Files
linux-nvgpu/drivers/gpu/nvgpu/common/clk_arb/clk_arb.c
2022-02-15 09:37:14 -08:00

827 lines
21 KiB
C

/*
* Copyright (c) 2016-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bitops.h>
#include <nvgpu/lock.h>
#include <nvgpu/kmem.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/kref.h>
#include <nvgpu/log.h>
#include <nvgpu/barrier.h>
#include <nvgpu/cond.h>
#include <nvgpu/list.h>
#include <nvgpu/clk_arb.h>
#include <nvgpu/timers.h>
#include <nvgpu/worker.h>
#include <nvgpu/gk20a.h>
#ifdef CONFIG_NVGPU_LS_PMU
#include <nvgpu/pmu/clk/clk.h>
#include <nvgpu/pmu/perf.h>
#include <nvgpu/pmu/volt.h>
#endif
#include <nvgpu/boardobjgrp_e255.h>
int nvgpu_clk_notification_queue_alloc(struct gk20a *g,
struct nvgpu_clk_notification_queue *queue,
u32 events_number) {
queue->clk_q_notifications = nvgpu_kcalloc(g, events_number,
sizeof(struct nvgpu_clk_notification));
if (queue->clk_q_notifications == NULL) {
return -ENOMEM;
}
queue->size = events_number;
nvgpu_atomic_set(&queue->head, 0);
nvgpu_atomic_set(&queue->tail, 0);
return 0;
}
void nvgpu_clk_notification_queue_free(struct gk20a *g,
struct nvgpu_clk_notification_queue *queue) {
if (queue->size > 0U) {
nvgpu_kfree(g, queue->clk_q_notifications);
queue->size = 0;
nvgpu_atomic_set(&queue->head, 0);
nvgpu_atomic_set(&queue->tail, 0);
}
}
static void nvgpu_clk_arb_queue_notification(struct gk20a *g,
struct nvgpu_clk_notification_queue *queue,
u32 alarm_mask) {
u32 queue_index;
u64 timestamp = 0U;
queue_index = U32(nvgpu_atomic_inc_return(&queue->tail)) % queue->size;
#ifdef CONFIG_NVGPU_NON_FUSA
/* get current timestamp */
timestamp = (u64) nvgpu_hr_timestamp();
#endif
queue->clk_q_notifications[queue_index].timestamp = timestamp;
queue->clk_q_notifications[queue_index].clk_notification = alarm_mask;
}
void nvgpu_clk_arb_set_global_alarm(struct gk20a *g, u32 alarm)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
u64 current_mask;
u32 refcnt;
u32 alarm_mask;
u64 new_mask;
do {
current_mask = (u64)nvgpu_atomic64_read(&arb->alarm_mask);
/* atomic operations are strong so they do not need masks */
refcnt = ((u32) (current_mask >> 32)) + 1U;
alarm_mask = (u32) (current_mask & ~U32(0)) | alarm;
new_mask = ((u64) refcnt << 32) | alarm_mask;
} while (unlikely(current_mask !=
(u64)nvgpu_atomic64_cmpxchg(&arb->alarm_mask,
(long int)current_mask, (long int)new_mask)));
nvgpu_clk_arb_queue_notification(g, &arb->notification_queue, alarm);
}
#ifdef CONFIG_NVGPU_LS_PMU
int nvgpu_clk_arb_update_vf_table(struct nvgpu_clk_arb *arb)
{
struct gk20a *g = arb->g;
struct nvgpu_clk_vf_table *table;
u32 i, j;
int status = -EINVAL;
u16 clk_cur;
u32 num_points;
struct nvgpu_pmu_perf_pstate_clk_info *p0_info;
table = NV_READ_ONCE(arb->current_vf_table);
/* make flag visible when all data has resolved in the tables */
nvgpu_smp_rmb();
table = (table == &arb->vf_table_pool[0]) ? &arb->vf_table_pool[1] :
&arb->vf_table_pool[0];
/* Get allowed memory ranges */
if (g->ops.clk_arb.get_arbiter_clk_range(g, CTRL_CLK_DOMAIN_GPCCLK,
&arb->gpc2clk_min,
&arb->gpc2clk_max) < 0) {
nvgpu_err(g, "failed to fetch GPC2CLK range");
goto exit_vf_table;
}
if (g->ops.clk_arb.get_arbiter_clk_range(g, CTRL_CLK_DOMAIN_MCLK,
&arb->mclk_min,
&arb->mclk_max) < 0) {
nvgpu_err(g, "failed to fetch MCLK range");
goto exit_vf_table;
}
table->gpc2clk_num_points = MAX_F_POINTS;
table->mclk_num_points = MAX_F_POINTS;
if (g->ops.clk.clk_domain_get_f_points(arb->g, CTRL_CLK_DOMAIN_GPCCLK,
&table->gpc2clk_num_points, arb->gpc2clk_f_points)) {
nvgpu_err(g, "failed to fetch GPC2CLK frequency points");
goto exit_vf_table;
}
if (!table->gpc2clk_num_points) {
nvgpu_err(g, "empty queries to f points gpc2clk %d", table->gpc2clk_num_points);
status = -EINVAL;
goto exit_vf_table;
}
(void) memset(table->gpc2clk_points, 0,
table->gpc2clk_num_points*sizeof(struct nvgpu_clk_vf_point));
p0_info = nvgpu_pmu_perf_pstate_get_clk_set_info(g,
CTRL_PERF_PSTATE_P0, CLKWHICH_GPCCLK);
if (!p0_info) {
status = -EINVAL;
nvgpu_err(g, "failed to get GPC2CLK P0 info");
goto exit_vf_table;
}
/* GPC2CLK needs to be checked in two passes. The first determines the
* relationships between GPC2CLK, SYS2CLK and XBAR2CLK, while the
* second verifies that the clocks minimum is satisfied and sets
* the voltages,the later part is done in nvgpu_pmu_perf_changeseq_set_clks
*/
j = 0; num_points = 0; clk_cur = 0;
for (i = 0; i < table->gpc2clk_num_points; i++) {
struct nvgpu_clk_slave_freq setfllclk;
if ((arb->gpc2clk_f_points[i] >= arb->gpc2clk_min) &&
(arb->gpc2clk_f_points[i] <= arb->gpc2clk_max) &&
(arb->gpc2clk_f_points[i] != clk_cur)) {
table->gpc2clk_points[j].gpc_mhz =
arb->gpc2clk_f_points[i];
setfllclk.gpc_mhz = arb->gpc2clk_f_points[i];
status = clk_get_fll_clks_per_clk_domain(g, &setfllclk);
if (status < 0) {
nvgpu_err(g,
"failed to get GPC2CLK slave clocks");
goto exit_vf_table;
}
table->gpc2clk_points[j].sys_mhz =
setfllclk.sys_mhz;
table->gpc2clk_points[j].xbar_mhz =
setfllclk.xbar_mhz;
table->gpc2clk_points[j].nvd_mhz =
setfllclk.nvd_mhz;
table->gpc2clk_points[j].host_mhz =
setfllclk.host_mhz;
clk_cur = table->gpc2clk_points[j].gpc_mhz;
if ((clk_cur >= p0_info->min_mhz) &&
(clk_cur <= p0_info->max_mhz)) {
VF_POINT_SET_PSTATE_SUPPORTED(
&table->gpc2clk_points[j],
CTRL_PERF_PSTATE_P0);
}
j++;
num_points++;
}
}
table->gpc2clk_num_points = num_points;
/* make table visible when all data has resolved in the tables */
nvgpu_smp_wmb();
arb->current_vf_table = table;
exit_vf_table:
if (status < 0) {
nvgpu_clk_arb_set_global_alarm(g,
EVENT(ALARM_VF_TABLE_UPDATE_FAILED));
}
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
return status;
}
static void nvgpu_clk_arb_run_vf_table_cb(struct nvgpu_clk_arb *arb)
{
struct gk20a *g = arb->g;
int err;
/* get latest vf curve from pmu */
err = nvgpu_clk_vf_point_cache(g);
if (err != 0) {
nvgpu_err(g, "failed to cache VF table");
nvgpu_clk_arb_set_global_alarm(g,
EVENT(ALARM_VF_TABLE_UPDATE_FAILED));
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
return;
}
nvgpu_clk_arb_update_vf_table(arb);
}
#endif
u32 nvgpu_clk_arb_notify(struct nvgpu_clk_dev *dev,
struct nvgpu_clk_arb_target *target,
u32 alarm) {
struct nvgpu_clk_session *session = dev->session;
struct nvgpu_clk_arb *arb = session->g->clk_arb;
struct nvgpu_clk_notification *l_notification;
u32 queue_alarm_mask = 0;
u32 enabled_mask = 0;
u32 new_alarms_reported = 0;
u32 poll_mask = 0;
u32 tail, head, index;
u32 queue_index;
size_t size;
enabled_mask = (u32)nvgpu_atomic_read(&dev->enabled_mask);
size = arb->notification_queue.size;
/* queue global arbiter notifications in buffer */
do {
tail = (u32)nvgpu_atomic_read(&arb->notification_queue.tail);
/* copy items to the queue */
queue_index = (u32)nvgpu_atomic_read(&dev->queue.tail);
head = dev->arb_queue_head;
head = (tail - head) < arb->notification_queue.size ?
head : tail - arb->notification_queue.size;
for (index = head; WRAPGTEQ(tail, index); index++) {
u32 alarm_detected;
l_notification = &arb->notification_queue.
clk_q_notifications[((u64)index + 1ULL) % size];
alarm_detected = NV_READ_ONCE(
l_notification->clk_notification);
if ((enabled_mask & alarm_detected) == 0U) {
continue;
}
queue_index++;
dev->queue.clk_q_notifications[
queue_index % dev->queue.size].timestamp =
NV_READ_ONCE(l_notification->timestamp);
dev->queue.clk_q_notifications[queue_index %
dev->queue.size].clk_notification =
alarm_detected;
queue_alarm_mask |= alarm_detected;
}
} while (unlikely(nvgpu_atomic_read(&arb->notification_queue.tail) !=
(int)tail));
nvgpu_atomic_set(&dev->queue.tail, (int)queue_index);
/* update the last notification we processed from global queue */
dev->arb_queue_head = tail;
/* Check if current session targets are met */
if ((enabled_mask & EVENT(ALARM_LOCAL_TARGET_VF_NOT_POSSIBLE)) != 0U) {
if ((target->gpc2clk < session->target->gpc2clk)
|| (target->mclk < session->target->mclk)) {
poll_mask |= (NVGPU_POLLIN | NVGPU_POLLPRI);
nvgpu_clk_arb_queue_notification(arb->g, &dev->queue,
EVENT(ALARM_LOCAL_TARGET_VF_NOT_POSSIBLE));
}
}
/* Check if there is a new VF update */
if ((queue_alarm_mask & EVENT(VF_UPDATE)) != 0U) {
poll_mask |= (NVGPU_POLLIN | NVGPU_POLLRDNORM);
}
/* Notify sticky alarms that were not reported on previous run*/
new_alarms_reported = (queue_alarm_mask |
(alarm & ~dev->alarms_reported & queue_alarm_mask));
if ((new_alarms_reported & ~LOCAL_ALARM_MASK) != 0U) {
/* check that we are not re-reporting */
if ((new_alarms_reported & EVENT(ALARM_GPU_LOST)) != 0U) {
poll_mask |= NVGPU_POLLHUP;
}
poll_mask |= (NVGPU_POLLIN | NVGPU_POLLPRI);
/* On next run do not report global alarms that were already
* reported, but report SHUTDOWN always
*/
dev->alarms_reported = new_alarms_reported & ~LOCAL_ALARM_MASK &
~EVENT(ALARM_GPU_LOST);
}
if (poll_mask != 0U) {
nvgpu_atomic_set(&dev->poll_mask, (int)poll_mask);
nvgpu_clk_arb_event_post_event(dev);
}
return new_alarms_reported;
}
void nvgpu_clk_arb_clear_global_alarm(struct gk20a *g, u32 alarm)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
u64 current_mask;
u32 refcnt;
u32 alarm_mask;
u64 new_mask;
do {
current_mask = (u64)nvgpu_atomic64_read(&arb->alarm_mask);
/* atomic operations are strong so they do not need masks */
refcnt = ((u32) (current_mask >> 32)) + 1U;
alarm_mask = (u32) ((u32)current_mask & ~alarm);
new_mask = ((u64) refcnt << 32) | alarm_mask;
} while (unlikely(current_mask !=
(u64)nvgpu_atomic64_cmpxchg(&arb->alarm_mask,
(long int)current_mask, (long int)new_mask)));
}
/*
* Process one scheduled work item.
*/
static void nvgpu_clk_arb_worker_poll_wakeup_process_item(
struct nvgpu_list_node *work_item)
{
struct nvgpu_clk_arb_work_item *clk_arb_work_item =
nvgpu_clk_arb_work_item_from_worker_item(work_item);
struct gk20a *g = clk_arb_work_item->arb->g;
clk_arb_dbg(g, " ");
if (clk_arb_work_item->item_type == CLK_ARB_WORK_UPDATE_VF_TABLE) {
#ifdef CONFIG_NVGPU_LS_PMU
nvgpu_clk_arb_run_vf_table_cb(clk_arb_work_item->arb);
#endif
} else {
if (clk_arb_work_item->item_type == CLK_ARB_WORK_UPDATE_ARB) {
g->ops.clk_arb.clk_arb_run_arbiter_cb(
clk_arb_work_item->arb);
}
}
}
static void nvgpu_clk_arb_worker_poll_init(struct nvgpu_worker *worker)
{
clk_arb_dbg(worker->g, " ");
}
const struct nvgpu_worker_ops clk_arb_worker_ops = {
.pre_process = nvgpu_clk_arb_worker_poll_init,
.wakeup_early_exit = nvgpu_worker_should_stop,
.wakeup_post_process = NULL,
.wakeup_process_item =
nvgpu_clk_arb_worker_poll_wakeup_process_item,
.wakeup_condition =
nvgpu_worker_should_stop,
.wakeup_timeout = NULL,
};
/**
* Append a work item to the worker's list.
*
* This adds work item to the end of the list and wakes the worker
* up immediately. If the work item already existed in the list, it's not added,
* because in that case it has been scheduled already but has not yet been
* processed.
*/
void nvgpu_clk_arb_worker_enqueue(struct gk20a *g,
struct nvgpu_clk_arb_work_item *work_item)
{
clk_arb_dbg(g, " ");
(void)nvgpu_worker_enqueue(&g->clk_arb_worker.worker,
&work_item->worker_item);
}
/**
* Initialize the clk arb worker's metadata and start the background thread.
*/
int nvgpu_clk_arb_worker_init(struct gk20a *g)
{
struct nvgpu_worker *worker = &g->clk_arb_worker.worker;
nvgpu_worker_init_name(worker, "nvgpu_clk_arb_poll", g->name);
return nvgpu_worker_init(g, worker, &clk_arb_worker_ops);
}
int nvgpu_clk_arb_init_arbiter(struct gk20a *g)
{
int err = 0;
if (g->ops.clk_arb.check_clk_arb_support != NULL) {
if (!g->ops.clk_arb.check_clk_arb_support(g)) {
return 0;
}
}
else {
return 0;
}
nvgpu_mutex_acquire(&g->clk_arb_enable_lock);
err = g->ops.clk_arb.arbiter_clk_init(g);
nvgpu_mutex_release(&g->clk_arb_enable_lock);
return err;
}
bool nvgpu_clk_arb_has_active_req(struct gk20a *g)
{
return (nvgpu_atomic_read(&g->clk_arb_global_nr) > 0);
}
static void nvgpu_clk_arb_schedule_alarm(struct gk20a *g, u32 alarm)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
nvgpu_clk_arb_set_global_alarm(g, alarm);
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
}
void nvgpu_clk_arb_send_thermal_alarm(struct gk20a *g)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
if (arb != NULL) {
nvgpu_clk_arb_schedule_alarm(g,
BIT32(NVGPU_EVENT_ALARM_THERMAL_ABOVE_THRESHOLD));
}
}
void nvgpu_clk_arb_worker_deinit(struct gk20a *g)
{
struct nvgpu_worker *worker = &g->clk_arb_worker.worker;
nvgpu_worker_deinit(worker);
}
void nvgpu_clk_arb_cleanup_arbiter(struct gk20a *g)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
nvgpu_mutex_acquire(&g->clk_arb_enable_lock);
if (arb != NULL) {
g->ops.clk_arb.clk_arb_cleanup(g->clk_arb);
}
nvgpu_mutex_release(&g->clk_arb_enable_lock);
}
int nvgpu_clk_arb_init_session(struct gk20a *g,
struct nvgpu_clk_session **l_session)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
struct nvgpu_clk_session *session = *(l_session);
clk_arb_dbg(g, " ");
if (g->ops.clk_arb.check_clk_arb_support != NULL) {
if (!g->ops.clk_arb.check_clk_arb_support(g)) {
return 0;
}
}
else {
return 0;
}
session = nvgpu_kzalloc(g, sizeof(struct nvgpu_clk_session));
if (session == NULL) {
return -ENOMEM;
}
session->g = g;
nvgpu_ref_init(&session->refcount);
session->zombie = false;
session->target_pool[0].pstate = CTRL_PERF_PSTATE_P8;
/* make sure that the initialization of the pool is visible
* before the update
*/
nvgpu_smp_wmb();
session->target = &session->target_pool[0];
nvgpu_init_list_node(&session->targets);
nvgpu_spinlock_init(&session->session_lock);
nvgpu_spinlock_acquire(&arb->sessions_lock);
nvgpu_list_add_tail(&session->link, &arb->sessions);
nvgpu_spinlock_release(&arb->sessions_lock);
*l_session = session;
return 0;
}
static struct nvgpu_clk_dev *
nvgpu_clk_dev_from_refcount(struct nvgpu_ref *refcount)
{
return (struct nvgpu_clk_dev *)
((uintptr_t)refcount - offsetof(struct nvgpu_clk_dev, refcount));
};
void nvgpu_clk_arb_free_fd(struct nvgpu_ref *refcount)
{
struct nvgpu_clk_dev *dev = nvgpu_clk_dev_from_refcount(refcount);
struct nvgpu_clk_session *session = dev->session;
struct gk20a *g = session->g;
nvgpu_clk_notification_queue_free(g, &dev->queue);
nvgpu_atomic_dec(&g->clk_arb_global_nr);
nvgpu_kfree(g, dev);
}
static struct nvgpu_clk_session *
nvgpu_clk_session_from_refcount(struct nvgpu_ref *refcount)
{
return (struct nvgpu_clk_session *)
((uintptr_t)refcount - offsetof(struct nvgpu_clk_session, refcount));
};
void nvgpu_clk_arb_free_session(struct nvgpu_ref *refcount)
{
struct nvgpu_clk_session *session =
nvgpu_clk_session_from_refcount(refcount);
struct nvgpu_clk_arb *arb = session->g->clk_arb;
struct gk20a *g = session->g;
struct nvgpu_clk_dev *dev, *tmp;
clk_arb_dbg(g, " ");
if (arb != NULL) {
nvgpu_spinlock_acquire(&arb->sessions_lock);
nvgpu_list_del(&session->link);
nvgpu_spinlock_release(&arb->sessions_lock);
}
nvgpu_spinlock_acquire(&session->session_lock);
nvgpu_list_for_each_entry_safe(dev, tmp, &session->targets,
nvgpu_clk_dev, node) {
nvgpu_ref_put(&dev->refcount, nvgpu_clk_arb_free_fd);
nvgpu_list_del(&dev->node);
}
nvgpu_spinlock_release(&session->session_lock);
nvgpu_kfree(g, session);
}
void nvgpu_clk_arb_release_session(struct gk20a *g,
struct nvgpu_clk_session *session)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
clk_arb_dbg(g, " ");
session->zombie = true;
nvgpu_ref_put(&session->refcount, nvgpu_clk_arb_free_session);
if (arb != NULL) {
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
}
}
#ifdef CONFIG_NVGPU_LS_PMU
void nvgpu_clk_arb_schedule_vf_table_update(struct gk20a *g)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
nvgpu_clk_arb_worker_enqueue(g, &arb->update_vf_table_work_item);
}
/* This function is inherently unsafe to call while arbiter is running
* arbiter must be blocked before calling this function
*/
u32 nvgpu_clk_arb_get_current_pstate(struct gk20a *g)
{
return NV_READ_ONCE(g->clk_arb->actual->pstate);
}
void nvgpu_clk_arb_pstate_change_lock(struct gk20a *g, bool lock)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
if (lock) {
nvgpu_mutex_acquire(&arb->pstate_lock);
} else {
nvgpu_mutex_release(&arb->pstate_lock);
}
}
#endif
bool nvgpu_clk_arb_is_valid_domain(struct gk20a *g, u32 api_domain)
{
u32 clk_domains = g->ops.clk_arb.get_arbiter_clk_domains(g);
bool ret_result = false;
switch (api_domain) {
case NVGPU_CLK_DOMAIN_MCLK:
ret_result = ((clk_domains & CTRL_CLK_DOMAIN_MCLK) != 0U) ?
true : false;
break;
case NVGPU_CLK_DOMAIN_GPCCLK:
ret_result = ((clk_domains & CTRL_CLK_DOMAIN_GPCCLK) != 0U) ?
true : false;
break;
default:
ret_result = false;
break;
}
return ret_result;
}
int nvgpu_clk_arb_get_arbiter_clk_range(struct gk20a *g, u32 api_domain,
u16 *min_mhz, u16 *max_mhz)
{
int ret = -EINVAL;
switch (api_domain) {
case NVGPU_CLK_DOMAIN_MCLK:
ret = g->ops.clk_arb.get_arbiter_clk_range(g,
CTRL_CLK_DOMAIN_MCLK, min_mhz, max_mhz);
break;
case NVGPU_CLK_DOMAIN_GPCCLK:
ret = g->ops.clk_arb.get_arbiter_clk_range(g,
CTRL_CLK_DOMAIN_GPCCLK, min_mhz, max_mhz);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
int nvgpu_clk_arb_get_arbiter_clk_f_points(struct gk20a *g,
u32 api_domain, u32 *max_points, u16 *fpoints)
{
int err = -EINVAL;
switch (api_domain) {
case NVGPU_CLK_DOMAIN_GPCCLK:
err = g->ops.clk_arb.get_arbiter_f_points(g,
CTRL_CLK_DOMAIN_GPCCLK, max_points, fpoints);
if ((err != 0) || (fpoints == NULL)) {
break;
}
err = 0;
break;
case NVGPU_CLK_DOMAIN_MCLK:
err = g->ops.clk_arb.get_arbiter_f_points(g,
CTRL_CLK_DOMAIN_MCLK, max_points, fpoints);
break;
default:
err = -EINVAL;
break;
}
return err;
}
int nvgpu_clk_arb_get_session_target_mhz(struct nvgpu_clk_session *session,
u32 api_domain, u16 *target_mhz)
{
int err = 0;
struct nvgpu_clk_arb_target *target = session->target;
if (!nvgpu_clk_arb_is_valid_domain(session->g, api_domain)) {
return -EINVAL;
}
switch (api_domain) {
case NVGPU_CLK_DOMAIN_MCLK:
*target_mhz = target->mclk;
break;
case NVGPU_CLK_DOMAIN_GPCCLK:
*target_mhz = target->gpc2clk;
break;
default:
*target_mhz = 0;
err = -EINVAL;
break;
}
return err;
}
int nvgpu_clk_arb_get_arbiter_actual_mhz(struct gk20a *g,
u32 api_domain, u16 *actual_mhz)
{
struct nvgpu_clk_arb *arb = g->clk_arb;
int err = 0;
struct nvgpu_clk_arb_target *actual = arb->actual;
if (!nvgpu_clk_arb_is_valid_domain(g, api_domain)) {
return -EINVAL;
}
switch (api_domain) {
case NVGPU_CLK_DOMAIN_MCLK:
*actual_mhz = actual->mclk;
break;
case NVGPU_CLK_DOMAIN_GPCCLK:
*actual_mhz = actual->gpc2clk;
break;
default:
*actual_mhz = 0;
err = -EINVAL;
break;
}
return err;
}
unsigned long nvgpu_clk_measure_freq(struct gk20a *g, u32 api_domain)
{
unsigned long freq = 0UL;
switch (api_domain) {
/*
* Incase of iGPU clocks to each parition (GPC, SYS, LTC, XBAR) are
* generated using 1X GPCCLK and hence should be the same.
*/
case CTRL_CLK_DOMAIN_GPCCLK:
case CTRL_CLK_DOMAIN_SYSCLK:
case CTRL_CLK_DOMAIN_XBARCLK:
freq = g->ops.clk.get_rate(g, CTRL_CLK_DOMAIN_GPCCLK);
break;
default:
freq = 0UL;
break;
}
return freq;
}
int nvgpu_clk_arb_get_arbiter_effective_mhz(struct gk20a *g,
u32 api_domain, u16 *effective_mhz)
{
u64 freq_mhz_u64;
int err = -EINVAL;
if (!nvgpu_clk_arb_is_valid_domain(g, api_domain)) {
return -EINVAL;
}
switch (api_domain) {
case NVGPU_CLK_DOMAIN_MCLK:
freq_mhz_u64 = g->ops.clk.measure_freq(g,
CTRL_CLK_DOMAIN_MCLK) / 1000000ULL;
err = 0;
break;
case NVGPU_CLK_DOMAIN_GPCCLK:
freq_mhz_u64 = g->ops.clk.measure_freq(g,
CTRL_CLK_DOMAIN_GPCCLK) / 1000000ULL;
err = 0;
break;
default:
err = -EINVAL;
break;
}
if (err == 0) {
nvgpu_assert(freq_mhz_u64 <= (u64)U16_MAX);
*effective_mhz = (u16)freq_mhz_u64;
}
return err;
}