mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 18:16:01 +03:00
In gr_gv11b/gk20a_create_priv_addr_table() we do not consider floorswept FBPAs and just calculate the unicast list assuming all FBPAs are present This generates incorrect list of unicast addresses Fix this introducing new HAL ops.gr.split_fbpa_broadcast_addr Set gr_gv100_get_active_fpba_mask() for GV100 Set gr_gk20a_split_fbpa_broadcast_addr() for rest of the chips gr_gv100_get_active_fpba_mask() will first get active FPBA mask and generate unicast list only for active FBPAs Bug 200398811 Jira NVGPU-556 Change-Id: Idd11d6e7ad7b6836525fe41509aeccf52038321f Signed-off-by: Deepak Nibade <dnibade@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1694444 GVS: Gerrit_Virtual_Submit Reviewed-by: Bharat Nihalani <bnihalani@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
413 lines
11 KiB
C
413 lines
11 KiB
C
/*
|
|
* GV100 GPU GR
|
|
*
|
|
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/debug.h>
|
|
#include <nvgpu/enabled.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/gr_gk20a.h"
|
|
#include "gk20a/gr_pri_gk20a.h"
|
|
|
|
#include "gv100/gr_gv100.h"
|
|
#include "gv11b/subctx_gv11b.h"
|
|
|
|
#include <nvgpu/hw/gv100/hw_gr_gv100.h>
|
|
#include <nvgpu/hw/gv100/hw_proj_gv100.h>
|
|
#include <nvgpu/hw/gv100/hw_fuse_gv100.h>
|
|
|
|
|
|
/*
|
|
* Estimate performance if the given logical TPC in the given logical GPC were
|
|
* removed.
|
|
*/
|
|
static int gr_gv100_scg_estimate_perf(struct gk20a *g,
|
|
unsigned long *gpc_tpc_mask,
|
|
u32 disable_gpc_id, u32 disable_tpc_id,
|
|
int *perf)
|
|
{
|
|
struct gr_gk20a *gr = &g->gr;
|
|
int err = 0;
|
|
u32 scale_factor = 512UL; /* Use fx23.9 */
|
|
u32 pix_scale = 1024*1024UL; /* Pix perf in [29:20] */
|
|
u32 world_scale = 1024UL; /* World performance in [19:10] */
|
|
u32 tpc_scale = 1; /* TPC balancing in [9:0] */
|
|
u32 scg_num_pes = 0;
|
|
u32 min_scg_gpc_pix_perf = scale_factor; /* Init perf as maximum */
|
|
u32 average_tpcs = 0; /* Average of # of TPCs per GPC */
|
|
u32 deviation; /* absolute diff between TPC# and
|
|
* average_tpcs, averaged across GPCs
|
|
*/
|
|
u32 norm_tpc_deviation; /* deviation/max_tpc_per_gpc */
|
|
u32 tpc_balance;
|
|
u32 scg_gpc_pix_perf;
|
|
u32 scg_world_perf;
|
|
u32 gpc_id;
|
|
u32 pes_id;
|
|
int diff;
|
|
bool is_tpc_removed_gpc = false;
|
|
bool is_tpc_removed_pes = false;
|
|
u32 max_tpc_gpc = 0;
|
|
u32 num_tpc_mask;
|
|
u32 *num_tpc_gpc = nvgpu_kzalloc(g, sizeof(u32) *
|
|
nvgpu_get_litter_value(g, GPU_LIT_NUM_GPCS));
|
|
|
|
if (!num_tpc_gpc)
|
|
return -ENOMEM;
|
|
|
|
/* Calculate pix-perf-reduction-rate per GPC and find bottleneck TPC */
|
|
for (gpc_id = 0; gpc_id < gr->gpc_count; gpc_id++) {
|
|
num_tpc_mask = gpc_tpc_mask[gpc_id];
|
|
|
|
if ((gpc_id == disable_gpc_id) && num_tpc_mask &
|
|
(0x1 << disable_tpc_id)) {
|
|
/* Safety check if a TPC is removed twice */
|
|
if (is_tpc_removed_gpc) {
|
|
err = -EINVAL;
|
|
goto free_resources;
|
|
}
|
|
/* Remove logical TPC from set */
|
|
num_tpc_mask &= ~(0x1 << disable_tpc_id);
|
|
is_tpc_removed_gpc = true;
|
|
}
|
|
|
|
/* track balancing of tpcs across gpcs */
|
|
num_tpc_gpc[gpc_id] = hweight32(num_tpc_mask);
|
|
average_tpcs += num_tpc_gpc[gpc_id];
|
|
|
|
/* save the maximum numer of gpcs */
|
|
max_tpc_gpc = num_tpc_gpc[gpc_id] > max_tpc_gpc ?
|
|
num_tpc_gpc[gpc_id] : max_tpc_gpc;
|
|
|
|
/*
|
|
* Calculate ratio between TPC count and post-FS and post-SCG
|
|
*
|
|
* ratio represents relative throughput of the GPC
|
|
*/
|
|
scg_gpc_pix_perf = scale_factor * num_tpc_gpc[gpc_id] /
|
|
gr->gpc_tpc_count[gpc_id];
|
|
|
|
if (min_scg_gpc_pix_perf > scg_gpc_pix_perf)
|
|
min_scg_gpc_pix_perf = scg_gpc_pix_perf;
|
|
|
|
/* Calculate # of surviving PES */
|
|
for (pes_id = 0; pes_id < gr->gpc_ppc_count[gpc_id]; pes_id++) {
|
|
/* Count the number of TPC on the set */
|
|
num_tpc_mask = gr->pes_tpc_mask[pes_id][gpc_id] &
|
|
gpc_tpc_mask[gpc_id];
|
|
|
|
if ((gpc_id == disable_gpc_id) && (num_tpc_mask &
|
|
(0x1 << disable_tpc_id))) {
|
|
|
|
if (is_tpc_removed_pes) {
|
|
err = -EINVAL;
|
|
goto free_resources;
|
|
}
|
|
num_tpc_mask &= ~(0x1 << disable_tpc_id);
|
|
is_tpc_removed_pes = true;
|
|
}
|
|
if (hweight32(num_tpc_mask))
|
|
scg_num_pes++;
|
|
}
|
|
}
|
|
|
|
if (!is_tpc_removed_gpc || !is_tpc_removed_pes) {
|
|
err = -EINVAL;
|
|
goto free_resources;
|
|
}
|
|
|
|
if (max_tpc_gpc == 0) {
|
|
*perf = 0;
|
|
goto free_resources;
|
|
}
|
|
|
|
/* Now calculate perf */
|
|
scg_world_perf = (scale_factor * scg_num_pes) / gr->ppc_count;
|
|
deviation = 0;
|
|
average_tpcs = scale_factor * average_tpcs / gr->gpc_count;
|
|
for (gpc_id =0; gpc_id < gr->gpc_count; gpc_id++) {
|
|
diff = average_tpcs - scale_factor * num_tpc_gpc[gpc_id];
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
deviation += diff;
|
|
}
|
|
|
|
deviation /= gr->gpc_count;
|
|
|
|
norm_tpc_deviation = deviation / max_tpc_gpc;
|
|
|
|
tpc_balance = scale_factor - norm_tpc_deviation;
|
|
|
|
if ((tpc_balance > scale_factor) ||
|
|
(scg_world_perf > scale_factor) ||
|
|
(min_scg_gpc_pix_perf > scale_factor) ||
|
|
(norm_tpc_deviation > scale_factor)) {
|
|
err = -EINVAL;
|
|
goto free_resources;
|
|
}
|
|
|
|
*perf = (pix_scale * min_scg_gpc_pix_perf) +
|
|
(world_scale * scg_world_perf) +
|
|
(tpc_scale * tpc_balance);
|
|
free_resources:
|
|
nvgpu_kfree(g, num_tpc_gpc);
|
|
return err;
|
|
}
|
|
|
|
void gr_gv100_bundle_cb_defaults(struct gk20a *g)
|
|
{
|
|
struct gr_gk20a *gr = &g->gr;
|
|
|
|
gr->bundle_cb_default_size =
|
|
gr_scc_bundle_cb_size_div_256b__prod_v();
|
|
gr->min_gpm_fifo_depth =
|
|
gr_pd_ab_dist_cfg2_state_limit_min_gpm_fifo_depths_v();
|
|
gr->bundle_cb_token_limit =
|
|
gr_pd_ab_dist_cfg2_token_limit_init_v();
|
|
}
|
|
|
|
void gr_gv100_cb_size_default(struct gk20a *g)
|
|
{
|
|
struct gr_gk20a *gr = &g->gr;
|
|
|
|
if (!gr->attrib_cb_default_size)
|
|
gr->attrib_cb_default_size =
|
|
gr_gpc0_ppc0_cbm_beta_cb_size_v_default_v();
|
|
gr->alpha_cb_default_size =
|
|
gr_gpc0_ppc0_cbm_alpha_cb_size_v_default_v();
|
|
}
|
|
|
|
void gr_gv100_set_gpc_tpc_mask(struct gk20a *g, u32 gpc_index)
|
|
{
|
|
}
|
|
|
|
int gr_gv100_init_sm_id_table(struct gk20a *g)
|
|
{
|
|
u32 gpc, tpc, sm, pes, gtpc;
|
|
u32 sm_id = 0;
|
|
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
|
|
u32 num_sm = sm_per_tpc * g->gr.tpc_count;
|
|
int perf, maxperf;
|
|
int err = 0;
|
|
unsigned long *gpc_tpc_mask;
|
|
u32 *tpc_table, *gpc_table;
|
|
|
|
gpc_table = nvgpu_kzalloc(g, g->gr.tpc_count * sizeof(u32));
|
|
tpc_table = nvgpu_kzalloc(g, g->gr.tpc_count * sizeof(u32));
|
|
gpc_tpc_mask = nvgpu_kzalloc(g, sizeof(unsigned long) *
|
|
nvgpu_get_litter_value(g, GPU_LIT_NUM_GPCS));
|
|
|
|
if (!gpc_table || !tpc_table || !gpc_tpc_mask) {
|
|
nvgpu_err(g, "Error allocating memory for sm tables");
|
|
err = -ENOMEM;
|
|
goto exit_build_table;
|
|
}
|
|
|
|
for (gpc = 0; gpc < g->gr.gpc_count; gpc++)
|
|
for (pes = 0; pes < g->gr.gpc_ppc_count[gpc]; pes++)
|
|
gpc_tpc_mask[gpc] |= g->gr.pes_tpc_mask[pes][gpc];
|
|
|
|
for (gtpc = 0; gtpc < g->gr.tpc_count; gtpc++) {
|
|
maxperf = -1;
|
|
for (gpc = 0; gpc < g->gr.gpc_count; gpc++) {
|
|
for_each_set_bit(tpc, &gpc_tpc_mask[gpc],
|
|
g->gr.gpc_tpc_count[gpc]) {
|
|
perf = -1;
|
|
err = gr_gv100_scg_estimate_perf(g,
|
|
gpc_tpc_mask, gpc, tpc, &perf);
|
|
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Error while estimating perf");
|
|
goto exit_build_table;
|
|
}
|
|
|
|
if (perf >= maxperf) {
|
|
maxperf = perf;
|
|
gpc_table[gtpc] = gpc;
|
|
tpc_table[gtpc] = tpc;
|
|
}
|
|
}
|
|
}
|
|
gpc_tpc_mask[gpc_table[gtpc]] &= ~(0x1 << tpc_table[gtpc]);
|
|
}
|
|
|
|
for (tpc = 0, sm_id = 0; sm_id < num_sm; tpc++, sm_id += sm_per_tpc) {
|
|
for (sm = 0; sm < sm_per_tpc; sm++) {
|
|
u32 index = sm_id + sm;
|
|
|
|
g->gr.sm_to_cluster[index].gpc_index = gpc_table[tpc];
|
|
g->gr.sm_to_cluster[index].tpc_index = tpc_table[tpc];
|
|
g->gr.sm_to_cluster[index].sm_index = sm;
|
|
g->gr.sm_to_cluster[index].global_tpc_index = tpc;
|
|
nvgpu_log_info(g,
|
|
"gpc : %d tpc %d sm_index %d global_index: %d",
|
|
g->gr.sm_to_cluster[index].gpc_index,
|
|
g->gr.sm_to_cluster[index].tpc_index,
|
|
g->gr.sm_to_cluster[index].sm_index,
|
|
g->gr.sm_to_cluster[index].global_tpc_index);
|
|
|
|
}
|
|
}
|
|
|
|
g->gr.no_of_sm = num_sm;
|
|
nvgpu_log_info(g, " total number of sm = %d", g->gr.no_of_sm);
|
|
exit_build_table:
|
|
nvgpu_kfree(g, gpc_table);
|
|
nvgpu_kfree(g, tpc_table);
|
|
nvgpu_kfree(g, gpc_tpc_mask);
|
|
return err;
|
|
}
|
|
|
|
u32 gr_gv100_get_patch_slots(struct gk20a *g)
|
|
{
|
|
struct gr_gk20a *gr = &g->gr;
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
u32 size = 0;
|
|
|
|
/*
|
|
* CMD to update PE table
|
|
*/
|
|
size++;
|
|
|
|
/*
|
|
* Update PE table contents
|
|
* for PE table, each patch buffer update writes 32 TPCs
|
|
*/
|
|
size += DIV_ROUND_UP(gr->tpc_count, 32);
|
|
|
|
/*
|
|
* Update the PL table contents
|
|
* For PL table, each patch buffer update configures 4 TPCs
|
|
*/
|
|
size += DIV_ROUND_UP(gr->tpc_count, 4);
|
|
|
|
/*
|
|
* We need this for all subcontexts
|
|
*/
|
|
size *= f->max_subctx_count;
|
|
|
|
/*
|
|
* Add space for a partition mode change as well
|
|
* reserve two slots since DYNAMIC -> STATIC requires
|
|
* DYNAMIC -> NONE -> STATIC
|
|
*/
|
|
size += 2;
|
|
|
|
/*
|
|
* Add current patch buffer size
|
|
*/
|
|
size += gr_gk20a_get_patch_slots(g);
|
|
|
|
/*
|
|
* Align to 4K size
|
|
*/
|
|
size = ALIGN(size, PATCH_CTX_SLOTS_PER_PAGE);
|
|
|
|
/*
|
|
* Increase the size to accommodate for additional TPC partition update
|
|
*/
|
|
size += 2 * PATCH_CTX_SLOTS_PER_PAGE;
|
|
|
|
return size;
|
|
}
|
|
|
|
static u32 gr_gv100_get_active_fpba_mask(struct gk20a *g, u32 num_fbpas)
|
|
{
|
|
u32 active_fbpa_mask;
|
|
|
|
/*
|
|
* Read active fbpa mask from fuse
|
|
* Note that 0:enable and 1:disable in value read from fuse so we've to
|
|
* flip the bits.
|
|
* Also set unused bits to zero
|
|
*/
|
|
active_fbpa_mask = nvgpu_readl(g, fuse_status_opt_fbio_r());
|
|
active_fbpa_mask = ~active_fbpa_mask;
|
|
active_fbpa_mask = active_fbpa_mask & ((1 << num_fbpas) - 1);
|
|
|
|
return active_fbpa_mask;
|
|
}
|
|
|
|
int gr_gv100_add_ctxsw_reg_pm_fbpa(struct gk20a *g,
|
|
struct ctxsw_buf_offset_map_entry *map,
|
|
struct aiv_list_gk20a *regs,
|
|
u32 *count, u32 *offset,
|
|
u32 max_cnt, u32 base,
|
|
u32 num_fbpas, u32 stride, u32 mask)
|
|
{
|
|
u32 fbpa_id;
|
|
u32 idx;
|
|
u32 cnt = *count;
|
|
u32 off = *offset;
|
|
u32 active_fbpa_mask;
|
|
|
|
if ((cnt + (regs->count * num_fbpas)) > max_cnt)
|
|
return -EINVAL;
|
|
|
|
active_fbpa_mask = gr_gv100_get_active_fpba_mask(g, num_fbpas);
|
|
|
|
for (idx = 0; idx < regs->count; idx++) {
|
|
for (fbpa_id = 0; fbpa_id < num_fbpas; fbpa_id++) {
|
|
if (active_fbpa_mask & BIT(fbpa_id)) {
|
|
map[cnt].addr = base +
|
|
(regs->l[idx].addr & mask) +
|
|
(fbpa_id * stride);
|
|
map[cnt++].offset = off;
|
|
off += 4;
|
|
}
|
|
}
|
|
}
|
|
*count = cnt;
|
|
*offset = off;
|
|
return 0;
|
|
}
|
|
|
|
int gr_gv100_add_ctxsw_reg_perf_pma(struct ctxsw_buf_offset_map_entry *map,
|
|
struct aiv_list_gk20a *regs,
|
|
u32 *count, u32 *offset,
|
|
u32 max_cnt, u32 base, u32 mask)
|
|
{
|
|
*offset = ALIGN(*offset, 256);
|
|
return gr_gk20a_add_ctxsw_reg_perf_pma(map, regs,
|
|
count, offset, max_cnt, base, mask);
|
|
}
|
|
|
|
void gr_gv100_split_fbpa_broadcast_addr(struct gk20a *g, u32 addr,
|
|
u32 num_fbpas,
|
|
u32 *priv_addr_table, u32 *t)
|
|
{
|
|
u32 active_fbpa_mask;
|
|
u32 fbpa_id;
|
|
|
|
active_fbpa_mask = gr_gv100_get_active_fpba_mask(g, num_fbpas);
|
|
|
|
for (fbpa_id = 0; fbpa_id < num_fbpas; fbpa_id++) {
|
|
if (active_fbpa_mask & BIT(fbpa_id)) {
|
|
priv_addr_table[(*t)++] = pri_fbpa_addr(g,
|
|
pri_fbpa_addr_mask(g, addr), fbpa_id);
|
|
}
|
|
}
|
|
}
|