpu_mem_get_base_addr(g, inst_block, 0);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int gk20a_init_bar1_vm(struct mm_gk20a *mm)
|
|
{
|
|
int err;
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
struct nvgpu_mem *inst_block = &mm->bar1.inst_block;
|
|
u32 big_page_size = g->ops.mm.get_default_big_page_size();
|
|
|
|
mm->bar1.aperture_size = bar1_aperture_size_mb_gk20a() << 20;
|
|
gk20a_dbg_info("bar1 vm size = 0x%x", mm->bar1.aperture_size);
|
|
mm->bar1.vm = nvgpu_vm_init(g,
|
|
big_page_size,
|
|
SZ_4K,
|
|
mm->bar1.aperture_size - SZ_4K,
|
|
mm->bar1.aperture_size,
|
|
true, false,
|
|
"bar1");
|
|
if (!mm->bar1.vm)
|
|
return -ENOMEM;
|
|
|
|
err = gk20a_alloc_inst_block(g, inst_block);
|
|
if (err)
|
|
goto clean_up_vm;
|
|
g->ops.mm.init_inst_block(inst_block, mm->bar1.vm, big_page_size);
|
|
|
|
return 0;
|
|
|
|
clean_up_vm:
|
|
nvgpu_vm_put(mm->bar1.vm);
|
|
return err;
|
|
}
|
|
|
|
/* pmu vm, share channel_vm interfaces */
|
|
static int gk20a_init_system_vm(struct mm_gk20a *mm)
|
|
{
|
|
int err;
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
struct nvgpu_mem *inst_block = &mm->pmu.inst_block;
|
|
u32 big_page_size = g->ops.mm.get_default_big_page_size();
|
|
u32 low_hole, aperture_size;
|
|
|
|
/*
|
|
* No user region - so we will pass that as zero sized.
|
|
*/
|
|
low_hole = SZ_4K * 16;
|
|
aperture_size = GK20A_PMU_VA_SIZE * 2;
|
|
|
|
mm->pmu.aperture_size = GK20A_PMU_VA_SIZE;
|
|
gk20a_dbg_info("pmu vm size = 0x%x", mm->pmu.aperture_size);
|
|
|
|
mm->pmu.vm = nvgpu_vm_init(g, big_page_size,
|
|
low_hole,
|
|
aperture_size - low_hole,
|
|
aperture_size,
|
|
true,
|
|
false,
|
|
"system");
|
|
if (!mm->pmu.vm)
|
|
return -ENOMEM;
|
|
|
|
err = gk20a_alloc_inst_block(g, inst_block);
|
|
if (err)
|
|
goto clean_up_vm;
|
|
g->ops.mm.init_inst_block(inst_block, mm->pmu.vm, big_page_size);
|
|
|
|
return 0;
|
|
|
|
clean_up_vm:
|
|
nvgpu_vm_put(mm->pmu.vm);
|
|
return err;
|
|
}
|
|
|
|
static int gk20a_init_hwpm(struct mm_gk20a *mm)
|
|
{
|
|
int err;
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
struct nvgpu_mem *inst_block = &mm->hwpm.inst_block;
|
|
|
|
err = gk20a_alloc_inst_block(g, inst_block);
|
|
if (err)
|
|
return err;
|
|
g->ops.mm.init_inst_block(inst_block, mm->pmu.vm, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gk20a_init_cde_vm(struct mm_gk20a *mm)
|
|
{
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
u32 big_page_size = g->ops.mm.get_default_big_page_size();
|
|
|
|
mm->cde.vm = nvgpu_vm_init(g, big_page_size,
|
|
big_page_size << 10,
|
|
NV_MM_DEFAULT_KERNEL_SIZE,
|
|
NV_MM_DEFAULT_KERNEL_SIZE + NV_MM_DEFAULT_USER_SIZE,
|
|
false, false, "cde");
|
|
if (!mm->cde.vm)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static int gk20a_init_ce_vm(struct mm_gk20a *mm)
|
|
{
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
u32 big_page_size = g->ops.mm.get_default_big_page_size();
|
|
|
|
mm->ce.vm = nvgpu_vm_init(g, big_page_size,
|
|
big_page_size << 10,
|
|
NV_MM_DEFAULT_KERNEL_SIZE,
|
|
NV_MM_DEFAULT_KERNEL_SIZE + NV_MM_DEFAULT_USER_SIZE,
|
|
false, false, "ce");
|
|
if (!mm->ce.vm)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void gk20a_mm_init_pdb(struct gk20a *g, struct nvgpu_mem *inst_block,
|
|
struct vm_gk20a *vm)
|
|
{
|
|
u64 pdb_addr = nvgpu_mem_get_base_addr(g, vm->pdb.mem, 0);
|
|
u32 pdb_addr_lo = u64_lo32(pdb_addr >> ram_in_base_shift_v());
|
|
u32 pdb_addr_hi = u64_hi32(pdb_addr);
|
|
|
|
gk20a_dbg_info("pde pa=0x%llx", pdb_addr);
|
|
|
|
nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_lo_w(),
|
|
nvgpu_aperture_mask(g, vm->pdb.mem,
|
|
ram_in_page_dir_base_target_sys_mem_ncoh_f(),
|
|
ram_in_page_dir_base_target_vid_mem_f()) |
|
|
ram_in_page_dir_base_vol_true_f() |
|
|
ram_in_page_dir_base_lo_f(pdb_addr_lo));
|
|
|
|
nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_hi_w(),
|
|
ram_in_page_dir_base_hi_f(pdb_addr_hi));
|
|
}
|
|
|
|
void gk20a_init_inst_block(struct nvgpu_mem *inst_block, struct vm_gk20a *vm,
|
|
u32 big_page_size)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
gk20a_dbg_info("inst block phys = 0x%llx, kv = 0x%p",
|
|
gk20a_mm_inst_block_addr(g, inst_block), inst_block->cpu_va);
|
|
|
|
g->ops.mm.init_pdb(g, inst_block, vm);
|
|
|
|
nvgpu_mem_wr32(g, inst_block, ram_in_adr_limit_lo_w(),
|
|
u64_lo32(vm->va_limit - 1) & ~0xfff);
|
|
|
|
nvgpu_mem_wr32(g, inst_block, ram_in_adr_limit_hi_w(),
|
|
ram_in_adr_limit_hi_f(u64_hi32(vm->va_limit - 1)));
|
|
|
|
if (big_page_size && g->ops.mm.set_big_page_size)
|
|
g->ops.mm.set_big_page_size(g, inst_block, big_page_size);
|
|
}
|
|
|
|
int gk20a_mm_fb_flush(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
u32 data;
|
|
int ret = 0;
|
|
struct nvgpu_timeout timeout;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
gk20a_busy_noresume(g);
|
|
if (!g->power_on) {
|
|
gk20a_idle_nosuspend(g);
|
|
return 0;
|
|
}
|
|
|
|
nvgpu_timeout_init(g, &timeout, 100, NVGPU_TIMER_RETRY_TIMER);
|
|
|
|
nvgpu_mutex_acquire(&mm->l2_op_lock);
|
|
|
|
/* Make sure all previous writes are committed to the L2. There's no
|
|
guarantee that writes are to DRAM. This will be a sysmembar internal
|
|
to the L2. */
|
|
|
|
trace_gk20a_mm_fb_flush(g->name);
|
|
|
|
gk20a_writel(g, flush_fb_flush_r(),
|
|
flush_fb_flush_pending_busy_f());
|
|
|
|
do {
|
|
data = gk20a_readl(g, flush_fb_flush_r());
|
|
|
|
if (flush_fb_flush_outstanding_v(data) ==
|
|
flush_fb_flush_outstanding_true_v() ||
|
|
flush_fb_flush_pending_v(data) ==
|
|
flush_fb_flush_pending_busy_v()) {
|
|
gk20a_dbg_info("fb_flush 0x%x", data);
|
|
nvgpu_udelay(5);
|
|
} else
|
|
break;
|
|
} while (!nvgpu_timeout_expired(&timeout));
|
|
|
|
if (nvgpu_timeout_peek_expired(&timeout)) {
|
|
if (g->ops.fb.dump_vpr_wpr_info)
|
|
g->ops.fb.dump_vpr_wpr_info(g);
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
trace_gk20a_mm_fb_flush_done(g->name);
|
|
|
|
nvgpu_mutex_release(&mm->l2_op_lock);
|
|
|
|
gk20a_idle_nosuspend(g);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gk20a_mm_l2_invalidate_locked(struct gk20a *g)
|
|
{
|
|
u32 data;
|
|
struct nvgpu_timeout timeout;
|
|
|
|
trace_gk20a_mm_l2_invalidate(g->name);
|
|
|
|
nvgpu_timeout_init(g, &timeout, 200, NVGPU_TIMER_RETRY_TIMER);
|
|
|
|
/* Invalidate any clean lines from the L2 so subsequent reads go to
|
|
DRAM. Dirty lines are not affected by this operation. */
|
|
gk20a_writel(g, flush_l2_system_invalidate_r(),
|
|
flush_l2_system_invalidate_pending_busy_f());
|
|
|
|
do {
|
|
data = gk20a_readl(g, flush_l2_system_invalidate_r());
|
|
|
|
if (flush_l2_system_invalidate_outstanding_v(data) ==
|
|
flush_l2_system_invalidate_outstanding_true_v() ||
|
|
flush_l2_system_invalidate_pending_v(data) ==
|
|
flush_l2_system_invalidate_pending_busy_v()) {
|
|
gk20a_dbg_info("l2_system_invalidate 0x%x",
|
|
data);
|
|
nvgpu_udelay(5);
|
|
} else
|
|
break;
|
|
} while (!nvgpu_timeout_expired(&timeout));
|
|
|
|
if (nvgpu_timeout_peek_expired(&timeout))
|
|
nvgpu_warn(g, "l2_system_invalidate too many retries");
|
|
|
|
trace_gk20a_mm_l2_invalidate_done(g->name);
|
|
}
|
|
|
|
void gk20a_mm_l2_invalidate(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
gk20a_busy_noresume(g);
|
|
if (g->power_on) {
|
|
nvgpu_mutex_acquire(&mm->l2_op_lock);
|
|
gk20a_mm_l2_invalidate_locked(g);
|
|
nvgpu_mutex_release(&mm->l2_op_lock);
|
|
}
|
|
gk20a_idle_nosuspend(g);
|
|
}
|
|
|
|
void gk20a_mm_l2_flush(struct gk20a *g, bool invalidate)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
u32 data;
|
|
struct nvgpu_timeout timeout;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
gk20a_busy_noresume(g);
|
|
if (!g->power_on)
|
|
goto hw_was_off;
|
|
|
|
nvgpu_timeout_init(g, &timeout, 2000, NVGPU_TIMER_RETRY_TIMER);
|
|
|
|
nvgpu_mutex_acquire(&mm->l2_op_lock);
|
|
|
|
trace_gk20a_mm_l2_flush(g->name);
|
|
|
|
/* Flush all dirty lines from the L2 to DRAM. Lines are left in the L2
|
|
as clean, so subsequent reads might hit in the L2. */
|
|
gk20a_writel(g, flush_l2_flush_dirty_r(),
|
|
flush_l2_flush_dirty_pending_busy_f());
|
|
|
|
do {
|
|
data = gk20a_readl(g, flush_l2_flush_dirty_r());
|
|
|
|
if (flush_l2_flush_dirty_outstanding_v(data) ==
|
|
flush_l2_flush_dirty_outstanding_true_v() ||
|
|
flush_l2_flush_dirty_pending_v(data) ==
|
|
flush_l2_flush_dirty_pending_busy_v()) {
|
|
gk20a_dbg_info("l2_flush_dirty 0x%x", data);
|
|
nvgpu_udelay(5);
|
|
} else
|
|
break;
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"l2_flush_dirty too many retries"));
|
|
|
|
trace_gk20a_mm_l2_flush_done(g->name);
|
|
|
|
if (invalidate)
|
|
gk20a_mm_l2_invalidate_locked(g);
|
|
|
|
nvgpu_mutex_release(&mm->l2_op_lock);
|
|
|
|
hw_was_off:
|
|
gk20a_idle_nosuspend(g);
|
|
}
|
|
|
|
void gk20a_mm_cbc_clean(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
u32 data;
|
|
struct nvgpu_timeout timeout;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
gk20a_busy_noresume(g);
|
|
if (!g->power_on)
|
|
goto hw_was_off;
|
|
|
|
nvgpu_timeout_init(g, &timeout, 200, NVGPU_TIMER_RETRY_TIMER);
|
|
|
|
nvgpu_mutex_acquire(&mm->l2_op_lock);
|
|
|
|
/* Flush all dirty lines from the CBC to L2 */
|
|
gk20a_writel(g, flush_l2_clean_comptags_r(),
|
|
flush_l2_clean_comptags_pending_busy_f());
|
|
|
|
do {
|
|
data = gk20a_readl(g, flush_l2_clean_comptags_r());
|
|
|
|
if (flush_l2_clean_comptags_outstanding_v(data) ==
|
|
flush_l2_clean_comptags_outstanding_true_v() ||
|
|
flush_l2_clean_comptags_pending_v(data) ==
|
|
flush_l2_clean_comptags_pending_busy_v()) {
|
|
gk20a_dbg_info("l2_clean_comptags 0x%x", data);
|
|
nvgpu_udelay(5);
|
|
} else
|
|
break;
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"l2_clean_comptags too many retries"));
|
|
|
|
nvgpu_mutex_release(&mm->l2_op_lock);
|
|
|
|
hw_was_off:
|
|
gk20a_idle_nosuspend(g);
|
|
}
|
|
|
|
int nvgpu_vm_find_buf(struct vm_gk20a *vm, u64 gpu_va,
|
|
struct dma_buf **dmabuf,
|
|
u64 *offset)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
|
|
gk20a_dbg_fn("gpu_va=0x%llx", gpu_va);
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
mapped_buffer = __nvgpu_vm_find_mapped_buf_range(vm, gpu_va);
|
|
if (!mapped_buffer) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*dmabuf = mapped_buffer->dmabuf;
|
|
*offset = gpu_va - mapped_buffer->addr;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gk20a_mm_suspend(struct gk20a *g)
|
|
{
|
|
gk20a_dbg_fn("");
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
cancel_work_sync(&g->mm.vidmem.clear_mem_worker);
|
|
#endif
|
|
|
|
g->ops.mm.cbc_clean(g);
|
|
g->ops.mm.l2_flush(g, false);
|
|
|
|
gk20a_dbg_fn("done");
|
|
return 0;
|
|
}
|
|
|
|
u32 gk20a_mm_get_physical_addr_bits(struct gk20a *g)
|
|
{
|
|
return 34;
|
|
}
|
|
|
|
const struct gk20a_mmu_level *gk20a_mm_get_mmu_levels(struct gk20a *g,
|
|
u32 big_page_size)
|
|
{
|
|
return (big_page_size == SZ_64K) ?
|
|
gk20a_mm_levels_64k : gk20a_mm_levels_128k;
|
|
}
|
|
|
|
int gk20a_mm_get_buffer_info(struct device *dev, int dmabuf_fd,
|
|
u64 *buffer_id, u64 *buffer_len)
|
|
{
|
|
struct dma_buf *dmabuf;
|
|
struct gk20a_dmabuf_priv *priv;
|
|
int err = 0;
|
|
|
|
dmabuf = dma_buf_get(dmabuf_fd);
|
|
if (IS_ERR(dmabuf)) {
|
|
dev_warn(dev, "%s: fd %d is not a dmabuf", __func__, dmabuf_fd);
|
|
return PTR_ERR(dmabuf);
|
|
}
|
|
|
|
err = gk20a_dmabuf_alloc_drvdata(dmabuf, dev);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to allocate dmabuf drvdata (err = %d)",
|
|
err);
|
|
goto clean_up;
|
|
}
|
|
|
|
priv = dma_buf_get_drvdata(dmabuf, dev);
|
|
if (likely(priv)) {
|
|
*buffer_id = priv->buffer_id;
|
|
*buffer_len = dmabuf->size;
|
|
}
|
|
|
|
clean_up:
|
|
dma_buf_put(dmabuf);
|
|
return err;
|
|
}
|