Files
linux-nvgpu/drivers/gpu/nvgpu/common/fifo/tsg.c
Sai Nikhil e824ea0963 gpu: nvgpu: common: MISRA Rule 10.1 fixes
MISRA rule 10.1 mandates that the correct data types are used as
operands of operators. For example, only unsigned integers can be used
as operands of bitwise operators.

This patch fixes rule 10.1 vioaltions for drivers/gpu/nvgpu/common.

JIRA NVGPU-777
JIRA NVGPU-1006

Change-Id: I53fe750f1b41816a183c595e5beb7bd263c27725
Signed-off-by: Sai Nikhil <snikhil@nvidia.com>
Signed-off-by: Adeel Raza <araza@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1971221
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-01-06 19:24:58 -08:00

658 lines
16 KiB
C

/*
* Copyright (c) 2014-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/debug.h>
#include <nvgpu/kmem.h>
#include <nvgpu/log.h>
#include <nvgpu/os_sched.h>
#include <nvgpu/channel.h>
#include <nvgpu/tsg.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/error_notifier.h>
#include "gk20a/gr_gk20a.h"
bool gk20a_is_channel_marked_as_tsg(struct channel_gk20a *ch)
{
return !(ch->tsgid == NVGPU_INVALID_TSG_ID);
}
int gk20a_enable_tsg(struct tsg_gk20a *tsg)
{
struct gk20a *g = tsg->g;
struct channel_gk20a *ch;
bool is_next, is_ctx_reload;
gk20a_tsg_disable_sched(g, tsg);
/*
* Due to h/w bug that exists in Maxwell and Pascal,
* we first need to enable all channels with NEXT and CTX_RELOAD set,
* and then rest of the channels should be enabled
*/
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
is_next = gk20a_fifo_channel_status_is_next(g, ch->chid);
is_ctx_reload = gk20a_fifo_channel_status_is_ctx_reload(g, ch->chid);
if (is_next || is_ctx_reload) {
g->ops.fifo.enable_channel(ch);
}
}
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
is_next = gk20a_fifo_channel_status_is_next(g, ch->chid);
is_ctx_reload = gk20a_fifo_channel_status_is_ctx_reload(g, ch->chid);
if (is_next || is_ctx_reload) {
continue;
}
g->ops.fifo.enable_channel(ch);
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
gk20a_tsg_enable_sched(g, tsg);
return 0;
}
int gk20a_disable_tsg(struct tsg_gk20a *tsg)
{
struct gk20a *g = tsg->g;
struct channel_gk20a *ch;
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
g->ops.fifo.disable_channel(ch);
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
return 0;
}
static bool gk20a_is_channel_active(struct gk20a *g, struct channel_gk20a *ch)
{
struct fifo_gk20a *f = &g->fifo;
struct fifo_runlist_info_gk20a *runlist;
unsigned int i;
for (i = 0; i < f->max_runlists; ++i) {
runlist = &f->runlist_info[i];
if (test_bit(ch->chid, runlist->active_channels)) {
return true;
}
}
return false;
}
/*
* API to mark channel as part of TSG
*
* Note that channel is not runnable when we bind it to TSG
*/
int gk20a_tsg_bind_channel(struct tsg_gk20a *tsg,
struct channel_gk20a *ch)
{
struct gk20a *g = ch->g;
nvgpu_log_fn(g, " ");
/* check if channel is already bound to some TSG */
if (gk20a_is_channel_marked_as_tsg(ch)) {
return -EINVAL;
}
/* channel cannot be bound to TSG if it is already active */
if (gk20a_is_channel_active(tsg->g, ch)) {
return -EINVAL;
}
ch->tsgid = tsg->tsgid;
/* all the channel part of TSG should need to be same runlist_id */
if (tsg->runlist_id == FIFO_INVAL_TSG_ID) {
tsg->runlist_id = ch->runlist_id;
} else if (tsg->runlist_id != ch->runlist_id) {
nvgpu_err(tsg->g,
"Error: TSG channel should be share same runlist ch[%d] tsg[%d]",
ch->runlist_id, tsg->runlist_id);
return -EINVAL;
}
nvgpu_rwsem_down_write(&tsg->ch_list_lock);
nvgpu_list_add_tail(&ch->ch_entry, &tsg->ch_list);
nvgpu_rwsem_up_write(&tsg->ch_list_lock);
nvgpu_ref_get(&tsg->refcount);
nvgpu_log(g, gpu_dbg_fn, "BIND tsg:%d channel:%d\n",
tsg->tsgid, ch->chid);
nvgpu_log_fn(g, "done");
return 0;
}
/* The caller must ensure that channel belongs to a tsg */
int gk20a_tsg_unbind_channel(struct channel_gk20a *ch)
{
struct gk20a *g = ch->g;
struct tsg_gk20a *tsg = tsg_gk20a_from_ch(ch);
int err;
nvgpu_assert(tsg != NULL);
err = g->ops.fifo.tsg_unbind_channel(ch);
if (err != 0) {
nvgpu_err(g, "Channel %d unbind failed, tearing down TSG %d",
ch->chid, tsg->tsgid);
gk20a_fifo_abort_tsg(ch->g, tsg, true);
/* If channel unbind fails, channel is still part of runlist */
channel_gk20a_update_runlist(ch, false);
nvgpu_rwsem_down_write(&tsg->ch_list_lock);
nvgpu_list_del(&ch->ch_entry);
nvgpu_rwsem_up_write(&tsg->ch_list_lock);
}
nvgpu_ref_put(&tsg->refcount, gk20a_tsg_release);
ch->tsgid = NVGPU_INVALID_TSG_ID;
nvgpu_log(g, gpu_dbg_fn, "UNBIND tsg:%d channel:%d\n",
tsg->tsgid, ch->chid);
return 0;
}
void nvgpu_tsg_recover(struct gk20a *g, struct tsg_gk20a *tsg,
bool verbose, u32 rc_type)
{
u32 engines;
/* stop context switching to prevent engine assignments from
changing until TSG is recovered */
nvgpu_mutex_acquire(&g->dbg_sessions_lock);
gr_gk20a_disable_ctxsw(g);
engines = g->ops.fifo.get_engines_mask_on_id(g, tsg->tsgid, true);
if (engines != 0U) {
gk20a_fifo_recover(g, engines, tsg->tsgid, true, true, verbose,
rc_type);
} else {
if (nvgpu_tsg_mark_error(g, tsg) && verbose) {
gk20a_debug_dump(g);
}
gk20a_fifo_abort_tsg(g, tsg, false);
}
gr_gk20a_enable_ctxsw(g);
nvgpu_mutex_release(&g->dbg_sessions_lock);
}
int gk20a_init_tsg_support(struct gk20a *g, u32 tsgid)
{
struct tsg_gk20a *tsg = NULL;
int err;
if (tsgid >= g->fifo.num_channels) {
return -EINVAL;
}
tsg = &g->fifo.tsg[tsgid];
tsg->in_use = false;
tsg->tsgid = tsgid;
nvgpu_init_list_node(&tsg->ch_list);
nvgpu_rwsem_init(&tsg->ch_list_lock);
nvgpu_init_list_node(&tsg->event_id_list);
err = nvgpu_mutex_init(&tsg->event_id_list_lock);
if (err != 0) {
tsg->in_use = true; /* make this TSG unusable */
return err;
}
return 0;
}
bool nvgpu_tsg_mark_error(struct gk20a *g,
struct tsg_gk20a *tsg)
{
struct channel_gk20a *ch = NULL;
bool verbose = false;
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) != NULL) {
if (nvgpu_channel_mark_error(g, ch)) {
verbose = true;
}
gk20a_channel_put(ch);
}
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
return verbose;
}
void nvgpu_tsg_set_ctx_mmu_error(struct gk20a *g,
struct tsg_gk20a *tsg)
{
struct channel_gk20a *ch = NULL;
nvgpu_err(g, "TSG %d generated a mmu fault", tsg->tsgid);
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) != NULL) {
nvgpu_channel_set_ctx_mmu_error(g, ch);
gk20a_channel_put(ch);
}
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
}
bool nvgpu_tsg_check_ctxsw_timeout(struct tsg_gk20a *tsg,
bool *verbose, u32 *ms)
{
struct channel_gk20a *ch;
bool recover = false;
bool progress = false;
struct gk20a *g = tsg->g;
*verbose = false;
*ms = g->fifo_eng_timeout_us / 1000U;
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
/* check if there was some progress on any of the TSG channels.
* fifo recovery is needed if at least one channel reached the
* maximum timeout without progress (update in gpfifo pointers).
*/
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) != NULL) {
recover = gk20a_channel_update_and_check_timeout(ch,
*ms, &progress);
if (progress || recover) {
break;
}
gk20a_channel_put(ch);
}
}
if (recover) {
/*
* if one channel is presumed dead (no progress for too long),
* then fifo recovery is needed. we can't really figure out
* which channel caused the problem, so set timeout error
* notifier for all channels.
*/
nvgpu_log_info(g, "timeout on tsg=%d ch=%d",
tsg->tsgid, ch->chid);
*ms = ch->timeout_accumulated_ms;
gk20a_channel_put(ch);
nvgpu_list_for_each_entry(ch, &tsg->ch_list,
channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) != NULL) {
ch->g->ops.fifo.set_error_notifier(ch,
NVGPU_ERR_NOTIFIER_FIFO_ERROR_IDLE_TIMEOUT);
if (ch->timeout_debug_dump) {
*verbose = true;
}
gk20a_channel_put(ch);
}
}
} else if (progress) {
/*
* if at least one channel in the TSG made some progress, reset
* accumulated timeout for all channels in the TSG. In
* particular, this resets timeout for channels that already
* completed their work
*/
nvgpu_log_info(g, "progress on tsg=%d ch=%d",
tsg->tsgid, ch->chid);
gk20a_channel_put(ch);
*ms = g->fifo_eng_timeout_us / 1000U;
nvgpu_list_for_each_entry(ch, &tsg->ch_list,
channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) != NULL) {
ch->timeout_accumulated_ms = *ms;
gk20a_channel_put(ch);
}
}
}
/* if we could not detect progress on any of the channel, but none
* of them has reached the timeout, there is nothing more to do:
* timeout_accumulated_ms has been updated for all of them.
*/
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
return recover;
}
int gk20a_tsg_set_runlist_interleave(struct tsg_gk20a *tsg, u32 level)
{
struct gk20a *g = tsg->g;
int ret;
nvgpu_log(g, gpu_dbg_sched, "tsgid=%u interleave=%u", tsg->tsgid, level);
nvgpu_speculation_barrier();
switch (level) {
case NVGPU_FIFO_RUNLIST_INTERLEAVE_LEVEL_LOW:
case NVGPU_FIFO_RUNLIST_INTERLEAVE_LEVEL_MEDIUM:
case NVGPU_FIFO_RUNLIST_INTERLEAVE_LEVEL_HIGH:
ret = g->ops.fifo.set_runlist_interleave(g, tsg->tsgid,
0, level);
if (ret == 0) {
tsg->interleave_level = level;
}
break;
default:
ret = -EINVAL;
break;
}
return (ret != 0) ? ret : g->ops.fifo.update_runlist(g,
tsg->runlist_id,
FIFO_INVAL_CHANNEL_ID,
true,
true);
}
int gk20a_tsg_set_timeslice(struct tsg_gk20a *tsg, u32 timeslice)
{
struct gk20a *g = tsg->g;
nvgpu_log(g, gpu_dbg_sched, "tsgid=%u timeslice=%u us", tsg->tsgid, timeslice);
return g->ops.fifo.tsg_set_timeslice(tsg, timeslice);
}
u32 gk20a_tsg_get_timeslice(struct tsg_gk20a *tsg)
{
struct gk20a *g = tsg->g;
if (tsg->timeslice_us == 0U) {
return g->ops.fifo.default_timeslice_us(g);
}
return tsg->timeslice_us;
}
void gk20a_tsg_enable_sched(struct gk20a *g, struct tsg_gk20a *tsg)
{
gk20a_fifo_set_runlist_state(g, BIT32(tsg->runlist_id),
RUNLIST_ENABLED);
}
void gk20a_tsg_disable_sched(struct gk20a *g, struct tsg_gk20a *tsg)
{
gk20a_fifo_set_runlist_state(g, BIT32(tsg->runlist_id),
RUNLIST_DISABLED);
}
static void release_used_tsg(struct fifo_gk20a *f, struct tsg_gk20a *tsg)
{
nvgpu_mutex_acquire(&f->tsg_inuse_mutex);
f->tsg[tsg->tsgid].in_use = false;
nvgpu_mutex_release(&f->tsg_inuse_mutex);
}
static struct tsg_gk20a *gk20a_tsg_acquire_unused_tsg(struct fifo_gk20a *f)
{
struct tsg_gk20a *tsg = NULL;
unsigned int tsgid;
nvgpu_mutex_acquire(&f->tsg_inuse_mutex);
for (tsgid = 0; tsgid < f->num_channels; tsgid++) {
if (!f->tsg[tsgid].in_use) {
f->tsg[tsgid].in_use = true;
tsg = &f->tsg[tsgid];
break;
}
}
nvgpu_mutex_release(&f->tsg_inuse_mutex);
return tsg;
}
int gk20a_tsg_open_common(struct gk20a *g, struct tsg_gk20a *tsg)
{
int err;
/* we need to allocate this after g->ops.gr.init_fs_state() since
* we initialize gr->no_of_sm in this function
*/
if (g->gr.no_of_sm == 0U) {
nvgpu_err(g, "no_of_sm %d not set, failed allocation",
g->gr.no_of_sm);
return -EINVAL;
}
err = gk20a_tsg_alloc_sm_error_states_mem(g, tsg, g->gr.no_of_sm);
if (err != 0) {
return err;
}
tsg->g = g;
tsg->num_active_channels = 0U;
nvgpu_ref_init(&tsg->refcount);
tsg->vm = NULL;
tsg->interleave_level = NVGPU_FIFO_RUNLIST_INTERLEAVE_LEVEL_LOW;
tsg->timeslice_us = 0U;
tsg->timeslice_timeout = 0U;
tsg->timeslice_scale = 0U;
tsg->runlist_id = FIFO_INVAL_TSG_ID;
tsg->sm_exception_mask_type = NVGPU_SM_EXCEPTION_TYPE_MASK_NONE;
tsg->gr_ctx = nvgpu_kzalloc(g, sizeof(*tsg->gr_ctx));
if (tsg->gr_ctx == NULL) {
err = -ENOMEM;
goto clean_up;
}
if (g->ops.fifo.init_eng_method_buffers != NULL) {
g->ops.fifo.init_eng_method_buffers(g, tsg);
}
if (g->ops.fifo.tsg_open != NULL) {
err = g->ops.fifo.tsg_open(tsg);
if (err != 0) {
nvgpu_err(g, "tsg %d fifo open failed %d",
tsg->tsgid, err);
goto clean_up;
}
}
return 0;
clean_up:
gk20a_tsg_release_common(g, tsg);
nvgpu_ref_put(&tsg->refcount, NULL);
return err;
}
struct tsg_gk20a *gk20a_tsg_open(struct gk20a *g, pid_t pid)
{
struct tsg_gk20a *tsg;
int err;
tsg = gk20a_tsg_acquire_unused_tsg(&g->fifo);
if (tsg == NULL) {
return NULL;
}
err = gk20a_tsg_open_common(g, tsg);
if (err != 0) {
release_used_tsg(&g->fifo, tsg);
nvgpu_err(g, "tsg %d open failed %d", tsg->tsgid, err);
return NULL;
}
tsg->tgid = pid;
nvgpu_log(g, gpu_dbg_fn, "tsg opened %d\n", tsg->tsgid);
return tsg;
}
void gk20a_tsg_release_common(struct gk20a *g, struct tsg_gk20a *tsg)
{
if (g->ops.fifo.tsg_release != NULL) {
g->ops.fifo.tsg_release(tsg);
}
nvgpu_kfree(g, tsg->gr_ctx);
tsg->gr_ctx = NULL;
if (g->ops.fifo.deinit_eng_method_buffers != NULL) {
g->ops.fifo.deinit_eng_method_buffers(g, tsg);
}
if (tsg->vm != NULL) {
nvgpu_vm_put(tsg->vm);
tsg->vm = NULL;
}
if(tsg->sm_error_states != NULL) {
nvgpu_kfree(g, tsg->sm_error_states);
tsg->sm_error_states = NULL;
nvgpu_mutex_destroy(&tsg->sm_exception_mask_lock);
}
}
void gk20a_tsg_release(struct nvgpu_ref *ref)
{
struct tsg_gk20a *tsg = container_of(ref, struct tsg_gk20a, refcount);
struct gk20a *g = tsg->g;
struct gk20a_event_id_data *event_id_data, *event_id_data_temp;
if (tsg->gr_ctx != NULL && nvgpu_mem_is_valid(&tsg->gr_ctx->mem)) {
gr_gk20a_free_tsg_gr_ctx(tsg);
}
/* unhook all events created on this TSG */
nvgpu_mutex_acquire(&tsg->event_id_list_lock);
nvgpu_list_for_each_entry_safe(event_id_data, event_id_data_temp,
&tsg->event_id_list,
gk20a_event_id_data,
event_id_node) {
nvgpu_list_del(&event_id_data->event_id_node);
}
nvgpu_mutex_release(&tsg->event_id_list_lock);
gk20a_tsg_release_common(g, tsg);
release_used_tsg(&g->fifo, tsg);
nvgpu_log(g, gpu_dbg_fn, "tsg released %d\n", tsg->tsgid);
}
struct tsg_gk20a *tsg_gk20a_from_ch(struct channel_gk20a *ch)
{
struct tsg_gk20a *tsg = NULL;
if (gk20a_is_channel_marked_as_tsg(ch)) {
struct gk20a *g = ch->g;
struct fifo_gk20a *f = &g->fifo;
tsg = &f->tsg[ch->tsgid];
}
return tsg;
}
int gk20a_tsg_alloc_sm_error_states_mem(struct gk20a *g,
struct tsg_gk20a *tsg,
u32 num_sm)
{
int err = 0;
if (tsg->sm_error_states != NULL) {
return -EINVAL;
}
err = nvgpu_mutex_init(&tsg->sm_exception_mask_lock);
if (err != 0) {
return err;
}
tsg->sm_error_states = nvgpu_kzalloc(g,
sizeof(struct nvgpu_tsg_sm_error_state)
* num_sm);
if (tsg->sm_error_states == NULL) {
nvgpu_err(g, "sm_error_states mem allocation failed");
nvgpu_mutex_destroy(&tsg->sm_exception_mask_lock);
err = -ENOMEM;
}
return err;
}
void gk20a_tsg_update_sm_error_state_locked(struct tsg_gk20a *tsg,
u32 sm_id,
struct nvgpu_tsg_sm_error_state *sm_error_state)
{
struct nvgpu_tsg_sm_error_state *tsg_sm_error_states;
tsg_sm_error_states = tsg->sm_error_states + sm_id;
tsg_sm_error_states->hww_global_esr =
sm_error_state->hww_global_esr;
tsg_sm_error_states->hww_warp_esr =
sm_error_state->hww_warp_esr;
tsg_sm_error_states->hww_warp_esr_pc =
sm_error_state->hww_warp_esr_pc;
tsg_sm_error_states->hww_global_esr_report_mask =
sm_error_state->hww_global_esr_report_mask;
tsg_sm_error_states->hww_warp_esr_report_mask =
sm_error_state->hww_warp_esr_report_mask;
}
int gk20a_tsg_set_sm_exception_type_mask(struct channel_gk20a *ch,
u32 exception_mask)
{
struct tsg_gk20a *tsg;
tsg = tsg_gk20a_from_ch(ch);
if (tsg == NULL) {
return -EINVAL;
}
nvgpu_mutex_acquire(&tsg->sm_exception_mask_lock);
tsg->sm_exception_mask_type = exception_mask;
nvgpu_mutex_release(&tsg->sm_exception_mask_lock);
return 0;
}