Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/gk20a_allocator_page.c
Alex Waterman fc4f0ddddb gpu: nvgpu: SLAB allocation for page allocator
Add the ability to do "SLAB" allocation in the page allocator. This
is generally useful since the allocator manages 64K pages but often
we only need 4k chunks (for example when allocating memory for page
table entries).

Bug 1799159
JIRA DNVGPU-100

Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: http://git-master/r/1225322
(cherry picked from commit 299a5639243e44be504391d9155b4ae17d914aa2)
Change-Id: Ib3a8558d40ba16bd3a413f4fd38b146beaa3c66b
Reviewed-on: http://git-master/r/1227924
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2016-10-18 12:24:33 -07:00

936 lines
24 KiB
C

/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include "gk20a_allocator.h"
#include "buddy_allocator_priv.h"
#include "page_allocator_priv.h"
#define palloc_dbg(a, fmt, arg...) \
alloc_dbg(palloc_owner(a), fmt, ##arg)
static struct kmem_cache *page_alloc_cache;
static struct kmem_cache *page_alloc_chunk_cache;
static struct kmem_cache *page_alloc_slab_page_cache;
static DEFINE_MUTEX(meta_data_cache_lock);
/*
* Handle the book-keeping for these operations.
*/
static inline void add_slab_page_to_empty(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
BUG_ON(page->state != SP_NONE);
list_add(&page->list_entry, &slab->empty);
slab->nr_empty++;
page->state = SP_EMPTY;
}
static inline void add_slab_page_to_partial(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
BUG_ON(page->state != SP_NONE);
list_add(&page->list_entry, &slab->partial);
slab->nr_partial++;
page->state = SP_PARTIAL;
}
static inline void add_slab_page_to_full(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
BUG_ON(page->state != SP_NONE);
list_add(&page->list_entry, &slab->full);
slab->nr_full++;
page->state = SP_FULL;
}
static inline void del_slab_page_from_empty(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
list_del_init(&page->list_entry);
slab->nr_empty--;
page->state = SP_NONE;
}
static inline void del_slab_page_from_partial(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
list_del_init(&page->list_entry);
slab->nr_partial--;
page->state = SP_NONE;
}
static inline void del_slab_page_from_full(struct page_alloc_slab *slab,
struct page_alloc_slab_page *page)
{
list_del_init(&page->list_entry);
slab->nr_full--;
page->state = SP_NONE;
}
static u64 gk20a_page_alloc_length(struct gk20a_allocator *a)
{
struct gk20a_page_allocator *va = a->priv;
return gk20a_alloc_length(&va->source_allocator);
}
static u64 gk20a_page_alloc_base(struct gk20a_allocator *a)
{
struct gk20a_page_allocator *va = a->priv;
return gk20a_alloc_base(&va->source_allocator);
}
static int gk20a_page_alloc_inited(struct gk20a_allocator *a)
{
struct gk20a_page_allocator *va = a->priv;
return gk20a_alloc_initialized(&va->source_allocator);
}
static u64 gk20a_page_alloc_end(struct gk20a_allocator *a)
{
struct gk20a_page_allocator *va = a->priv;
return gk20a_alloc_end(&va->source_allocator);
}
static u64 gk20a_page_alloc_space(struct gk20a_allocator *a)
{
struct gk20a_page_allocator *va = a->priv;
return gk20a_alloc_space(&va->source_allocator);
}
static int gk20a_page_reserve_co(struct gk20a_allocator *a,
struct gk20a_alloc_carveout *co)
{
struct gk20a_page_allocator *va = a->priv;
return gk20a_alloc_reserve_carveout(&va->source_allocator, co);
}
static void gk20a_page_release_co(struct gk20a_allocator *a,
struct gk20a_alloc_carveout *co)
{
struct gk20a_page_allocator *va = a->priv;
gk20a_alloc_release_carveout(&va->source_allocator, co);
}
static void __gk20a_free_pages(struct gk20a_page_allocator *a,
struct gk20a_page_alloc *alloc,
bool free_buddy_alloc)
{
struct page_alloc_chunk *chunk;
while (!list_empty(&alloc->alloc_chunks)) {
chunk = list_first_entry(&alloc->alloc_chunks,
struct page_alloc_chunk,
list_entry);
list_del(&chunk->list_entry);
if (free_buddy_alloc)
gk20a_free(&a->source_allocator, chunk->base);
kfree(chunk);
}
kfree(alloc);
}
static int __insert_page_alloc(struct gk20a_page_allocator *a,
struct gk20a_page_alloc *alloc)
{
struct rb_node **new = &a->allocs.rb_node;
struct rb_node *parent = NULL;
while (*new) {
struct gk20a_page_alloc *tmp =
container_of(*new, struct gk20a_page_alloc,
tree_entry);
parent = *new;
if (alloc->base < tmp->base) {
new = &((*new)->rb_left);
} else if (alloc->base > tmp->base) {
new = &((*new)->rb_right);
} else {
WARN(1, "Duplicate entries in allocated list!\n");
return 0;
}
}
rb_link_node(&alloc->tree_entry, parent, new);
rb_insert_color(&alloc->tree_entry, &a->allocs);
return 0;
}
static struct gk20a_page_alloc *__find_page_alloc(
struct gk20a_page_allocator *a,
u64 addr)
{
struct rb_node *node = a->allocs.rb_node;
struct gk20a_page_alloc *alloc;
while (node) {
alloc = container_of(node, struct gk20a_page_alloc, tree_entry);
if (addr < alloc->base)
node = node->rb_left;
else if (addr > alloc->base)
node = node->rb_right;
else
break;
}
if (!node)
return NULL;
rb_erase(node, &a->allocs);
return alloc;
}
static struct page_alloc_slab_page *alloc_slab_page(
struct gk20a_page_allocator *a,
struct page_alloc_slab *slab)
{
struct page_alloc_slab_page *slab_page;
slab_page = kmem_cache_alloc(page_alloc_slab_page_cache, GFP_KERNEL);
if (!slab_page) {
palloc_dbg(a, "OOM: unable to alloc slab_page struct!\n");
return ERR_PTR(-ENOMEM);
}
memset(slab_page, 0, sizeof(*slab_page));
slab_page->page_addr = gk20a_alloc(&a->source_allocator, a->page_size);
if (!slab_page->page_addr) {
kfree(slab_page);
palloc_dbg(a, "OOM: vidmem is full!\n");
return ERR_PTR(-ENOMEM);
}
INIT_LIST_HEAD(&slab_page->list_entry);
slab_page->slab_size = slab->slab_size;
slab_page->nr_objects = a->page_size / slab->slab_size;
slab_page->nr_objects_alloced = 0;
slab_page->owner = slab;
slab_page->state = SP_NONE;
a->pages_alloced++;
palloc_dbg(a, "Allocated new slab page @ 0x%012llx size=%u\n",
slab_page->page_addr, slab_page->slab_size);
return slab_page;
}
static void free_slab_page(struct gk20a_page_allocator *a,
struct page_alloc_slab_page *slab_page)
{
palloc_dbg(a, "Freeing slab page @ 0x%012llx\n", slab_page->page_addr);
BUG_ON((slab_page->state != SP_NONE && slab_page->state != SP_EMPTY) ||
slab_page->nr_objects_alloced != 0 ||
slab_page->bitmap != 0);
gk20a_free(&a->source_allocator, slab_page->page_addr);
a->pages_freed++;
kmem_cache_free(page_alloc_slab_page_cache, slab_page);
}
/*
* This expects @alloc to have 1 empty page_alloc_chunk already added to the
* alloc_chunks list.
*/
static int __do_slab_alloc(struct gk20a_page_allocator *a,
struct page_alloc_slab *slab,
struct gk20a_page_alloc *alloc)
{
struct page_alloc_slab_page *slab_page = NULL;
struct page_alloc_chunk *chunk;
unsigned long offs;
/*
* Check the partial and empty lists to see if we have some space
* readily available. Take the slab_page out of what ever list it
* was in since it may be put back into a different list later.
*/
if (!list_empty(&slab->partial)) {
slab_page = list_first_entry(&slab->partial,
struct page_alloc_slab_page,
list_entry);
del_slab_page_from_partial(slab, slab_page);
} else if (!list_empty(&slab->empty)) {
slab_page = list_first_entry(&slab->empty,
struct page_alloc_slab_page,
list_entry);
del_slab_page_from_empty(slab, slab_page);
}
if (!slab_page) {
slab_page = alloc_slab_page(a, slab);
if (IS_ERR(slab_page))
return PTR_ERR(slab_page);
}
/*
* We now have a slab_page. Do the alloc.
*/
offs = bitmap_find_next_zero_area(&slab_page->bitmap,
slab_page->nr_objects,
0, 1, 0);
if (offs >= slab_page->nr_objects) {
WARN(1, "Empty/partial slab with no free objects?");
/* Add the buggy page to the full list... This isn't ideal. */
add_slab_page_to_full(slab, slab_page);
return -ENOMEM;
}
bitmap_set(&slab_page->bitmap, offs, 1);
slab_page->nr_objects_alloced++;
if (slab_page->nr_objects_alloced < slab_page->nr_objects)
add_slab_page_to_partial(slab, slab_page);
else if (slab_page->nr_objects_alloced == slab_page->nr_objects)
add_slab_page_to_full(slab, slab_page);
else
BUG(); /* Should be impossible to hit this. */
/*
* Handle building the gk20a_page_alloc struct. We expect one
* page_alloc_chunk to be present.
*/
alloc->slab_page = slab_page;
alloc->nr_chunks = 1;
alloc->length = slab_page->slab_size;
alloc->base = slab_page->page_addr + (offs * slab_page->slab_size);
chunk = list_first_entry(&alloc->alloc_chunks,
struct page_alloc_chunk, list_entry);
chunk->base = alloc->base;
chunk->length = alloc->length;
return 0;
}
/*
* Allocate from a slab instead of directly from the page allocator.
*/
static struct gk20a_page_alloc *__gk20a_alloc_slab(
struct gk20a_page_allocator *a, u64 len)
{
int err, slab_nr;
struct page_alloc_slab *slab;
struct gk20a_page_alloc *alloc = NULL;
struct page_alloc_chunk *chunk = NULL;
/*
* Align the length to a page and then divide by the page size (4k for
* this code). ilog2() of that then gets us the correct slab to use.
*/
slab_nr = (int)ilog2(PAGE_ALIGN(len) >> 12);
slab = &a->slabs[slab_nr];
alloc = kmem_cache_alloc(page_alloc_cache, GFP_KERNEL);
if (!alloc) {
palloc_dbg(a, "OOM: could not alloc page_alloc struct!\n");
goto fail;
}
chunk = kmem_cache_alloc(page_alloc_chunk_cache, GFP_KERNEL);
if (!chunk) {
palloc_dbg(a, "OOM: could not alloc alloc_chunk struct!\n");
goto fail;
}
INIT_LIST_HEAD(&alloc->alloc_chunks);
list_add(&chunk->list_entry, &alloc->alloc_chunks);
err = __do_slab_alloc(a, slab, alloc);
if (err)
goto fail;
palloc_dbg(a, "Alloc 0x%04llx sr=%d id=0x%010llx [slab]\n",
len, slab_nr, alloc->base);
a->nr_slab_allocs++;
return alloc;
fail:
kfree(alloc);
kfree(chunk);
return ERR_PTR(-ENOMEM);
}
static void __gk20a_free_slab(struct gk20a_page_allocator *a,
struct gk20a_page_alloc *alloc)
{
struct page_alloc_slab_page *slab_page = alloc->slab_page;
struct page_alloc_slab *slab = slab_page->owner;
enum slab_page_state new_state;
int offs;
offs = (alloc->base - slab_page->page_addr) / slab_page->slab_size;
bitmap_clear(&slab_page->bitmap, offs, 1);
slab_page->nr_objects_alloced--;
if (slab_page->nr_objects_alloced == 0)
new_state = SP_EMPTY;
else
new_state = SP_PARTIAL;
/*
* Need to migrate the page to a different list.
*/
if (new_state != slab_page->state) {
/* Delete - can't be in empty. */
if (slab_page->state == SP_PARTIAL)
del_slab_page_from_partial(slab, slab_page);
else
del_slab_page_from_full(slab, slab_page);
/* And add. */
if (new_state == SP_EMPTY) {
if (list_empty(&slab->empty))
add_slab_page_to_empty(slab, slab_page);
else
free_slab_page(a, slab_page);
} else {
add_slab_page_to_partial(slab, slab_page);
}
}
/*
* Now handle the page_alloc.
*/
__gk20a_free_pages(a, alloc, false);
a->nr_slab_frees++;
return;
}
/*
* Allocate physical pages. Since the underlying allocator is a buddy allocator
* the returned pages are always contiguous. However, since there could be
* fragmentation in the space this allocator will collate smaller non-contiguous
* allocations together if necessary.
*/
static struct gk20a_page_alloc *__do_gk20a_alloc_pages(
struct gk20a_page_allocator *a, u64 pages)
{
struct gk20a_page_alloc *alloc;
struct page_alloc_chunk *c;
u64 max_chunk_len = pages << a->page_shift;
int i = 0;
alloc = kmem_cache_alloc(page_alloc_cache, GFP_KERNEL);
if (!alloc)
goto fail;
memset(alloc, 0, sizeof(*alloc));
INIT_LIST_HEAD(&alloc->alloc_chunks);
alloc->length = pages << a->page_shift;
while (pages) {
u64 chunk_addr = 0;
u64 chunk_pages = 1 << __fls(pages);
u64 chunk_len = chunk_pages << a->page_shift;
/*
* Take care of the possibility that the allocation must be
* contiguous. If this is not the first iteration then that
* means the first iteration failed to alloc the entire
* requested size. The buddy allocator guarantees any given
* single alloc is contiguous.
*/
if (a->flags & GPU_ALLOC_FORCE_CONTIG && i != 0)
goto fail_cleanup;
if (chunk_len > max_chunk_len)
chunk_len = max_chunk_len;
/*
* Keep attempting to allocate in smaller chunks until the alloc
* either succeeds or is smaller than the page_size of the
* allocator (i.e the allocator is OOM).
*/
do {
chunk_addr = gk20a_alloc(&a->source_allocator,
chunk_len);
/* Divide by 2 and try again */
if (!chunk_addr) {
palloc_dbg(a, "balloc failed: 0x%llx\n",
chunk_len);
chunk_len >>= 1;
max_chunk_len = chunk_len;
}
} while (!chunk_addr && chunk_len >= a->page_size);
chunk_pages = chunk_len >> a->page_shift;
if (!chunk_addr) {
palloc_dbg(a, "bailing @ 0x%llx\n", chunk_len);
goto fail_cleanup;
}
c = kmem_cache_alloc(page_alloc_chunk_cache, GFP_KERNEL);
if (!c) {
gk20a_free(&a->source_allocator, chunk_addr);
goto fail_cleanup;
}
pages -= chunk_pages;
c->base = chunk_addr;
c->length = chunk_len;
list_add(&c->list_entry, &alloc->alloc_chunks);
i++;
}
alloc->nr_chunks = i;
c = list_first_entry(&alloc->alloc_chunks,
struct page_alloc_chunk, list_entry);
alloc->base = c->base;
return alloc;
fail_cleanup:
while (!list_empty(&alloc->alloc_chunks)) {
c = list_first_entry(&alloc->alloc_chunks,
struct page_alloc_chunk, list_entry);
list_del(&c->list_entry);
gk20a_free(&a->source_allocator, c->base);
kfree(c);
}
kfree(alloc);
fail:
return ERR_PTR(-ENOMEM);
}
static struct gk20a_page_alloc *__gk20a_alloc_pages(
struct gk20a_page_allocator *a, u64 len)
{
struct gk20a_page_alloc *alloc = NULL;
struct page_alloc_chunk *c;
u64 pages;
int i = 0;
pages = ALIGN(len, a->page_size) >> a->page_shift;
alloc = __do_gk20a_alloc_pages(a, pages);
if (IS_ERR(alloc)) {
palloc_dbg(a, "Alloc 0x%llx (%llu) (failed)\n",
pages << a->page_shift, pages);
return NULL;
}
palloc_dbg(a, "Alloc 0x%llx (%llu) id=0x%010llx\n",
pages << a->page_shift, pages, alloc->base);
list_for_each_entry(c, &alloc->alloc_chunks, list_entry) {
palloc_dbg(a, " Chunk %2d: 0x%010llx + 0x%llx\n",
i++, c->base, c->length);
}
return alloc;
}
/*
* Allocate enough pages to satisfy @len. Page size is determined at
* initialization of the allocator.
*
* The return is actually a pointer to a struct gk20a_page_alloc pointer. This
* is because it doesn't make a lot of sense to return the address of the first
* page in the list of pages (since they could be discontiguous). This has
* precedent in the dma_alloc APIs, though, it's really just an annoying
* artifact of the fact that the gk20a_alloc() API requires a u64 return type.
*/
static u64 gk20a_page_alloc(struct gk20a_allocator *__a, u64 len)
{
struct gk20a_page_allocator *a = page_allocator(__a);
struct gk20a_page_alloc *alloc = NULL;
u64 real_len;
/*
* If we want contig pages we have to round up to a power of two. It's
* easier to do that here than in the buddy allocator.
*/
real_len = a->flags & GPU_ALLOC_FORCE_CONTIG ?
roundup_pow_of_two(len) : len;
alloc_lock(__a);
if (a->flags & GPU_ALLOC_4K_VIDMEM_PAGES &&
real_len <= (a->page_size / 2))
alloc = __gk20a_alloc_slab(a, real_len);
else
alloc = __gk20a_alloc_pages(a, real_len);
if (!alloc) {
alloc_unlock(__a);
return 0;
}
__insert_page_alloc(a, alloc);
a->nr_allocs++;
if (real_len > a->page_size / 2)
a->pages_alloced += alloc->length >> a->page_shift;
alloc_unlock(__a);
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER)
return alloc->base;
else
return (u64) (uintptr_t) alloc;
}
/*
* Note: this will remove the gk20a_page_alloc struct from the RB tree
* if it's found.
*/
static void gk20a_page_free(struct gk20a_allocator *__a, u64 base)
{
struct gk20a_page_allocator *a = page_allocator(__a);
struct gk20a_page_alloc *alloc;
alloc_lock(__a);
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER)
alloc = __find_page_alloc(a, base);
else
alloc = __find_page_alloc(a,
((struct gk20a_page_alloc *)(uintptr_t)base)->base);
if (!alloc) {
palloc_dbg(a, "Hrm, found no alloc?\n");
goto done;
}
a->nr_frees++;
/*
* Frees *alloc.
*/
if (alloc->slab_page) {
__gk20a_free_slab(a, alloc);
} else {
a->pages_freed += (alloc->length >> a->page_shift);
__gk20a_free_pages(a, alloc, true);
}
palloc_dbg(a, "Free 0x%llx id=0x%010llx\n",
alloc->length, alloc->base);
done:
alloc_unlock(__a);
}
static struct gk20a_page_alloc *__gk20a_alloc_pages_fixed(
struct gk20a_page_allocator *a, u64 base, u64 length)
{
struct gk20a_page_alloc *alloc;
struct page_alloc_chunk *c;
alloc = kmem_cache_alloc(page_alloc_cache, GFP_KERNEL);
c = kmem_cache_alloc(page_alloc_chunk_cache, GFP_KERNEL);
if (!alloc || !c)
goto fail;
alloc->base = gk20a_alloc_fixed(&a->source_allocator, base, length);
if (!alloc->base) {
WARN(1, "gk20a: failed to fixed alloc pages @ 0x%010llx", base);
goto fail;
}
alloc->nr_chunks = 1;
alloc->length = length;
INIT_LIST_HEAD(&alloc->alloc_chunks);
c->base = alloc->base;
c->length = length;
list_add(&c->list_entry, &alloc->alloc_chunks);
return alloc;
fail:
kfree(c);
kfree(alloc);
return ERR_PTR(-ENOMEM);
}
static u64 gk20a_page_alloc_fixed(struct gk20a_allocator *__a,
u64 base, u64 len)
{
struct gk20a_page_allocator *a = page_allocator(__a);
struct gk20a_page_alloc *alloc = NULL;
struct page_alloc_chunk *c;
u64 aligned_len, pages;
int i = 0;
aligned_len = ALIGN(len, a->page_size);
pages = aligned_len >> a->page_shift;
alloc_lock(__a);
alloc = __gk20a_alloc_pages_fixed(a, base, aligned_len);
if (IS_ERR(alloc)) {
alloc_unlock(__a);
return 0;
}
__insert_page_alloc(a, alloc);
alloc_unlock(__a);
palloc_dbg(a, "Alloc [fixed] @ 0x%010llx + 0x%llx (%llu)\n",
alloc->base, aligned_len, pages);
list_for_each_entry(c, &alloc->alloc_chunks, list_entry) {
palloc_dbg(a, " Chunk %2d: 0x%010llx + 0x%llx\n",
i++, c->base, c->length);
}
a->nr_fixed_allocs++;
a->pages_alloced += pages;
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER)
return alloc->base;
else
return (u64) (uintptr_t) alloc;
}
static void gk20a_page_free_fixed(struct gk20a_allocator *__a,
u64 base, u64 len)
{
struct gk20a_page_allocator *a = page_allocator(__a);
struct gk20a_page_alloc *alloc;
alloc_lock(__a);
if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER) {
alloc = __find_page_alloc(a, base);
if (!alloc)
goto done;
} else {
alloc = (struct gk20a_page_alloc *) (uintptr_t) base;
}
/*
* This works for the time being since the buddy allocator
* uses the same free function for both fixed and regular
* allocs. This would have to be updated if the underlying
* allocator were to change.
*/
__gk20a_free_pages(a, alloc, true);
palloc_dbg(a, "Free [fixed] 0x%010llx + 0x%llx\n",
alloc->base, alloc->length);
a->nr_fixed_frees++;
a->pages_freed += (alloc->length >> a->page_shift);
done:
alloc_unlock(__a);
}
static void gk20a_page_allocator_destroy(struct gk20a_allocator *__a)
{
struct gk20a_page_allocator *a = page_allocator(__a);
alloc_lock(__a);
kfree(a);
__a->priv = NULL;
alloc_unlock(__a);
}
static void gk20a_page_print_stats(struct gk20a_allocator *__a,
struct seq_file *s, int lock)
{
struct gk20a_page_allocator *a = page_allocator(__a);
int i;
if (lock)
alloc_lock(__a);
__alloc_pstat(s, __a, "Page allocator:\n");
__alloc_pstat(s, __a, " allocs %lld\n", a->nr_allocs);
__alloc_pstat(s, __a, " frees %lld\n", a->nr_frees);
__alloc_pstat(s, __a, " fixed_allocs %lld\n", a->nr_fixed_allocs);
__alloc_pstat(s, __a, " fixed_frees %lld\n", a->nr_fixed_frees);
__alloc_pstat(s, __a, " slab_allocs %lld\n", a->nr_slab_allocs);
__alloc_pstat(s, __a, " slab_frees %lld\n", a->nr_slab_frees);
__alloc_pstat(s, __a, " pages alloced %lld\n", a->pages_alloced);
__alloc_pstat(s, __a, " pages freed %lld\n", a->pages_freed);
__alloc_pstat(s, __a, "\n");
/*
* Slab info.
*/
if (a->flags & GPU_ALLOC_4K_VIDMEM_PAGES) {
__alloc_pstat(s, __a, "Slabs:\n");
__alloc_pstat(s, __a, " size empty partial full\n");
__alloc_pstat(s, __a, " ---- ----- ------- ----\n");
for (i = 0; i < a->nr_slabs; i++) {
struct page_alloc_slab *slab = &a->slabs[i];
__alloc_pstat(s, __a, " %-9u %-9d %-9u %u\n",
slab->slab_size,
slab->nr_empty, slab->nr_partial,
slab->nr_full);
}
__alloc_pstat(s, __a, "\n");
}
__alloc_pstat(s, __a, "Source alloc: %s\n",
a->source_allocator.name);
gk20a_alloc_print_stats(&a->source_allocator, s, lock);
if (lock)
alloc_unlock(__a);
}
static const struct gk20a_allocator_ops page_ops = {
.alloc = gk20a_page_alloc,
.free = gk20a_page_free,
.alloc_fixed = gk20a_page_alloc_fixed,
.free_fixed = gk20a_page_free_fixed,
.reserve_carveout = gk20a_page_reserve_co,
.release_carveout = gk20a_page_release_co,
.base = gk20a_page_alloc_base,
.length = gk20a_page_alloc_length,
.end = gk20a_page_alloc_end,
.inited = gk20a_page_alloc_inited,
.space = gk20a_page_alloc_space,
.fini = gk20a_page_allocator_destroy,
.print_stats = gk20a_page_print_stats,
};
/*
* nr_slabs is computed as follows: divide page_size by 4096 to get number of
* 4k pages in page_size. Then take the base 2 log of that to get number of
* slabs. For 64k page_size that works on like:
*
* 1024*64 / 1024*4 = 16
* ilog2(16) = 4
*
* That gives buckets of 1, 2, 4, and 8 pages (i.e 4k, 8k, 16k, 32k).
*/
static int gk20a_page_alloc_init_slabs(struct gk20a_page_allocator *a)
{
size_t nr_slabs = ilog2(a->page_size >> 12);
int i;
a->slabs = kcalloc(nr_slabs,
sizeof(struct page_alloc_slab),
GFP_KERNEL);
if (!a->slabs)
return -ENOMEM;
a->nr_slabs = nr_slabs;
for (i = 0; i < nr_slabs; i++) {
struct page_alloc_slab *slab = &a->slabs[i];
slab->slab_size = SZ_4K * (1 << i);
INIT_LIST_HEAD(&slab->empty);
INIT_LIST_HEAD(&slab->partial);
INIT_LIST_HEAD(&slab->full);
slab->nr_empty = 0;
slab->nr_partial = 0;
slab->nr_full = 0;
}
return 0;
}
int gk20a_page_allocator_init(struct gk20a_allocator *__a,
const char *name, u64 base, u64 length,
u64 blk_size, u64 flags)
{
struct gk20a_page_allocator *a;
char buddy_name[sizeof(__a->name)];
int err;
mutex_lock(&meta_data_cache_lock);
if (!page_alloc_cache)
page_alloc_cache = KMEM_CACHE(gk20a_page_alloc, 0);
if (!page_alloc_chunk_cache)
page_alloc_chunk_cache = KMEM_CACHE(page_alloc_chunk, 0);
if (!page_alloc_slab_page_cache)
page_alloc_slab_page_cache =
KMEM_CACHE(page_alloc_slab_page, 0);
mutex_unlock(&meta_data_cache_lock);
if (!page_alloc_cache || !page_alloc_chunk_cache)
return -ENOMEM;
if (blk_size < SZ_4K)
return -EINVAL;
a = kzalloc(sizeof(struct gk20a_page_allocator), GFP_KERNEL);
if (!a)
return -ENOMEM;
err = __gk20a_alloc_common_init(__a, name, a, false, &page_ops);
if (err)
goto fail;
a->base = base;
a->length = length;
a->page_size = blk_size;
a->page_shift = __ffs(blk_size);
a->allocs = RB_ROOT;
a->owner = __a;
a->flags = flags;
if (flags & GPU_ALLOC_4K_VIDMEM_PAGES && blk_size > SZ_4K) {
err = gk20a_page_alloc_init_slabs(a);
if (err)
goto fail;
}
snprintf(buddy_name, sizeof(buddy_name), "%s-src", name);
err = gk20a_buddy_allocator_init(&a->source_allocator, buddy_name, base,
length, blk_size, 0);
if (err)
goto fail;
gk20a_init_alloc_debug(__a);
palloc_dbg(a, "New allocator: type page\n");
palloc_dbg(a, " base 0x%llx\n", a->base);
palloc_dbg(a, " size 0x%llx\n", a->length);
palloc_dbg(a, " page_size 0x%llx\n", a->page_size);
palloc_dbg(a, " flags 0x%llx\n", a->flags);
palloc_dbg(a, " slabs: %d\n", a->nr_slabs);
return 0;
fail:
kfree(a);
return err;
}