Files
linux-nvgpu/drivers/gpu/nvgpu/common/mm/vm_area.c
scottl 3cd256b344 gpu: nvgpu: add linux REMAP support
Add REMAP ioctl and accompanying support to the linux nvgpu driver.

REMAP support provides per-page control over sparse VM areas using the
concept of a virtual memory pool.

The REMAP ioctl accepts a list of operations (each a map or unmap) that
modify the VM area pages tracked by the virtual mmemory pool.

Inclusion of REMAP support in the nvgpu build is controlled by the new
CONFIG_NVGPU_REMAP flag.  This flag is enabled by default for linux builds.
A new NVGPU_GPU_FLAGS_SUPPORT_REMAP characteristics flag is added for use
in detecting when REMAP support is available.

When a VM allocation tagged with NVGPU_VM_AREA_ALLOC_SPARSE is made the
base virtual memory pool resources are allocated.  Per-page resources are
later allocated when the NVGPU_AS_IOCTL_REMAP ioctl is issued.  All REMAP
resources are released when the corresponding VM area is freed.

Jira NVGPU-6804

Change-Id: I1f2cdc0c06c1698a62640c1c6fbcb2f9db24a0bc
Signed-off-by: scottl <scottl@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2542178
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2021-06-28 22:39:06 -07:00

342 lines
8.7 KiB
C

/*
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/vm.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/barrier.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/static_analysis.h>
#ifdef CONFIG_NVGPU_REMAP
#include <nvgpu/vm_remap.h>
#endif
struct nvgpu_vm_area *nvgpu_vm_area_find(struct vm_gk20a *vm, u64 addr)
{
struct nvgpu_vm_area *vm_area;
nvgpu_list_for_each_entry(vm_area, &vm->vm_area_list,
nvgpu_vm_area, vm_area_list) {
if (addr >= vm_area->addr) {
if (addr < nvgpu_safe_add_u64(vm_area->addr,
vm_area->size)) {
return vm_area;
}
}
}
return NULL;
}
int nvgpu_vm_area_validate_buffer(struct vm_gk20a *vm,
u64 map_addr, u64 map_size, u32 pgsz_idx,
struct nvgpu_vm_area **pvm_area)
{
struct gk20a *g = vm->mm->g;
struct nvgpu_vm_area *vm_area;
struct nvgpu_mapped_buf *buffer;
u64 map_end;
/* can wrap around with insane map_size; zero is disallowed too */
if (((U64_MAX - map_size) < map_addr) || (map_size == 0ULL)) {
nvgpu_warn(g, "fixed offset mapping with invalid map_size");
return -EINVAL;
}
map_end = map_addr + map_size;
if ((map_addr &
nvgpu_safe_sub_u64(U64(vm->gmmu_page_sizes[pgsz_idx]), U64(1)))
!= 0ULL) {
nvgpu_err(g, "map offset must be buffer page size aligned 0x%llx",
map_addr);
return -EINVAL;
}
/* Find the space reservation, but it's ok to have none for
* userspace-managed address spaces */
vm_area = nvgpu_vm_area_find(vm, map_addr);
if ((vm_area == NULL) && !vm->userspace_managed) {
nvgpu_warn(g, "fixed offset mapping without space allocation");
return -EINVAL;
}
/* Mapped area should fit inside va, if there's one */
if (vm_area != NULL) {
if (map_end > nvgpu_safe_add_u64(vm_area->addr,
vm_area->size)) {
nvgpu_warn(g,
"fixed offset mapping size overflows va node");
return -EINVAL;
}
}
/* check that this mapping does not collide with existing
* mappings by checking the buffer with the highest GPU VA
* that is less than our buffer end */
buffer = nvgpu_vm_find_mapped_buf_less_than(
vm, map_end);
if (buffer != NULL) {
if (nvgpu_safe_add_u64(buffer->addr, buffer->size) > map_addr) {
nvgpu_warn(g, "overlapping buffer map requested");
return -EINVAL;
}
}
*pvm_area = vm_area;
return 0;
}
static int nvgpu_vm_area_alloc_get_pagesize_index(struct vm_gk20a *vm,
u32 *pgsz_idx_ptr, u32 page_size)
{
u32 pgsz_idx = *pgsz_idx_ptr;
for (; pgsz_idx < GMMU_NR_PAGE_SIZES; pgsz_idx++) {
if (vm->gmmu_page_sizes[pgsz_idx] == page_size) {
break;
}
}
*pgsz_idx_ptr = pgsz_idx;
if (pgsz_idx > GMMU_PAGE_SIZE_BIG) {
return -EINVAL;
}
/*
* pgsz_idx isn't likely to get too crazy, since it starts at 0 and
* increments but this ensures that we still have a definitely valid
* page size before proceeding.
*/
nvgpu_speculation_barrier();
if (!vm->big_pages && (pgsz_idx == GMMU_PAGE_SIZE_BIG)) {
return -EINVAL;
}
return 0;
}
static int nvgpu_vm_area_alloc_memory(struct nvgpu_allocator *vma, u64 our_addr,
u64 pages, u32 page_size, u32 flags,
u64 *vaddr_start_ptr)
{
u64 vaddr_start = 0;
if ((flags & NVGPU_VM_AREA_ALLOC_FIXED_OFFSET) != 0U) {
vaddr_start = nvgpu_alloc_fixed(vma, our_addr,
pages *
(u64)page_size,
page_size);
} else {
vaddr_start = nvgpu_alloc_pte(vma,
pages *
(u64)page_size,
page_size);
}
if (vaddr_start == 0ULL) {
return -ENOMEM;
}
*vaddr_start_ptr = vaddr_start;
return 0;
}
static int nvgpu_vm_area_alloc_gmmu_map(struct vm_gk20a *vm,
struct nvgpu_vm_area *vm_area, u64 vaddr_start,
u32 pgsz_idx, u32 flags)
{
struct gk20a *g = vm->mm->g;
if ((flags & NVGPU_VM_AREA_ALLOC_SPARSE) != 0U) {
u64 map_addr = g->ops.mm.gmmu.map(vm, vaddr_start,
NULL,
0,
vm_area->size,
pgsz_idx,
0,
0,
flags,
gk20a_mem_flag_none,
false,
true,
false,
NULL,
APERTURE_INVALID);
if (map_addr == 0ULL) {
return -ENOMEM;
}
vm_area->sparse = true;
}
nvgpu_list_add_tail(&vm_area->vm_area_list, &vm->vm_area_list);
return 0;
}
int nvgpu_vm_area_alloc(struct vm_gk20a *vm, u64 pages, u32 page_size,
u64 *addr, u32 flags)
{
struct gk20a *g = vm->mm->g;
struct nvgpu_allocator *vma;
struct nvgpu_vm_area *vm_area;
u64 vaddr_start = 0;
u64 our_addr = *addr;
u32 pgsz_idx = GMMU_PAGE_SIZE_SMALL;
int err = 0;
/*
* If we have a fixed address then use the passed address in *addr. This
* corresponds to the o_a field in the IOCTL. But since we do not
* support specific alignments in the buddy allocator we ignore the
* field if it isn't a fixed offset.
*/
if ((flags & NVGPU_VM_AREA_ALLOC_FIXED_OFFSET) != 0U) {
our_addr = *addr;
}
nvgpu_log(g, gpu_dbg_map,
"ADD vm_area: pgsz=%#-8x pages=%-9llu a/o=%#-14llx flags=0x%x",
page_size, pages, our_addr, flags);
if (nvgpu_vm_area_alloc_get_pagesize_index(vm, &pgsz_idx,
page_size) != 0) {
return -EINVAL;
}
vm_area = nvgpu_kzalloc(g, sizeof(*vm_area));
if (vm_area == NULL) {
return -ENOMEM;
}
vma = vm->vma[pgsz_idx];
err = nvgpu_vm_area_alloc_memory(vma, our_addr, pages, page_size,
flags, &vaddr_start);
if (err != 0) {
goto free_vm_area;
}
vm_area->flags = flags;
vm_area->addr = vaddr_start;
vm_area->size = (u64)page_size * pages;
vm_area->pgsz_idx = pgsz_idx;
nvgpu_init_list_node(&vm_area->buffer_list_head);
nvgpu_init_list_node(&vm_area->vm_area_list);
#ifdef CONFIG_NVGPU_REMAP
if (((flags & NVGPU_VM_AREA_ALLOC_SPARSE) != 0U) &&
(vm_area->pgsz_idx == GMMU_PAGE_SIZE_BIG)) {
err = nvgpu_vm_remap_vpool_create(vm, vm_area, pages);
if (err != 0) {
goto free_vaddr;
}
}
#endif
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
err = nvgpu_vm_area_alloc_gmmu_map(vm, vm_area, vaddr_start,
pgsz_idx, flags);
if (err != 0) {
nvgpu_mutex_release(&vm->update_gmmu_lock);
goto free_vaddr;
}
nvgpu_mutex_release(&vm->update_gmmu_lock);
*addr = vaddr_start;
return 0;
free_vaddr:
#ifdef CONFIG_NVGPU_REMAP
if (vm_area->vpool != NULL) {
nvgpu_vm_remap_vpool_destroy(vm, vm_area);
vm_area->vpool = NULL;
}
#endif
nvgpu_free(vma, vaddr_start);
free_vm_area:
nvgpu_kfree(g, vm_area);
return err;
}
int nvgpu_vm_area_free(struct vm_gk20a *vm, u64 addr)
{
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_mapped_buf *buffer;
struct nvgpu_vm_area *vm_area;
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
vm_area = nvgpu_vm_area_find(vm, addr);
if (vm_area == NULL) {
nvgpu_mutex_release(&vm->update_gmmu_lock);
return 0;
}
nvgpu_list_del(&vm_area->vm_area_list);
nvgpu_log(g, gpu_dbg_map,
"DEL vm_area: pgsz=%#-8x pages=%-9llu "
"addr=%#-14llx flags=0x%x",
vm->gmmu_page_sizes[vm_area->pgsz_idx],
vm_area->size / vm->gmmu_page_sizes[vm_area->pgsz_idx],
vm_area->addr,
vm_area->flags);
/* Decrement the ref count on all buffers in this vm_area. This
* allows userspace to let the kernel free mappings that are
* only used by this vm_area. */
while (!nvgpu_list_empty(&vm_area->buffer_list_head)) {
buffer = nvgpu_list_first_entry(&vm_area->buffer_list_head,
nvgpu_mapped_buf, buffer_list);
nvgpu_list_del(&buffer->buffer_list);
nvgpu_ref_put(&buffer->ref, nvgpu_vm_unmap_ref_internal);
}
/* if this was a sparse mapping, free the va */
if (vm_area->sparse) {
g->ops.mm.gmmu.unmap(vm,
vm_area->addr,
vm_area->size,
vm_area->pgsz_idx,
false,
gk20a_mem_flag_none,
true,
NULL);
}
#ifdef CONFIG_NVGPU_REMAP
/* clean up any remap resources */
if (vm_area->vpool != NULL) {
nvgpu_vm_remap_vpool_destroy(vm, vm_area);
}
#endif
nvgpu_mutex_release(&vm->update_gmmu_lock);
nvgpu_free(vm->vma[vm_area->pgsz_idx], vm_area->addr);
nvgpu_kfree(g, vm_area);
return 0;
}