Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/kmem.c
Nicolas Benech ee6ef2a719 gpu: nvgpu: resolve MISRA 17.7 for WARN_ON
MISRA Rule-17.7 requires the return value of all functions to be used.
Fix is either to use the return value or change the function to return
void. This patch ensures that WARN and WARN_ON always return void; and
introduces a new nvgpu_do_assert construct to trigger the equivalent
of WARN_ON(true) so that stack can be dumped (depends on OS support)

JIRA NVGPU-677

Change-Id: Ie2312c5588ceb5b1db825d15a096149b63b69af4
Signed-off-by: Nicolas Benech <nbenech@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2018706
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-03-05 11:14:46 -08:00

656 lines
15 KiB
C

/*
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/stacktrace.h>
#include <nvgpu/lock.h>
#include <nvgpu/kmem.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/gk20a.h>
#include "kmem_priv.h"
/*
* Statically declared because this needs to be shared across all nvgpu driver
* instances. This makes sure that all kmem caches are _definitely_ uniquely
* named.
*/
static atomic_t kmem_cache_id;
void *__nvgpu_big_alloc(struct gk20a *g, size_t size, bool clear)
{
void *p;
if (size > PAGE_SIZE) {
if (clear)
p = nvgpu_vzalloc(g, size);
else
p = nvgpu_vmalloc(g, size);
} else {
if (clear)
p = nvgpu_kzalloc(g, size);
else
p = nvgpu_kmalloc(g, size);
}
return p;
}
void nvgpu_big_free(struct gk20a *g, void *p)
{
/*
* This will have to be fixed eventually. Allocs that use
* nvgpu_big_[mz]alloc() will need to remember the size of the alloc
* when freeing.
*/
if (is_vmalloc_addr(p))
nvgpu_vfree(g, p);
else
nvgpu_kfree(g, p);
}
void *__nvgpu_kmalloc(struct gk20a *g, size_t size, void *ip)
{
void *alloc;
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
alloc = __nvgpu_track_kmalloc(g, size, ip);
#else
alloc = kmalloc(size, GFP_KERNEL);
#endif
kmem_dbg(g, "kmalloc: size=%-6ld addr=0x%p gfp=0x%08x",
size, alloc, GFP_KERNEL);
return alloc;
}
void *__nvgpu_kzalloc(struct gk20a *g, size_t size, void *ip)
{
void *alloc;
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
alloc = __nvgpu_track_kzalloc(g, size, ip);
#else
alloc = kzalloc(size, GFP_KERNEL);
#endif
kmem_dbg(g, "kzalloc: size=%-6ld addr=0x%p gfp=0x%08x",
size, alloc, GFP_KERNEL);
return alloc;
}
void *__nvgpu_kcalloc(struct gk20a *g, size_t n, size_t size, void *ip)
{
void *alloc;
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
alloc = __nvgpu_track_kcalloc(g, n, size, ip);
#else
alloc = kcalloc(n, size, GFP_KERNEL);
#endif
kmem_dbg(g, "kcalloc: size=%-6ld addr=0x%p gfp=0x%08x",
n * size, alloc, GFP_KERNEL);
return alloc;
}
void *__nvgpu_vmalloc(struct gk20a *g, unsigned long size, void *ip)
{
void *alloc;
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
alloc = __nvgpu_track_vmalloc(g, size, ip);
#else
alloc = vmalloc(size);
#endif
kmem_dbg(g, "vmalloc: size=%-6ld addr=0x%p", size, alloc);
return alloc;
}
void *__nvgpu_vzalloc(struct gk20a *g, unsigned long size, void *ip)
{
void *alloc;
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
alloc = __nvgpu_track_vzalloc(g, size, ip);
#else
alloc = vzalloc(size);
#endif
kmem_dbg(g, "vzalloc: size=%-6ld addr=0x%p", size, alloc);
return alloc;
}
void __nvgpu_kfree(struct gk20a *g, void *addr)
{
kmem_dbg(g, "kfree: addr=0x%p", addr);
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
__nvgpu_track_kfree(g, addr);
#else
kfree(addr);
#endif
}
void __nvgpu_vfree(struct gk20a *g, void *addr)
{
kmem_dbg(g, "vfree: addr=0x%p", addr);
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
__nvgpu_track_vfree(g, addr);
#else
vfree(addr);
#endif
}
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
void nvgpu_lock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
{
nvgpu_mutex_acquire(&tracker->lock);
}
void nvgpu_unlock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
{
nvgpu_mutex_release(&tracker->lock);
}
void kmem_print_mem_alloc(struct gk20a *g,
struct nvgpu_mem_alloc *alloc,
struct seq_file *s)
{
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
int i;
__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld\n",
alloc->addr, alloc->size);
for (i = 0; i < alloc->stack_length; i++)
__pstat(s, " %3d [<%p>] %pS\n", i,
(void *)alloc->stack[i],
(void *)alloc->stack[i]);
__pstat(s, "\n");
#else
__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld src=%pF\n",
alloc->addr, alloc->size, alloc->ip);
#endif
}
static int nvgpu_add_alloc(struct nvgpu_mem_alloc_tracker *tracker,
struct nvgpu_mem_alloc *alloc)
{
alloc->allocs_entry.key_start = alloc->addr;
alloc->allocs_entry.key_end = alloc->addr + alloc->size;
nvgpu_rbtree_insert(&alloc->allocs_entry, &tracker->allocs);
return 0;
}
static struct nvgpu_mem_alloc *nvgpu_rem_alloc(
struct nvgpu_mem_alloc_tracker *tracker, u64 alloc_addr)
{
struct nvgpu_mem_alloc *alloc;
struct nvgpu_rbtree_node *node = NULL;
nvgpu_rbtree_search(alloc_addr, &node, tracker->allocs);
if (!node)
return NULL;
alloc = nvgpu_mem_alloc_from_rbtree_node(node);
nvgpu_rbtree_unlink(node, &tracker->allocs);
return alloc;
}
static int __nvgpu_save_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
unsigned long size, unsigned long real_size,
u64 addr, void *ip)
{
int ret;
struct nvgpu_mem_alloc *alloc;
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
struct stack_trace stack_trace;
#endif
alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
if (!alloc)
return -ENOMEM;
alloc->owner = tracker;
alloc->size = size;
alloc->real_size = real_size;
alloc->addr = addr;
alloc->ip = ip;
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
stack_trace.max_entries = MAX_STACK_TRACE;
stack_trace.nr_entries = 0;
stack_trace.entries = alloc->stack;
/*
* This 4 here skips the 2 function calls that happen for all traced
* allocs due to nvgpu:
*
* __nvgpu_save_kmem_alloc+0x7c/0x128
* __nvgpu_track_kzalloc+0xcc/0xf8
*
* And the function calls that get made by the stack trace code itself.
* If the trace savings code changes this will likely have to change
* as well.
*/
stack_trace.skip = 4;
save_stack_trace(&stack_trace);
alloc->stack_length = stack_trace.nr_entries;
#endif
nvgpu_lock_tracker(tracker);
tracker->bytes_alloced += size;
tracker->bytes_alloced_real += real_size;
tracker->nr_allocs++;
/* Keep track of this for building a histogram later on. */
if (tracker->max_alloc < size)
tracker->max_alloc = size;
if (tracker->min_alloc > size)
tracker->min_alloc = size;
ret = nvgpu_add_alloc(tracker, alloc);
if (ret) {
WARN(1, "Duplicate alloc??? 0x%llx\n", addr);
kfree(alloc);
nvgpu_unlock_tracker(tracker);
return ret;
}
nvgpu_unlock_tracker(tracker);
return 0;
}
static int __nvgpu_free_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
u64 addr)
{
struct nvgpu_mem_alloc *alloc;
nvgpu_lock_tracker(tracker);
alloc = nvgpu_rem_alloc(tracker, addr);
if (!alloc) {
nvgpu_unlock_tracker(tracker);
nvgpu_do_assert_print(g,
"Possible double-free detected: 0x%llx!", addr);
return -EINVAL;
}
(void) memset((void *)alloc->addr, 0, alloc->size);
tracker->nr_frees++;
tracker->bytes_freed += alloc->size;
tracker->bytes_freed_real += alloc->real_size;
nvgpu_unlock_tracker(tracker);
return 0;
}
static void __nvgpu_check_valloc_size(unsigned long size)
{
WARN(size < PAGE_SIZE, "Alloc smaller than page size! (%lu)!\n", size);
}
static void __nvgpu_check_kalloc_size(size_t size)
{
WARN(size > PAGE_SIZE, "Alloc larger than page size! (%zu)!\n", size);
}
void *__nvgpu_track_vmalloc(struct gk20a *g, unsigned long size,
void *ip)
{
void *alloc = vmalloc(size);
if (!alloc)
return NULL;
__nvgpu_check_valloc_size(size);
/*
* Ignore the return message. If this fails let's not cause any issues
* for the rest of the driver.
*/
__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
(u64)(uintptr_t)alloc, ip);
return alloc;
}
void *__nvgpu_track_vzalloc(struct gk20a *g, unsigned long size,
void *ip)
{
void *alloc = vzalloc(size);
if (!alloc)
return NULL;
__nvgpu_check_valloc_size(size);
/*
* Ignore the return message. If this fails let's not cause any issues
* for the rest of the driver.
*/
__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
(u64)(uintptr_t)alloc, ip);
return alloc;
}
void *__nvgpu_track_kmalloc(struct gk20a *g, size_t size, void *ip)
{
void *alloc = kmalloc(size, GFP_KERNEL);
if (!alloc)
return NULL;
__nvgpu_check_kalloc_size(size);
__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
(u64)(uintptr_t)alloc, ip);
return alloc;
}
void *__nvgpu_track_kzalloc(struct gk20a *g, size_t size, void *ip)
{
void *alloc = kzalloc(size, GFP_KERNEL);
if (!alloc)
return NULL;
__nvgpu_check_kalloc_size(size);
__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
(u64)(uintptr_t)alloc, ip);
return alloc;
}
void *__nvgpu_track_kcalloc(struct gk20a *g, size_t n, size_t size,
void *ip)
{
void *alloc = kcalloc(n, size, GFP_KERNEL);
if (!alloc)
return NULL;
__nvgpu_check_kalloc_size(n * size);
__nvgpu_save_kmem_alloc(g->kmallocs, n * size,
roundup_pow_of_two(n * size),
(u64)(uintptr_t)alloc, ip);
return alloc;
}
void __nvgpu_track_vfree(struct gk20a *g, void *addr)
{
/*
* Often it is accepted practice to pass NULL pointers into free
* functions to save code.
*/
if (!addr)
return;
__nvgpu_free_kmem_alloc(g->vmallocs, (u64)(uintptr_t)addr);
vfree(addr);
}
void __nvgpu_track_kfree(struct gk20a *g, void *addr)
{
if (!addr)
return;
__nvgpu_free_kmem_alloc(g->kmallocs, (u64)(uintptr_t)addr);
kfree(addr);
}
static int __do_check_for_outstanding_allocs(
struct gk20a *g,
struct nvgpu_mem_alloc_tracker *tracker,
const char *type, bool silent)
{
struct nvgpu_rbtree_node *node;
int count = 0;
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
while (node) {
struct nvgpu_mem_alloc *alloc =
nvgpu_mem_alloc_from_rbtree_node(node);
if (!silent)
kmem_print_mem_alloc(g, alloc, NULL);
count++;
nvgpu_rbtree_enum_next(&node, node);
}
return count;
}
/**
* check_for_outstanding_allocs - Count and display outstanding allocs
*
* @g - The GPU.
* @silent - If set don't print anything about the allocs.
*
* Dump (or just count) the number of allocations left outstanding.
*/
static int check_for_outstanding_allocs(struct gk20a *g, bool silent)
{
int count = 0;
count += __do_check_for_outstanding_allocs(g, g->kmallocs, "kmalloc",
silent);
count += __do_check_for_outstanding_allocs(g, g->vmallocs, "vmalloc",
silent);
return count;
}
static void do_nvgpu_kmem_cleanup(struct nvgpu_mem_alloc_tracker *tracker,
void (*force_free_func)(const void *))
{
struct nvgpu_rbtree_node *node;
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
while (node) {
struct nvgpu_mem_alloc *alloc =
nvgpu_mem_alloc_from_rbtree_node(node);
if (force_free_func)
force_free_func((void *)alloc->addr);
nvgpu_rbtree_unlink(node, &tracker->allocs);
kfree(alloc);
nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
}
}
/**
* nvgpu_kmem_cleanup - Cleanup the kmem tracking
*
* @g - The GPU.
* @force_free - If set will also free leaked objects if possible.
*
* Cleanup all of the allocs made by nvgpu_kmem tracking code. If @force_free
* is non-zero then the allocation made by nvgpu is also freed. This is risky,
* though, as it is possible that the memory is still in use by other parts of
* the GPU driver not aware that this has happened.
*
* In theory it should be fine if the GPU driver has been deinitialized and
* there are no bugs in that code. However, if there are any bugs in that code
* then they could likely manifest as odd crashes indeterminate amounts of time
* in the future. So use @force_free at your own risk.
*/
static void nvgpu_kmem_cleanup(struct gk20a *g, bool force_free)
{
do_nvgpu_kmem_cleanup(g->kmallocs, force_free ? kfree : NULL);
do_nvgpu_kmem_cleanup(g->vmallocs, force_free ? vfree : NULL);
}
void nvgpu_kmem_fini(struct gk20a *g, int flags)
{
int count;
bool silent, force_free;
if (!flags)
return;
silent = !(flags & NVGPU_KMEM_FINI_DUMP_ALLOCS);
force_free = !!(flags & NVGPU_KMEM_FINI_FORCE_CLEANUP);
count = check_for_outstanding_allocs(g, silent);
nvgpu_kmem_cleanup(g, force_free);
/*
* If we leak objects we can either BUG() out or just WARN(). In general
* it doesn't make sense to BUG() on here since leaking a few objects
* won't crash the kernel but it can be helpful for development.
*
* If neither flag is set then we just silently do nothing.
*/
if (count > 0) {
if (flags & NVGPU_KMEM_FINI_WARN) {
WARN(1, "Letting %d allocs leak!!\n", count);
} else if (flags & NVGPU_KMEM_FINI_BUG) {
nvgpu_err(g, "Letting %d allocs leak!!", count);
BUG();
}
}
}
int nvgpu_kmem_init(struct gk20a *g)
{
int err;
g->vmallocs = kzalloc(sizeof(*g->vmallocs), GFP_KERNEL);
g->kmallocs = kzalloc(sizeof(*g->kmallocs), GFP_KERNEL);
if (!g->vmallocs || !g->kmallocs) {
err = -ENOMEM;
goto fail;
}
g->vmallocs->name = "vmalloc";
g->kmallocs->name = "kmalloc";
g->vmallocs->allocs = NULL;
g->kmallocs->allocs = NULL;
nvgpu_mutex_init(&g->vmallocs->lock);
nvgpu_mutex_init(&g->kmallocs->lock);
g->vmallocs->min_alloc = PAGE_SIZE;
g->kmallocs->min_alloc = KMALLOC_MIN_SIZE;
/*
* This needs to go after all the other initialization since they use
* the nvgpu_kzalloc() API.
*/
g->vmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
sizeof(struct nvgpu_mem_alloc));
g->kmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
sizeof(struct nvgpu_mem_alloc));
if (!g->vmallocs->allocs_cache || !g->kmallocs->allocs_cache) {
err = -ENOMEM;
if (g->vmallocs->allocs_cache)
nvgpu_kmem_cache_destroy(g->vmallocs->allocs_cache);
if (g->kmallocs->allocs_cache)
nvgpu_kmem_cache_destroy(g->kmallocs->allocs_cache);
goto fail;
}
return 0;
fail:
if (g->vmallocs)
kfree(g->vmallocs);
if (g->kmallocs)
kfree(g->kmallocs);
return err;
}
#else /* !CONFIG_NVGPU_TRACK_MEM_USAGE */
int nvgpu_kmem_init(struct gk20a *g)
{
return 0;
}
void nvgpu_kmem_fini(struct gk20a *g, int flags)
{
}
#endif /* CONFIG_NVGPU_TRACK_MEM_USAGE */
struct nvgpu_kmem_cache *nvgpu_kmem_cache_create(struct gk20a *g, size_t size)
{
struct nvgpu_kmem_cache *cache =
nvgpu_kzalloc(g, sizeof(struct nvgpu_kmem_cache));
if (!cache)
return NULL;
cache->g = g;
(void) snprintf(cache->name, sizeof(cache->name),
"nvgpu-cache-0x%p-%d-%d", g, (int)size,
atomic_inc_return(&kmem_cache_id));
cache->cache = kmem_cache_create(cache->name,
size, size, 0, NULL);
if (!cache->cache) {
nvgpu_kfree(g, cache);
return NULL;
}
return cache;
}
void nvgpu_kmem_cache_destroy(struct nvgpu_kmem_cache *cache)
{
struct gk20a *g = cache->g;
kmem_cache_destroy(cache->cache);
nvgpu_kfree(g, cache);
}
void *nvgpu_kmem_cache_alloc(struct nvgpu_kmem_cache *cache)
{
return kmem_cache_alloc(cache->cache, GFP_KERNEL);
}
void nvgpu_kmem_cache_free(struct nvgpu_kmem_cache *cache, void *ptr)
{
kmem_cache_free(cache->cache, ptr);
}