Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/gmmu/pd_cache.c
Vedashree Vidwans d4d04d060d gpu: nvgpu: fix misra violations mm.gmmu.pd_cache
MISRA Directive 4.7 requires calling function to test returned error
information as soon as called function returns.
This patch fixes this violation in nvgpu/common/mm/gmmu/pd_cache.c.

Change-Id: I2d93bf7423d2d37aacfd14c365a0681c0dd3a49d
Signed-off-by: Vedashree Vidwans <vvidwans@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2143187
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Nicolas Benech <nbenech@nvidia.com>
Reviewed-by: Vinod Gopalakrishnakurup <vinodg@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-06-27 12:45:44 -07:00

476 lines
12 KiB
C

/*
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/list.h>
#include <nvgpu/log2.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/enabled.h>
#include "pd_cache_priv.h"
static inline struct nvgpu_pd_mem_entry *
nvgpu_pd_mem_entry_from_list_entry(struct nvgpu_list_node *node)
{
return (struct nvgpu_pd_mem_entry *)
((uintptr_t)node -
offsetof(struct nvgpu_pd_mem_entry, list_entry));
};
static inline struct nvgpu_pd_mem_entry *
nvgpu_pd_mem_entry_from_tree_entry(struct nvgpu_rbtree_node *node)
{
return (struct nvgpu_pd_mem_entry *)
((uintptr_t)node -
offsetof(struct nvgpu_pd_mem_entry, tree_entry));
};
static u32 nvgpu_pd_cache_nr(u32 bytes)
{
unsigned long tmp = ilog2((unsigned long)bytes >>
((unsigned long)NVGPU_PD_CACHE_MIN_SHIFT - 1UL));
nvgpu_assert(tmp <= U32_MAX);
return (u32)tmp;
}
static u32 nvgpu_pd_cache_get_nr_entries(struct nvgpu_pd_mem_entry *pentry)
{
return PAGE_SIZE / pentry->pd_size;
}
/*
* Return the _physical_ address of a page directory.
*/
u64 nvgpu_pd_gpu_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
{
u64 page_addr;
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
page_addr = nvgpu_mem_get_phys_addr(g, pd->mem);
} else {
page_addr = nvgpu_mem_get_addr(g, pd->mem);
}
return page_addr + pd->mem_offs;
}
u32 nvgpu_pd_offset_from_index(const struct gk20a_mmu_level *l, u32 pd_idx)
{
return (pd_idx * l->entry_size) / U32(sizeof(u32));
}
void nvgpu_pd_write(struct gk20a *g, struct nvgpu_gmmu_pd *pd,
size_t w, u32 data)
{
nvgpu_mem_wr32(g, pd->mem,
(u32)((pd->mem_offs / sizeof(u32)) + w), data);
}
int nvgpu_pd_cache_init(struct gk20a *g)
{
struct nvgpu_pd_cache *cache;
u32 i;
/*
* This gets called from finalize_poweron() so we need to make sure we
* don't reinit the pd_cache over and over.
*/
if (g->mm.pd_cache != NULL) {
return 0;
}
cache = nvgpu_kzalloc(g, sizeof(*cache));
if (cache == NULL) {
nvgpu_err(g, "Failed to alloc pd_cache!");
return -ENOMEM;
}
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
nvgpu_init_list_node(&cache->full[i]);
nvgpu_init_list_node(&cache->partial[i]);
}
cache->mem_tree = NULL;
nvgpu_mutex_init(&cache->lock);
g->mm.pd_cache = cache;
pd_dbg(g, "PD cache initialized!");
return 0;
}
void nvgpu_pd_cache_fini(struct gk20a *g)
{
u32 i;
struct nvgpu_pd_cache *cache = g->mm.pd_cache;
if (cache == NULL) {
return;
}
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
nvgpu_assert(nvgpu_list_empty(&cache->full[i]));
nvgpu_assert(nvgpu_list_empty(&cache->partial[i]));
}
nvgpu_kfree(g, g->mm.pd_cache);
g->mm.pd_cache = NULL;
}
/*
* This is the simple pass-through for greater than page or page sized PDs.
*
* Note: this does not need the cache lock since it does not modify any of the
* PD cache data structures.
*/
static int nvgpu_pd_cache_alloc_direct(struct gk20a *g,
struct nvgpu_gmmu_pd *pd, u32 bytes)
{
int err;
unsigned long flags = 0;
pd_dbg(g, "PD-Alloc [D] %u bytes", bytes);
pd->mem = nvgpu_kzalloc(g, sizeof(*pd->mem));
if (pd->mem == NULL) {
nvgpu_err(g, "OOM allocating nvgpu_mem struct!");
return -ENOMEM;
}
/*
* If bytes == PAGE_SIZE then it's impossible to get a discontiguous DMA
* allocation. Some DMA implementations may, despite this fact, still
* use the contiguous pool for page sized allocations. As such only
* request explicitly contiguous allocs if the page directory is larger
* than the page size. Also, of course, this is all only revelant for
* GPUs not using an IOMMU. If there is an IOMMU DMA allocs are always
* going to be virtually contiguous and we don't have to force the
* underlying allocations to be physically contiguous as well.
*/
if (!nvgpu_iommuable(g) && bytes > PAGE_SIZE) {
flags = NVGPU_DMA_PHYSICALLY_ADDRESSED;
}
err = nvgpu_dma_alloc_flags(g, flags, bytes, pd->mem);
if (err != 0) {
nvgpu_err(g, "OOM allocating page directory!");
nvgpu_kfree(g, pd->mem);
return -ENOMEM;
}
pd->cached = false;
pd->mem_offs = 0;
return 0;
}
/*
* Make a new nvgpu_pd_cache_entry and allocate a PD from it. Update the passed
* pd to reflect this allocation.
*/
static int nvgpu_pd_cache_alloc_new(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd,
u32 bytes)
{
struct nvgpu_pd_mem_entry *pentry;
pd_dbg(g, "PD-Alloc [C] New: offs=0");
pentry = nvgpu_kzalloc(g, sizeof(*pentry));
if (pentry == NULL) {
nvgpu_err(g, "OOM allocating pentry!");
return -ENOMEM;
}
if (nvgpu_dma_alloc(g, PAGE_SIZE, &pentry->mem) != 0) {
nvgpu_kfree(g, pentry);
nvgpu_err(g, "Unable to DMA alloc!");
return -ENOMEM;
}
pentry->pd_size = bytes;
nvgpu_list_add(&pentry->list_entry,
&cache->partial[nvgpu_pd_cache_nr(bytes)]);
/*
* This allocates the very first PD table in the set of tables in this
* nvgpu_pd_mem_entry.
*/
nvgpu_set_bit(0U, pentry->alloc_map);
pentry->allocs = 1;
/*
* Now update the nvgpu_gmmu_pd to reflect this allocation.
*/
pd->mem = &pentry->mem;
pd->mem_offs = 0;
pd->cached = true;
pentry->tree_entry.key_start = (u64)(uintptr_t)&pentry->mem;
nvgpu_rbtree_insert(&pentry->tree_entry, &cache->mem_tree);
return 0;
}
static int nvgpu_pd_cache_alloc_from_partial(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry,
struct nvgpu_gmmu_pd *pd)
{
unsigned long bit_offs;
u32 mem_offs;
u32 nr_bits = nvgpu_pd_cache_get_nr_entries(pentry);
/*
* Find and allocate an open PD.
*/
bit_offs = find_first_zero_bit(pentry->alloc_map, nr_bits);
nvgpu_assert(bit_offs <= U32_MAX);
mem_offs = (u32)bit_offs * pentry->pd_size;
pd_dbg(g, "PD-Alloc [C] Partial: offs=%lu nr_bits=%d src=0x%p",
bit_offs, nr_bits, pentry);
/* Bit map full. Somethings wrong. */
nvgpu_assert(bit_offs < nr_bits);
nvgpu_set_bit((u32)bit_offs, pentry->alloc_map);
pentry->allocs += 1U;
/*
* First update the pd.
*/
pd->mem = &pentry->mem;
pd->mem_offs = mem_offs;
pd->cached = true;
/*
* Now make sure the pentry is in the correct list (full vs partial).
*/
if (pentry->allocs >= nr_bits) {
pd_dbg(g, "Adding pentry to full list!");
nvgpu_list_del(&pentry->list_entry);
nvgpu_list_add(&pentry->list_entry,
&cache->full[nvgpu_pd_cache_nr(pentry->pd_size)]);
}
return 0;
}
/*
* Get a partially full nvgpu_pd_mem_entry. Returns NULL if there is no partial
* nvgpu_pd_mem_entry's.
*/
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_get_partial(
struct nvgpu_pd_cache *cache, u32 bytes)
{
struct nvgpu_list_node *list =
&cache->partial[nvgpu_pd_cache_nr(bytes)];
if (nvgpu_list_empty(list)) {
return NULL;
}
return nvgpu_list_first_entry(list,
nvgpu_pd_mem_entry,
list_entry);
}
/*
* Allocate memory from an nvgpu_mem for the page directory.
*/
static int nvgpu_pd_cache_alloc(struct gk20a *g, struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd, u32 bytes)
{
struct nvgpu_pd_mem_entry *pentry;
int err;
pd_dbg(g, "PD-Alloc [C] %u bytes", bytes);
if ((bytes & (bytes - 1U)) != 0U ||
bytes < NVGPU_PD_CACHE_MIN) {
pd_dbg(g, "PD-Alloc [C] Invalid (bytes=%u)!", bytes);
return -EINVAL;
}
nvgpu_assert(bytes < PAGE_SIZE);
pentry = nvgpu_pd_cache_get_partial(cache, bytes);
if (pentry == NULL) {
err = nvgpu_pd_cache_alloc_new(g, cache, pd, bytes);
} else {
err = nvgpu_pd_cache_alloc_from_partial(g, cache, pentry, pd);
}
if (err != 0) {
nvgpu_err(g, "PD-Alloc [C] Failed!");
}
return err;
}
/*
* Allocate the DMA memory for a page directory. This handles the necessary PD
* cache logistics. Since on Parker and later GPUs some of the page directories
* are smaller than a page packing these PDs together saves a lot of memory.
*/
int nvgpu_pd_alloc(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd, u32 bytes)
{
struct gk20a *g = gk20a_from_vm(vm);
int err;
/*
* Simple case: PD is bigger than a page so just do a regular DMA
* alloc.
*/
if (bytes >= PAGE_SIZE) {
err = nvgpu_pd_cache_alloc_direct(g, pd, bytes);
if (err != 0) {
return err;
}
pd->pd_size = bytes;
return 0;
}
if (g->mm.pd_cache == NULL) {
nvgpu_do_assert();
return -ENOMEM;
}
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
err = nvgpu_pd_cache_alloc(g, g->mm.pd_cache, pd, bytes);
if (err == 0) {
pd->pd_size = bytes;
}
nvgpu_mutex_release(&g->mm.pd_cache->lock);
return err;
}
static void nvgpu_pd_cache_free_direct(struct gk20a *g,
struct nvgpu_gmmu_pd *pd)
{
pd_dbg(g, "PD-Free [D] 0x%p", pd->mem);
if (pd->mem == NULL) {
return;
}
nvgpu_dma_free(g, pd->mem);
nvgpu_kfree(g, pd->mem);
pd->mem = NULL;
}
static void nvgpu_pd_cache_free_mem_entry(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry)
{
nvgpu_dma_free(g, &pentry->mem);
nvgpu_list_del(&pentry->list_entry);
nvgpu_rbtree_unlink(&pentry->tree_entry, &cache->mem_tree);
nvgpu_kfree(g, pentry);
}
static void nvgpu_pd_cache_do_free(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry,
struct nvgpu_gmmu_pd *pd)
{
u32 bit = pd->mem_offs / pentry->pd_size;
/* Mark entry as free. */
nvgpu_clear_bit(bit, pentry->alloc_map);
pentry->allocs -= 1U;
if (pentry->allocs > 0U) {
/*
* Partially full still. If it was already on the partial list
* this just re-adds it.
*/
nvgpu_list_del(&pentry->list_entry);
nvgpu_list_add(&pentry->list_entry,
&cache->partial[nvgpu_pd_cache_nr(pentry->pd_size)]);
} else {
/* Empty now so free it. */
nvgpu_pd_cache_free_mem_entry(g, cache, pentry);
}
pd->mem = NULL;
}
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_look_up(
struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd)
{
struct nvgpu_rbtree_node *node = NULL;
nvgpu_rbtree_search((u64)(uintptr_t)pd->mem, &node,
cache->mem_tree);
if (node == NULL) {
return NULL;
}
return nvgpu_pd_mem_entry_from_tree_entry(node);
}
static void nvgpu_pd_cache_free(struct gk20a *g, struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd)
{
struct nvgpu_pd_mem_entry *pentry;
pd_dbg(g, "PD-Free [C] 0x%p", pd->mem);
pentry = nvgpu_pd_cache_look_up(g, cache, pd);
if (pentry == NULL) {
nvgpu_do_assert_print(g, "Attempting to free non-existent pd");
return;
}
nvgpu_pd_cache_do_free(g, cache, pentry, pd);
}
void nvgpu_pd_free(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd)
{
struct gk20a *g = gk20a_from_vm(vm);
/*
* Simple case: just DMA free.
*/
if (!pd->cached) {
return nvgpu_pd_cache_free_direct(g, pd);
}
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
nvgpu_pd_cache_free(g, g->mm.pd_cache, pd);
nvgpu_mutex_release(&g->mm.pd_cache->lock);
}