Files
nvethernetrm/osi/core/core_common.c
Sanath Kumar Gampa 25a07d7228 osi_core: macsec: Reorg MACSec code for DOS-SHR-10437
Reorganize MACSec source code to accommodate N1Auto MACSec HW IP OSI
driver.

Separated MACSec hardware-specific code into a different static lib

Bug 4874880

Change-Id: I74e4cca8ba615def283ec938cc94985d32099190
Signed-off-by: Sanath Kumar Gampa <sgampa@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/kernel/nvethernetrm/+/3214907
Reviewed-by: Bhadram Varka <vbhadram@nvidia.com>
Reviewed-by: Mahesh Patil <maheshp@nvidia.com>
GVS: buildbot_gerritrpt <buildbot_gerritrpt@nvidia.com>
Reviewed-by: Ashutosh Jha <ajha@nvidia.com>
2024-10-29 08:12:49 -07:00

2259 lines
66 KiB
C

// SPDX-License-Identifier: LicenseRef-NvidiaProprietary
/* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "common.h"
#include "core_common.h"
#include "mgbe_core.h"
#include "eqos_core.h"
#include "xpcs.h"
#include "osi_macsec.h"
nve32_t poll_check(struct osi_core_priv_data *const osi_core, nveu8_t *addr,
nveu32_t bit_check, nveu32_t *value)
{
nveu32_t retry = RETRY_COUNT;
nve32_t cond = COND_NOT_MET;
nveu32_t count;
nve32_t ret = 0;
/* Poll Until Poll Condition */
count = 0;
while (cond == COND_NOT_MET) {
if (count > retry) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"poll_check: timeout\n", 0ULL);
ret = -1;
goto fail;
}
count++;
*value = osi_readla(osi_core, addr);
if ((*value & bit_check) == OSI_NONE) {
cond = COND_MET;
} else {
osi_core->osd_ops.udelay(OSI_DELAY_1000US);
}
}
fail:
return ret;
}
nve32_t hw_poll_for_swr(struct osi_core_priv_data *const osi_core)
{
nveu32_t dma_mode_val = 0U;
const nveu32_t dma_mode[OSI_MAX_MAC_IP_TYPES] = {
EQOS_DMA_BMR,
MGBE_DMA_MODE,
MGBE_DMA_MODE
};
void *addr = osi_core->base;
return poll_check(osi_core, ((nveu8_t *)addr + dma_mode[osi_core->mac]),
DMA_MODE_SWR, &dma_mode_val);
}
void hw_start_mac(struct osi_core_priv_data *const osi_core)
{
void *addr = osi_core->base;
nveu32_t value;
const nveu32_t mac_mcr_te_reg[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_MCR,
MGBE_MAC_TMCR,
MGBE_MAC_TMCR
};
const nveu32_t mac_mcr_re_reg[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_MCR,
MGBE_MAC_RMCR,
MGBE_MAC_RMCR
};
const nveu32_t set_bit_te[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MCR_TE,
MGBE_MAC_TMCR_TE,
MGBE_MAC_TMCR_TE
};
const nveu32_t set_bit_re[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MCR_RE,
MGBE_MAC_RMCR_RE,
MGBE_MAC_RMCR_RE
};
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value |= set_bit_te[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
value |= set_bit_re[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
}
void hw_stop_mac(struct osi_core_priv_data *const osi_core)
{
void *addr = osi_core->base;
nveu32_t value;
const nveu32_t mac_mcr_te_reg[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_MCR,
MGBE_MAC_TMCR,
MGBE_MAC_TMCR
};
const nveu32_t mac_mcr_re_reg[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_MCR,
MGBE_MAC_RMCR,
MGBE_MAC_RMCR
};
const nveu32_t clear_bit_te[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MCR_TE,
MGBE_MAC_TMCR_TE,
MGBE_MAC_TMCR_TE
};
const nveu32_t clear_bit_re[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MCR_RE,
MGBE_MAC_RMCR_RE,
MGBE_MAC_RMCR_RE
};
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value &= ~clear_bit_te[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
value &= ~clear_bit_re[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
}
nve32_t hw_set_mode(struct osi_core_priv_data *const osi_core, const nve32_t mode)
{
void *base = osi_core->base;
nveu32_t mcr_val;
nve32_t ret = 0;
const nveu32_t bit_set[2] = { EQOS_MCR_DO, EQOS_MCR_DM };
const nveu32_t clear_bit[2] = { EQOS_MCR_DM, EQOS_MCR_DO };
#ifndef OSI_STRIPPED_LIB
/* don't allow only if mode is other than 0 or 1 */
if ((mode != OSI_FULL_DUPLEX) && (mode != OSI_HALF_DUPLEX)) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Invalid duplex mode\n", 0ULL);
ret = -1;
goto fail;
}
#endif /* !OSI_STRIPPED_LIB */
if ((osi_core->mac == OSI_MAC_HW_EQOS) &&
((mode == OSI_FULL_DUPLEX) || (mode == OSI_HALF_DUPLEX))) {
mcr_val = osi_readla(osi_core, (nveu8_t *)base + EQOS_MAC_MCR);
mcr_val |= bit_set[mode];
mcr_val &= ~clear_bit[mode];
osi_writela(osi_core, mcr_val, ((nveu8_t *)base + EQOS_MAC_MCR));
}
#ifndef OSI_STRIPPED_LIB
fail:
#endif /* !OSI_STRIPPED_LIB */
return ret;
}
#if 0
static nve32_t xpcs_init_start(struct osi_core_priv_data *const osi_core)
{
nve32_t ret = 0;
nveu32_t value;
if (osi_core->mac == OSI_MAC_HW_MGBE) {
if (osi_core->xpcs_base == OSI_NULL) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"XPCS base is NULL", 0ULL);
ret = -1;
goto fail;
}
ret = xpcs_init(osi_core);
if (ret < 0) {
goto fail;
}
ret = xpcs_start(osi_core);
if (ret < 0) {
goto fail;
}
value = osi_readla(osi_core, (nveu8_t *)osi_core->base + MGBE_MAC_IER);
/* Enable Link Status interrupt only after lane bring up success */
value |= MGBE_IMR_RGSMIIIE;
osi_writela(osi_core, value, (nveu8_t *)osi_core->base + MGBE_MAC_IER);
}
fail:
return ret;
}
#endif
nve32_t hw_set_speed(struct osi_core_priv_data *const osi_core, const nve32_t speed)
{
nveu32_t value;
nve32_t ret = 0;
void *base = osi_core->base;
const nveu32_t mac_mcr[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_MCR,
MGBE_MAC_TMCR,
MGBE_MAC_TMCR
};
if (((osi_core->mac == OSI_MAC_HW_EQOS) && (speed > OSI_SPEED_2500)) ||
(((osi_core->mac == OSI_MAC_HW_MGBE) ||
(osi_core->mac == OSI_MAC_HW_MGBE_T26X)) &&
((speed < OSI_SPEED_2500) && (speed > OSI_SPEED_25000)))) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"unsupported speed\n", (nveul64_t)speed);
ret = -1;
goto fail;
}
#ifdef MACSEC_SUPPORT
if ((osi_core->macsec_initialized == OSI_ENABLE) &&
((speed == OSI_SPEED_10) || (speed == OSI_SPEED_100)) &&
((osi_core->mac_ver == OSI_EQOS_MAC_5_40) || (osi_core->mac_ver == OSI_MGBE_MAC_4_20))) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"unsupported speed when T264 MACSec is enabled\n", (nveul64_t)speed);
ret = -1;
goto fail;
}
#endif /* MACSEC_SUPPORT */
value = osi_readla(osi_core, ((nveu8_t *)base + mac_mcr[osi_core->mac]));
switch (speed) {
#ifndef OSI_STRIPPED_LIB
case OSI_SPEED_10:
value |= EQOS_MCR_PS;
value &= ~EQOS_MCR_FES;
break;
case OSI_SPEED_100:
value |= EQOS_MCR_PS;
value |= EQOS_MCR_FES;
break;
case OSI_SPEED_2500:
if (osi_core->mac == OSI_MAC_HW_EQOS) {
value &= ~EQOS_MCR_PS;
value |= EQOS_MCR_FES;
} else {
value |= MGBE_MAC_TMCR_SS_2_5G;
}
break;
#endif /* !OSI_STRIPPED_LIB */
case OSI_SPEED_1000:
value &= ~EQOS_MCR_PS;
value &= ~EQOS_MCR_FES;
break;
case OSI_SPEED_5000:
value |= MGBE_MAC_TMCR_SS_5G;
break;
case OSI_SPEED_10000:
value &= ~MGBE_MAC_TMCR_SS_10G;
break;
case OSI_SPEED_25000:
value &= ~MGBE_MAC_TMCR_SS_10G;
value |= MGBE_MAC_TMCR_SS_SPEED_25G;
break;
default:
ret = -1;
break;
}
if (ret != -1) {
osi_writela(osi_core, value, ((nveu8_t *)osi_core->base + mac_mcr[osi_core->mac]));
if (osi_core->mac != OSI_MAC_HW_EQOS) {
if (speed == OSI_SPEED_25000) {
ret = xlgpcs_init(osi_core);
if (ret < 0) {
goto fail;
}
ret = xlgpcs_start(osi_core);
if (ret < 0) {
goto fail;
}
} else {
ret = xpcs_init(osi_core);
if (ret < 0) {
goto fail;
}
ret = xpcs_start(osi_core);
if (ret < 0) {
goto fail;
}
}
value = osi_readla(osi_core, (nveu8_t *)osi_core->base + MGBE_MAC_IER);
/* Enable Link Status interrupt only after lane bring up success */
value |= MGBE_IMR_RGSMIIIE;
osi_writela(osi_core, value, (nveu8_t *)osi_core->base + MGBE_MAC_IER);
} else if (osi_core->mac_ver == OSI_EQOS_MAC_5_40) {
ret = eqos_xpcs_init(osi_core);
if (ret < 0) {
goto fail;
}
}
}
osi_core->speed = speed;
fail:
return ret;
}
nve32_t hw_flush_mtl_tx_queue(struct osi_core_priv_data *const osi_core,
const nveu32_t q_inx)
{
void *addr = osi_core->base;
nveu32_t tx_op_mode_val = 0U;
nveu32_t que_idx = (q_inx & 0xFU);
nveu32_t value;
const nveu32_t tx_op_mode[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_CHX_TX_OP_MODE(que_idx),
MGBE_MTL_CHX_TX_OP_MODE(que_idx),
MGBE_MTL_CHX_TX_OP_MODE(que_idx)
};
/* Read Tx Q Operating Mode Register and flush TxQ */
value = osi_readla(osi_core, ((nveu8_t *)addr + tx_op_mode[osi_core->mac]));
value |= MTL_QTOMR_FTQ;
osi_writela(osi_core, value, ((nveu8_t *)addr + tx_op_mode[osi_core->mac]));
/* Poll Until FTQ bit resets for Successful Tx Q flush */
return poll_check(osi_core, ((nveu8_t *)addr + tx_op_mode[osi_core->mac]),
MTL_QTOMR_FTQ, &tx_op_mode_val);
}
nve32_t hw_config_fw_err_pkts(struct osi_core_priv_data *osi_core,
const nveu32_t q_inx, const nveu32_t enable_fw_err_pkts)
{
nveu32_t val;
nve32_t ret = 0;
nveu32_t que_idx = (q_inx & 0xFU);
const nveu32_t rx_op_mode[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_CHX_RX_OP_MODE(que_idx),
MGBE_MTL_CHX_RX_OP_MODE(que_idx),
MGBE_MTL_CHX_RX_OP_MODE(que_idx)
};
#ifndef OSI_STRIPPED_LIB
const nveu32_t max_q[OSI_MAX_MAC_IP_TYPES] = {
OSI_EQOS_MAX_NUM_QUEUES,
OSI_MGBE_MAX_NUM_QUEUES,
OSI_MGBE_MAX_NUM_QUEUES
};
/* Check for valid enable_fw_err_pkts and que_idx values */
if (((enable_fw_err_pkts != OSI_ENABLE) &&
(enable_fw_err_pkts != OSI_DISABLE)) ||
(que_idx >= max_q[osi_core->mac])) {
ret = -1;
goto fail;
}
/* Read MTL RXQ Operation_Mode Register */
val = osi_readla(osi_core, ((nveu8_t *)osi_core->base +
rx_op_mode[osi_core->mac]));
/* enable_fw_err_pkts, 1 is for enable and 0 is for disable */
if (enable_fw_err_pkts == OSI_ENABLE) {
/* When enable_fw_err_pkts bit is set, all packets except
* the runt error packets are forwarded to the application
* or DMA.
*/
val |= MTL_RXQ_OP_MODE_FEP;
} else {
/* When this bit is reset, the Rx queue drops packets with error
* status (CRC error, GMII_ER, watchdog timeout, or overflow)
*/
val &= ~MTL_RXQ_OP_MODE_FEP;
}
/* Write to FEP bit of MTL RXQ Operation Mode Register to enable or
* disable the forwarding of error packets to DMA or application.
*/
osi_writela(osi_core, val, ((nveu8_t *)osi_core->base +
rx_op_mode[osi_core->mac]));
fail:
return ret;
#else
/* using void to skip the misra error of unused variable */
(void)enable_fw_err_pkts;
/* Read MTL RXQ Operation_Mode Register */
val = osi_readla(osi_core, ((nveu8_t *)osi_core->base +
rx_op_mode[osi_core->mac]));
val |= MTL_RXQ_OP_MODE_FEP;
/* Write to FEP bit of MTL RXQ Operation Mode Register to enable or
* disable the forwarding of error packets to DMA or application.
*/
osi_writela(osi_core, val, ((nveu8_t *)osi_core->base +
rx_op_mode[osi_core->mac]));
return ret;
#endif /* !OSI_STRIPPED_LIB */
}
nve32_t hw_config_rxcsum_offload(struct osi_core_priv_data *const osi_core,
nveu32_t enabled)
{
void *addr = osi_core->base;
nveu32_t value;
nve32_t ret = 0;
const nveu32_t rxcsum_mode[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_MCR,
MGBE_MAC_RMCR,
MGBE_MAC_RMCR
};
const nveu32_t ipc_value[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MCR_IPC,
MGBE_MAC_RMCR_IPC,
MGBE_MAC_RMCR_IPC
};
if ((enabled != OSI_ENABLE) && (enabled != OSI_DISABLE)) {
ret = -1;
goto fail;
}
value = osi_readla(osi_core, ((nveu8_t *)addr + rxcsum_mode[osi_core->mac]));
if (enabled == OSI_ENABLE) {
value |= ipc_value[osi_core->mac];
} else {
value &= ~ipc_value[osi_core->mac];
}
osi_writela(osi_core, value, ((nveu8_t *)addr + rxcsum_mode[osi_core->mac]));
fail:
return ret;
}
nve32_t hw_set_systime_to_mac(struct osi_core_priv_data *const osi_core,
const nveu32_t sec, const nveu32_t nsec)
{
void *addr = osi_core->base;
nveu32_t mac_tcr = 0U;
nve32_t ret = 0;
const nveu32_t mac_tscr[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_TCR,
MGBE_MAC_TCR,
MGBE_MAC_TCR
};
const nveu32_t mac_stsur[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_STSUR,
MGBE_MAC_STSUR,
MGBE_MAC_STSUR
};
const nveu32_t mac_stnsur[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_STNSUR,
MGBE_MAC_STNSUR,
MGBE_MAC_STNSUR
};
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSINIT, &mac_tcr);
if (ret == -1) {
goto fail;
}
/* write seconds value to MAC_System_Time_Seconds_Update register */
osi_writela(osi_core, sec, ((nveu8_t *)addr + mac_stsur[osi_core->mac]));
/* write nano seconds value to MAC_System_Time_Nanoseconds_Update
* register
*/
osi_writela(osi_core, nsec, ((nveu8_t *)addr + mac_stnsur[osi_core->mac]));
/* issue command to update the configured secs and nsecs values */
mac_tcr |= MAC_TCR_TSINIT;
osi_writela(osi_core, mac_tcr, ((nveu8_t *)addr + mac_tscr[osi_core->mac]));
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSINIT, &mac_tcr);
fail:
return ret;
}
nve32_t hw_config_addend(struct osi_core_priv_data *const osi_core,
const nveu32_t addend)
{
void *addr = osi_core->base;
nveu32_t mac_tcr = 0U;
nve32_t ret = 0;
const nveu32_t mac_tscr[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_TCR,
MGBE_MAC_TCR,
MGBE_MAC_TCR
};
const nveu32_t mac_tar[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_TAR,
MGBE_MAC_TAR,
MGBE_MAC_TAR
};
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSADDREG, &mac_tcr);
if (ret == -1) {
goto fail;
}
/* write addend value to MAC_Timestamp_Addend register */
osi_writela(osi_core, addend, ((nveu8_t *)addr + mac_tar[osi_core->mac]));
/* issue command to update the configured addend value */
mac_tcr |= MAC_TCR_TSADDREG;
osi_writela(osi_core, mac_tcr, ((nveu8_t *)addr + mac_tscr[osi_core->mac]));
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSADDREG, &mac_tcr);
fail:
return ret;
}
#ifndef OSI_STRIPPED_LIB
void hw_config_tscr(struct osi_core_priv_data *const osi_core, const nveu32_t ptp_filter)
#else
void hw_config_tscr(struct osi_core_priv_data *const osi_core, OSI_UNUSED const nveu32_t ptp_filter)
#endif /* !OSI_STRIPPED_LIB */
{
void *addr = osi_core->base;
struct core_local *l_core = (struct core_local *)(void *)osi_core;
nveu32_t mac_tcr = 0U;
#ifndef OSI_STRIPPED_LIB
nveu32_t i = 0U, temp = 0U;
#endif /* !OSI_STRIPPED_LIB */
nveu32_t value = 0x0U;
const nveu32_t mac_tscr[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_TCR,
MGBE_MAC_TCR,
MGBE_MAC_TCR
};
const nveu32_t mac_pps[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_PPS_CTL,
MGBE_MAC_PPS_CTL,
MGBE_MAC_PPS_CTL
};
(void)ptp_filter; // unused
#ifndef OSI_STRIPPED_LIB
if (ptp_filter != OSI_DISABLE) {
mac_tcr = (OSI_MAC_TCR_TSENA | OSI_MAC_TCR_TSCFUPDT | OSI_MAC_TCR_TSCTRLSSR);
for (i = 0U; i < 32U; i++) {
temp = ptp_filter & OSI_BIT(i);
switch (temp) {
case OSI_MAC_TCR_SNAPTYPSEL_1:
mac_tcr |= OSI_MAC_TCR_SNAPTYPSEL_1;
break;
case OSI_MAC_TCR_SNAPTYPSEL_2:
mac_tcr |= OSI_MAC_TCR_SNAPTYPSEL_2;
break;
case OSI_MAC_TCR_SNAPTYPSEL_3:
mac_tcr |= OSI_MAC_TCR_SNAPTYPSEL_3;
break;
case OSI_MAC_TCR_TSIPV4ENA:
mac_tcr |= OSI_MAC_TCR_TSIPV4ENA;
break;
case OSI_MAC_TCR_TSIPV6ENA:
mac_tcr |= OSI_MAC_TCR_TSIPV6ENA;
break;
case OSI_MAC_TCR_TSEVENTENA:
mac_tcr |= OSI_MAC_TCR_TSEVENTENA;
break;
case OSI_MAC_TCR_TSMASTERENA:
mac_tcr |= OSI_MAC_TCR_TSMASTERENA;
break;
case OSI_MAC_TCR_TSVER2ENA:
mac_tcr |= OSI_MAC_TCR_TSVER2ENA;
break;
case OSI_MAC_TCR_TSIPENA:
mac_tcr |= OSI_MAC_TCR_TSIPENA;
break;
case OSI_MAC_TCR_AV8021ASMEN:
mac_tcr |= OSI_MAC_TCR_AV8021ASMEN;
break;
case OSI_MAC_TCR_TSENALL:
mac_tcr |= OSI_MAC_TCR_TSENALL;
break;
case OSI_MAC_TCR_CSC:
mac_tcr |= OSI_MAC_TCR_CSC;
break;
default:
/* misra */
break;
}
}
} else {
/* Disabling the MAC time stamping */
mac_tcr = OSI_DISABLE;
}
#else
mac_tcr = (OSI_MAC_TCR_TSENA | OSI_MAC_TCR_TSCFUPDT | OSI_MAC_TCR_TSCTRLSSR
| OSI_MAC_TCR_TSVER2ENA | OSI_MAC_TCR_TSIPENA | OSI_MAC_TCR_TSIPV6ENA |
OSI_MAC_TCR_TSIPV4ENA | OSI_MAC_TCR_SNAPTYPSEL_1);
#endif /* !OSI_STRIPPED_LIB */
osi_writela(osi_core, mac_tcr, ((nveu8_t *)addr + mac_tscr[osi_core->mac]));
value = osi_readla(osi_core, (nveu8_t *)addr + mac_pps[osi_core->mac]);
value &= ~MAC_PPS_CTL_PPSCTRL0;
if (l_core->pps_freq == OSI_ENABLE) {
value |= OSI_ENABLE;
}
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_pps[osi_core->mac]));
}
void hw_config_ssir(struct osi_core_priv_data *const osi_core)
{
nveu32_t val = 0U;
void *addr = osi_core->base;
const struct core_local *l_core = (struct core_local *)(void *)osi_core;
const nveu32_t mac_ssir[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_SSIR,
MGBE_MAC_SSIR,
MGBE_MAC_SSIR
};
const nveu32_t ptp_ssinc[3] = {OSI_PTP_SSINC_4, OSI_PTP_SSINC_6, OSI_PTP_SSINC_4};
/* by default Fine method is enabled */
val = ptp_ssinc[l_core->l_mac_ver];
/* EQOS T234 SSINC is different from EOQS T264, Logic added for EQOS T264 */
if (osi_core->mac_ver == OSI_EQOS_MAC_5_40) {
val = OSI_PTP_SSINC_4;
}
val |= val << MAC_SSIR_SSINC_SHIFT;
/* update Sub-second Increment Value */
osi_writela(osi_core, val, ((nveu8_t *)addr + mac_ssir[osi_core->mac]));
}
nve32_t hw_ptp_tsc_capture(struct osi_core_priv_data *const osi_core,
struct osi_core_ptp_tsc_data *data)
{
#ifndef OSI_STRIPPED_LIB
const struct core_local *l_core = (struct core_local *)osi_core;
#endif /* !OSI_STRIPPED_LIB */
void *addr = osi_core->base;
nveu32_t tsc_ptp = 0U;
nve32_t ret = 0;
#ifndef OSI_STRIPPED_LIB
/* This code is NA for Orin use case */
if (l_core->l_mac_ver < MAC_CORE_VER_TYPE_EQOS_5_30) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"ptp_tsc: older IP\n", 0ULL);
ret = -1;
goto done;
}
#endif /* !OSI_STRIPPED_LIB */
osi_writela(osi_core, OSI_ENABLE, (nveu8_t *)osi_core->base + WRAP_SYNC_TSC_PTP_CAPTURE);
ret = poll_check(osi_core, ((nveu8_t *)addr + WRAP_SYNC_TSC_PTP_CAPTURE),
OSI_ENABLE, &tsc_ptp);
if (ret == -1) {
goto done;
}
data->tsc_low_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_TSC_CAPTURE_LOW);
data->tsc_high_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_TSC_CAPTURE_HIGH);
data->ptp_low_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_PTP_CAPTURE_LOW);
data->ptp_high_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_PTP_CAPTURE_HIGH);
done:
return ret;
}
#ifndef OSI_STRIPPED_LIB
static inline void config_l2_da_perfect_inverse_match(
struct osi_core_priv_data *osi_core,
nveu32_t perfect_inverse_match)
{
nveu32_t value = 0U;
value = osi_readla(osi_core, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
value &= ~MAC_PFR_DAIF;
if (perfect_inverse_match == OSI_INV_MATCH) {
/* Set DA Inverse Filtering */
value |= MAC_PFR_DAIF;
}
osi_writela(osi_core, value, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
}
#endif /* !OSI_STRIPPED_LIB */
nve32_t hw_config_mac_pkt_filter_reg(struct osi_core_priv_data *const osi_core,
const struct osi_filter *filter)
{
nveu32_t value = 0U;
nve32_t ret = 0;
value = osi_readla(osi_core, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
if ((filter->oper_mode & OSI_OPER_EN_PERFECT) != OSI_DISABLE) {
value |= MAC_PFR_HPF;
}
#ifndef OSI_STRIPPED_LIB
if ((filter->oper_mode & OSI_OPER_DIS_PERFECT) != OSI_DISABLE) {
value &= ~MAC_PFR_HPF;
}
if ((filter->oper_mode & OSI_OPER_EN_PROMISC) != OSI_DISABLE) {
value |= MAC_PFR_PR;
}
if ((filter->oper_mode & OSI_OPER_DIS_PROMISC) != OSI_DISABLE) {
value &= ~MAC_PFR_PR;
}
if ((filter->oper_mode & OSI_OPER_EN_ALLMULTI) != OSI_DISABLE) {
value |= MAC_PFR_PM;
}
if ((filter->oper_mode & OSI_OPER_DIS_ALLMULTI) != OSI_DISABLE) {
value &= ~MAC_PFR_PM;
}
#endif /* !OSI_STRIPPED_LIB */
osi_writela(osi_core, value,
((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
#ifndef OSI_STRIPPED_LIB
if ((filter->oper_mode & OSI_OPER_EN_L2_DA_INV) != OSI_DISABLE) {
config_l2_da_perfect_inverse_match(osi_core, OSI_INV_MATCH);
}
if ((filter->oper_mode & OSI_OPER_DIS_L2_DA_INV) != OSI_DISABLE) {
config_l2_da_perfect_inverse_match(osi_core, OSI_PFT_MATCH);
}
#else
value = osi_readla(osi_core, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
value &= ~MAC_PFR_DAIF;
osi_writela(osi_core, value, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
#endif /* !OSI_STRIPPED_LIB */
return ret;
}
#if !defined(L3L4_WILDCARD_FILTER)
void hw_config_l3_l4_filter_enable(struct osi_core_priv_data *const osi_core,
const nveu32_t filter_enb_dis)
{
nveu32_t value = 0U;
void *base = osi_core->base;
value = osi_readla(osi_core, ((nveu8_t *)base + MAC_PKT_FILTER_REG));
value &= ~(MAC_PFR_IPFE);
value |= ((filter_enb_dis << MAC_PFR_IPFE_SHIFT) & MAC_PFR_IPFE);
osi_writela(osi_core, value, ((nveu8_t *)base + MAC_PKT_FILTER_REG));
}
#endif /* !L3L4_WILDCARD_FILTER */
/**
* @brief hw_est_read - indirect read the GCL to Software own list
* (SWOL)
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] addr_val: Address offset for indirect write.
* @param[in] data: Data to be written at offset.
* @param[in] gcla: Gate Control List Address, 0 for ETS register.
* 1 for GCL memory.
* @param[in] bunk: Memory bunk from which vlaues will be read. Possible
* value 0 or 1.
* @param[in] mac: MAC index
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
static inline nve32_t hw_est_read(struct osi_core_priv_data *osi_core,
nveu32_t addr_val, nveu32_t *data,
OSI_UNUSED nveu32_t gcla, nveu32_t bunk,
nveu32_t mac)
{
nve32_t retry = 1000;
nveu32_t val = 0U;
nve32_t ret;
const nveu32_t MTL_EST_GCL_CONTROL[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_GCL_CONTROL,
MGBE_MTL_EST_GCL_CONTROL,
MGBE_MTL_EST_GCL_CONTROL
};
const nveu32_t MTL_EST_DATA[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_DATA,
MGBE_MTL_EST_DATA,
MGBE_MTL_EST_DATA
};
(void)gcla;
*data = 0U;
val &= ~MTL_EST_ADDR_MASK;
val |= MTL_EST_GCRR;
val |= MTL_EST_SRWO | MTL_EST_R1W0 | MTL_EST_DBGM | bunk | addr_val;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base +
MTL_EST_GCL_CONTROL[mac]);
while (--retry > 0) {
val = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_GCL_CONTROL[mac]);
if ((val & MTL_EST_SRWO) == MTL_EST_SRWO) {
continue;
}
osi_core->osd_ops.udelay(OSI_DELAY_1US);
break;
}
if (((val & MTL_EST_ERR0) == MTL_EST_ERR0) ||
(retry <= 0)) {
ret = -1;
goto err;
}
*data = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_DATA[mac]);
ret = 0;
err:
return ret;
}
static nve32_t validate_est_args(struct osi_core_priv_data *const osi_core,
struct osi_est_config *const est)
{
nve32_t ret = 0;
const struct core_local *l_core = (struct core_local *)(void *)osi_core;
if (est->en_dis > OSI_ENABLE) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"input argument en_dis value\n",
(nveul64_t)est->en_dis);
ret = -1;
goto done;
}
if ((est->llr > l_core->gcl_dep) || (est->llr == OSI_NONE)) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"input argument more than GCL depth\n",
(nveul64_t)est->llr);
ret = -1;
goto done;
}
/* 24 bit configure time in GCL + 7) */
if (est->ter > 0x7FFFFFFFU) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"invalid TER value\n",
(nveul64_t)est->ter);
ret = -1;
goto done;
}
/* nenosec register value can't be more than 10^9 nsec */
if ((est->ctr[0] > OSI_NSEC_PER_SEC) ||
(est->btr[0] > OSI_NSEC_PER_SEC) ||
(est->ctr[1] > 0xFFU)) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"input argument CTR/BTR nsec is invalid\n",
0ULL);
ret = -1;
goto done;
}
/* if btr + offset is more than limit */
if ((est->btr[0] > (OSI_NSEC_PER_SEC - est->btr_offset[0])) ||
(est->btr[1] > (UINT_MAX - est->btr_offset[1]))) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"input argument BTR offset is invalid\n",
0ULL);
ret = -1;
goto done;
}
done:
return ret;
}
static nve32_t validate_btr(struct osi_core_priv_data *const osi_core,
struct osi_est_config *const est,
const nveu32_t *btr, nveu32_t mac, nveu32_t bunk)
{
nveu32_t i;
nve32_t ret = 0;
nveu32_t val = 0U;
nveu64_t rem = 0U;
nveu64_t btr_new = 0U;
nveu64_t old_btr, old_ctr;
nveu32_t btr_l, btr_h, ctr_l, ctr_h;
const nveu32_t MTL_EST_CONTROL[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL};
const nveu32_t PTP_CYCLE_8[OSI_MAX_MAC_IP_TYPES] = {EQOS_8PTP_CYCLE,
MGBE_8PTP_CYCLE,
MGBE_8PTP_CYCLE};
const nveu32_t MTL_EST_BTR_LOW[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_BTR_LOW,
MGBE_MTL_EST_BTR_LOW,
MGBE_MTL_EST_BTR_LOW};
const nveu32_t MTL_EST_BTR_HIGH[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_BTR_HIGH,
MGBE_MTL_EST_BTR_HIGH,
MGBE_MTL_EST_BTR_HIGH};
const nveu32_t MTL_EST_CTR_LOW[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CTR_LOW,
MGBE_MTL_EST_CTR_LOW,
MGBE_MTL_EST_CTR_LOW};
const nveu32_t MTL_EST_CTR_HIGH[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CTR_HIGH,
MGBE_MTL_EST_CTR_HIGH,
MGBE_MTL_EST_CTR_HIGH};
const struct est_read hw_read_arr[4] = {
{&btr_l, MTL_EST_BTR_LOW[mac]},
{&btr_h, MTL_EST_BTR_HIGH[mac]},
{&ctr_l, MTL_EST_CTR_LOW[mac]},
{&ctr_h, MTL_EST_CTR_HIGH[mac]}};
btr_new = (((nveu64_t)btr[1] + est->btr_offset[1]) * OSI_NSEC_PER_SEC) +
(btr[0] + est->btr_offset[0]);
/* Check for BTR in case of new ETS while current GCL enabled */
val = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_CONTROL[mac]);
if ((val & MTL_EST_CONTROL_EEST) != MTL_EST_CONTROL_EEST) {
ret = 0;
goto done;
}
/* Read last BTR and CTR */
for (i = 0U; i < (sizeof(hw_read_arr) / sizeof(hw_read_arr[0])); i++) {
ret = hw_est_read(osi_core, hw_read_arr[i].addr,
hw_read_arr[i].var, OSI_DISABLE,
bunk, mac);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Reading failed for index\n",
(nveul64_t)i);
goto done;
}
}
old_btr = btr_l + ((nveu64_t)btr_h * OSI_NSEC_PER_SEC);
old_ctr = ctr_l + ((nveu64_t)ctr_h * OSI_NSEC_PER_SEC);
if (old_btr > btr_new) {
rem = (old_btr - btr_new) % old_ctr;
if ((rem != OSI_NONE) && (rem < PTP_CYCLE_8[mac])) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"invalid BTR", (nveul64_t)rem);
ret = -1;
goto done;
}
} else if (btr_new > old_btr) {
rem = (btr_new - old_btr) % old_ctr;
if ((rem != OSI_NONE) && (rem < PTP_CYCLE_8[mac])) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"invalid BTR", (nveul64_t)rem);
ret = -1;
goto done;
}
} else {
// Nothing to do
}
done:
return ret;
}
/**
* @brief eqos_gcl_validate - validate GCL from user
*
* Algorithm: validate GCL size and width of time interval value
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] est: Configuration input argument.
* @param[in] btr: Base time register value.
* @param[in] mac: MAC index
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
static nve32_t gcl_validate(struct osi_core_priv_data *const osi_core,
struct osi_est_config *const est,
const nveu32_t *btr, nveu32_t mac)
{
const struct core_local *l_core = (struct core_local *)(void *)osi_core;
const nveu32_t PTP_CYCLE_8[OSI_MAX_MAC_IP_TYPES] = {
EQOS_8PTP_CYCLE,
MGBE_8PTP_CYCLE,
MGBE_8PTP_CYCLE
};
const nveu32_t MTL_EST_STATUS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_STATUS,
MGBE_MTL_EST_STATUS,
MGBE_MTL_EST_STATUS
};
nveu32_t i;
nveu64_t sum_ti = 0U;
nveu64_t sum_tin = 0U;
nveu64_t ctr = 0U;
nveu32_t bunk = 0U;
nveu32_t est_status;
nve32_t ret = 0;
if((est->btr_offset[0] > OSI_NSEC_PER_SEC) ||
(validate_est_args(osi_core, est) < 0)) {
ret = -1;
goto done;
}
ctr = ((nveu64_t)est->ctr[1] * OSI_NSEC_PER_SEC) + est->ctr[0];
for (i = 0U; i < est->llr; i++) {
if (est->gcl[i] <= l_core->gcl_width_val) {
sum_ti += ((nveu64_t)est->gcl[i] & l_core->ti_mask);
if ((sum_ti > ctr) &&
((ctr - sum_tin) >= PTP_CYCLE_8[mac])) {
continue;
} else if (((ctr - sum_ti) != 0U) &&
((ctr - sum_ti) < PTP_CYCLE_8[mac])) {
OSI_CORE_ERR(osi_core->osd,
OSI_LOG_ARG_INVALID,
"CTR issue due to trancate\n",
(nveul64_t)i);
ret = -1;
goto done;
} else {
//do nothing
}
sum_tin = sum_ti;
continue;
}
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"validation of GCL entry failed\n",
(nveul64_t)i);
ret = -1;
goto done;
}
/* Read EST_STATUS for bunk */
est_status = osi_readla(osi_core,
(nveu8_t *)osi_core->base +
MTL_EST_STATUS[mac]);
if ((est_status & MTL_EST_STATUS_SWOL) == 0U) {
bunk = MTL_EST_DBGB;
}
ret = validate_btr(osi_core, est, btr, mac, bunk);
done:
return ret;
}
/**
* @brief hw_est_write - indirect write the GCL to Software own list
* (SWOL)
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] addr_val: Address offset for indirect write.
* @param[in] data: Data to be written at offset.
* @param[in] gcla: Gate Control List Address, 0 for ETS register.
* 1 for GCL memory.
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
static nve32_t hw_est_write(struct osi_core_priv_data *osi_core,
nveu32_t addr_val, nveu32_t data,
nveu32_t gcla)
{
nve32_t retry = 1000;
nveu32_t val = 0x0;
nve32_t ret = 0;
const nveu32_t MTL_EST_DATA[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_DATA,
MGBE_MTL_EST_DATA,
MGBE_MTL_EST_DATA
};
const nveu32_t MTL_EST_GCL_CONTROL[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_GCL_CONTROL,
MGBE_MTL_EST_GCL_CONTROL,
MGBE_MTL_EST_GCL_CONTROL
};
osi_writela(osi_core, data, (nveu8_t *)osi_core->base +
MTL_EST_DATA[osi_core->mac]);
val &= ~MTL_EST_ADDR_MASK;
val |= (gcla == 1U) ? 0x0U : MTL_EST_GCRR;
val |= MTL_EST_SRWO;
val |= addr_val;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base +
MTL_EST_GCL_CONTROL[osi_core->mac]);
while (--retry > 0) {
val = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_GCL_CONTROL[osi_core->mac]);
if ((val & MTL_EST_SRWO) == MTL_EST_SRWO) {
osi_core->osd_ops.udelay(OSI_DELAY_1US);
continue;
}
break;
}
if (((val & MTL_EST_ERR0) == MTL_EST_ERR0) ||
(retry <= 0)) {
ret = -1;
}
return ret;
}
static inline nve32_t configure_est_params(struct osi_core_priv_data *const osi_core,
struct osi_est_config *const est)
{
nveu32_t i;
nve32_t ret;
nveu32_t addr = 0x0;
const nveu32_t MTL_EST_CTR_LOW[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CTR_LOW,
MGBE_MTL_EST_CTR_LOW,
MGBE_MTL_EST_CTR_LOW};
const nveu32_t MTL_EST_CTR_HIGH[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CTR_HIGH,
MGBE_MTL_EST_CTR_HIGH,
MGBE_MTL_EST_CTR_HIGH};
const nveu32_t MTL_EST_TER[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_TER,
MGBE_MTL_EST_TER,
MGBE_MTL_EST_TER};
const nveu32_t MTL_EST_LLR[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_LLR,
MGBE_MTL_EST_LLR,
MGBE_MTL_EST_LLR};
ret = hw_est_write(osi_core, MTL_EST_CTR_LOW[osi_core->mac], est->ctr[0], 0);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL CTR[0] failed\n", 0LL);
goto done;
}
/* check for est->ctr[i] not more than FF, TODO as per hw config
* parameter we can have max 0x3 as this value in sec */
est->ctr[1] &= MTL_EST_CTR_HIGH_MAX;
ret = hw_est_write(osi_core, MTL_EST_CTR_HIGH[osi_core->mac], est->ctr[1], 0);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL CTR[1] failed\n", 0LL);
goto done;
}
ret = hw_est_write(osi_core, MTL_EST_TER[osi_core->mac], est->ter, 0);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL TER failed\n", 0LL);
goto done;
}
ret = hw_est_write(osi_core, MTL_EST_LLR[osi_core->mac], est->llr, 0);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL LLR failed\n", 0LL);
goto done;
}
/* Write GCL table */
for (i = 0U; i < est->llr; i++) {
addr = i;
addr = addr << MTL_EST_ADDR_SHIFT;
addr &= MTL_EST_ADDR_MASK;
ret = hw_est_write(osi_core, addr, est->gcl[i], 1);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL enties write failed\n",
(nveul64_t)i);
goto done;
}
}
done:
return ret;
}
/**
* @brief hw_config_est - Read Setting for GCL from input and update
* registers.
*
* Algorithm:
* 1) Write TER, LLR and EST control register
* 2) Update GCL to sw own GCL (MTL_EST_Status bit SWOL will tell which is
* owned by SW) and store which GCL is in use currently in sw.
* 3) TODO set DBGB and DBGM for debugging
* 4) EST_data and GCRR to 1, update entry sno in ADDR and put data at
* est_gcl_data enable GCL MTL_EST_SSWL and wait for self clear or use
* SWLC in MTL_EST_Status. Please note new GCL will be pushed for each entry.
* 5) Configure btr. Update btr based on current time (current time
* should be updated based on PTP by this time)
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] est: EST configuration input argument.
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
nve32_t hw_config_est(struct osi_core_priv_data *const osi_core,
struct osi_est_config *const est)
{
nveu32_t btr[2] = {0};
nveu32_t val = 0x0;
void *base = osi_core->base;
nve32_t ret = 0;
const nveu32_t MTL_EST_CONTROL[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL
};
const nveu32_t MTL_EST_BTR_LOW[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_BTR_LOW,
MGBE_MTL_EST_BTR_LOW,
MGBE_MTL_EST_BTR_LOW
};
const nveu32_t MTL_EST_BTR_HIGH[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_BTR_HIGH,
MGBE_MTL_EST_BTR_HIGH,
MGBE_MTL_EST_BTR_HIGH
};
if (est->en_dis == OSI_DISABLE) {
val = osi_readla(osi_core, (nveu8_t *)base +
MTL_EST_CONTROL[osi_core->mac]);
val &= ~MTL_EST_EEST;
osi_writela(osi_core, val, (nveu8_t *)base +
MTL_EST_CONTROL[osi_core->mac]);
ret = 0;
} else {
btr[0] = est->btr[0];
btr[1] = est->btr[1];
if ((btr[0] == 0U) && (btr[1] == 0U)) {
core_get_systime_from_mac(osi_core->base,
osi_core->mac,
&btr[1], &btr[0]);
}
if (gcl_validate(osi_core, est, btr, osi_core->mac) < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL validation failed\n", 0LL);
ret = -1;
goto done;
}
/* Configure ctr, ter, llr, gcl table */
ret = configure_est_params(osi_core, est);
if (ret < 0) {
goto done;
}
/* Write parameters */
ret = hw_est_write(osi_core, MTL_EST_BTR_LOW[osi_core->mac],
btr[0] + est->btr_offset[0], OSI_DISABLE);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL BTR[0] failed\n",
(btr[0] + est->btr_offset[0]));
goto done;
}
ret = hw_est_write(osi_core, MTL_EST_BTR_HIGH[osi_core->mac],
btr[1] + est->btr_offset[1], OSI_DISABLE);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"GCL BTR[1] failed\n",
(btr[1] + est->btr_offset[1]));
goto done;
}
val = osi_readla(osi_core, (nveu8_t *)base +
MTL_EST_CONTROL[osi_core->mac]);
/* Store table */
val |= MTL_EST_SSWL;
val |= MTL_EST_EEST;
val |= MTL_EST_QHLBF;
osi_writela(osi_core, val, (nveu8_t *)base +
MTL_EST_CONTROL[osi_core->mac]);
}
done:
return ret;
}
static nve32_t hw_config_fpe_pec_enable(struct osi_core_priv_data *const osi_core,
struct osi_fpe_config *const fpe)
{
nveu32_t i = 0U;
nveu32_t val = 0U;
nveu32_t temp = 0U, temp1 = 0U;
nveu32_t temp_shift = 0U;
nve32_t ret = 0;
const nveu32_t MTL_FPE_CTS[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_FPE_CTS,
MGBE_MTL_FPE_CTS,
MGBE_MTL_FPE_CTS};
const nveu32_t MAC_FPE_CTS[OSI_MAX_MAC_IP_TYPES] = {EQOS_MAC_FPE_CTS,
MGBE_MAC_FPE_CTS,
MGBE_MAC_FPE_CTS};
const nveu32_t max_number_queue[OSI_MAX_MAC_IP_TYPES] = {OSI_EQOS_MAX_NUM_QUEUES,
OSI_MGBE_MAX_NUM_QUEUES,
OSI_MGBE_MAX_NUM_QUEUES};
const nveu32_t MAC_RQC1R[OSI_MAX_MAC_IP_TYPES] = {EQOS_MAC_RQC1R,
MGBE_MAC_RQC1R,
MGBE_MAC_RQC1R};
const nveu32_t MAC_RQC1R_RQ[OSI_MAX_MAC_IP_TYPES] = {EQOS_MAC_RQC1R_FPRQ,
MGBE_MAC_RQC1R_RQ,
MGBE_MAC_RQC1R_RQ};
const nveu32_t MAC_RQC1R_RQ_SHIFT[OSI_MAX_MAC_IP_TYPES] = {EQOS_MAC_RQC1R_FPRQ_SHIFT,
MGBE_MAC_RQC1R_RQ_SHIFT,
MGBE_MAC_RQC1R_RQ_SHIFT};
const nveu32_t MTL_FPE_ADV[OSI_MAX_MAC_IP_TYPES] = {EQOS_MTL_FPE_ADV,
MGBE_MTL_FPE_ADV,
MGBE_MTL_FPE_ADV};
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MTL_FPE_CTS[osi_core->mac]);
val &= ~MTL_FPE_CTS_PEC;
for (i = 0U; i < OSI_MAX_TC_NUM; i++) {
/* max 8 bit for this structure fot TC/TXQ. Set the TC for express or
* preemption. Default is express for a TC. DWCXG_NUM_TC = 8 */
temp = OSI_BIT(i);
if ((fpe->tx_queue_preemption_enable & temp) == temp) {
temp_shift = i;
temp_shift += MTL_FPE_CTS_PEC_SHIFT;
/* set queue for preemtable */
temp1 = OSI_ENABLE;
temp1 = temp1 << temp_shift;
val |= temp1;
}
}
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MTL_FPE_CTS[osi_core->mac]);
if ((fpe->rq == 0x0U) || (fpe->rq >= max_number_queue[osi_core->mac])) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"FPE init failed due to wrong RQ\n", fpe->rq);
ret = -1;
goto done;
}
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + (MAC_RQC1R[osi_core->mac]));
val &= ~MAC_RQC1R_RQ[osi_core->mac];
temp = fpe->rq;
temp = temp << ((MAC_RQC1R_RQ_SHIFT[osi_core->mac]) & 0x1FU);
temp = (temp & MAC_RQC1R_RQ[osi_core->mac]);
val |= temp;
osi_core->residual_queue = fpe->rq;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MAC_RQC1R[osi_core->mac]);
if (osi_core->mac != OSI_MAC_HW_EQOS) {
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MGBE_MAC_RQC4R);
val &= ~MGBE_MAC_RQC4R_PMCBCQ;
temp = fpe->rq;
temp = temp << MGBE_MAC_RQC4R_PMCBCQ_SHIFT;
temp = (temp & MGBE_MAC_RQC4R_PMCBCQ);
val |= temp;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MGBE_MAC_RQC4R);
}
/* initiate SVER for SMD-V and SMD-R */
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + (MTL_FPE_CTS[osi_core->mac]));
val |= MAC_FPE_CTS_SVER;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + (MAC_FPE_CTS[osi_core->mac]));
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + (MTL_FPE_ADV[osi_core->mac]));
val &= ~MTL_FPE_ADV_HADV_MASK;
//(minimum_fragment_size +IPG/EIPG + Preamble) *.8 ~98ns for10G
val |= MTL_FPE_ADV_HADV_VAL;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + (MTL_FPE_ADV[osi_core->mac]));
if (osi_core->mac == OSI_MAC_HW_MGBE) {
#ifdef MACSEC_SUPPORT
osi_core->is_fpe_enabled = OSI_ENABLE;
#endif /* MACSEC_SUPPORT */
}
done:
return ret;
}
/**
* @brief hw_config_fpe - Read Setting for preemption and express for TC
* and update registers.
*
* Algorithm:
* 1) Check for TC enable and TC has masked for setting to preemptable.
* 2) update FPE control status register
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] fpe: FPE configuration input argument.
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
nve32_t hw_config_fpe(struct osi_core_priv_data *const osi_core,
struct osi_fpe_config *const fpe)
{
nveu32_t val = 0U;
nve32_t ret = 0;
const nveu32_t MTL_FPE_CTS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_FPE_CTS,
MGBE_MTL_FPE_CTS,
MGBE_MTL_FPE_CTS
};
const nveu32_t MAC_FPE_CTS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_FPE_CTS,
MGBE_MAC_FPE_CTS,
MGBE_MAC_FPE_CTS
};
/* Only 8 TC */
if (fpe->tx_queue_preemption_enable > 0xFFU) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"FPE input tx_queue_preemption_enable is invalid\n",
(nveul64_t)fpe->tx_queue_preemption_enable);
ret = -1;
goto error;
}
if (osi_core->mac_ver != OSI_EQOS_MAC_5_30) {
#ifdef MACSEC_SUPPORT
osi_lock_irq_enabled(&osi_core->macsec_fpe_lock);
/* MACSEC and FPE cannot coexist on MGBE of T234 refer bug 3484034
* Both EQOS and MGBE of T264 cannot have macsec and fpe enabled simultaneously */
if (osi_core->is_macsec_enabled == OSI_ENABLE) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"FPE and MACSEC cannot co-exist\n", 0ULL);
ret = -1;
goto done;
}
#endif /* MACSEC_SUPPORT */
}
osi_core->fpe_ready = OSI_DISABLE;
if (((fpe->tx_queue_preemption_enable << MTL_FPE_CTS_PEC_SHIFT) &
MTL_FPE_CTS_PEC) == OSI_DISABLE) {
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MTL_FPE_CTS[osi_core->mac]);
val &= ~MTL_FPE_CTS_PEC;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MTL_FPE_CTS[osi_core->mac]);
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MAC_FPE_CTS[osi_core->mac]);
val &= ~MAC_FPE_CTS_EFPE;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MAC_FPE_CTS[osi_core->mac]);
if (osi_core->mac != OSI_MAC_HW_EQOS) {
#ifdef MACSEC_SUPPORT
osi_core->is_fpe_enabled = OSI_DISABLE;
#endif /* MACSEC_SUPPORT */
}
ret = 0;
} else {
ret = hw_config_fpe_pec_enable(osi_core, fpe);
if (ret < 0) {
goto done;
}
}
done:
if (osi_core->mac_ver != OSI_EQOS_MAC_5_30) {
#ifdef MACSEC_SUPPORT
osi_unlock_irq_enabled(&osi_core->macsec_fpe_lock);
#endif /* MACSEC_SUPPORT */
}
error:
return ret;
}
/**
* @brief enable_mtl_interrupts - Enable MTL interrupts
*
* Algorithm: enable MTL interrupts for EST
*
* @param[in] osi_core: OSI core private data structure.
*
* @note MAC should be init and started. see osi_start_mac()
*/
static inline void enable_mtl_interrupts(struct osi_core_priv_data *osi_core)
{
nveu32_t mtl_est_ir = OSI_DISABLE;
const nveu32_t MTL_EST_ITRE[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_ITRE,
MGBE_MTL_EST_ITRE,
MGBE_MTL_EST_ITRE
};
mtl_est_ir = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_ITRE[osi_core->mac]);
/* enable only MTL interrupt realted to
* Constant Gate Control Error
* Head-Of-Line Blocking due to Scheduling
* Head-Of-Line Blocking due to Frame Size
* BTR Error
* Switch to S/W owned list Complete
*/
mtl_est_ir |= (MTL_EST_ITRE_CGCE | MTL_EST_ITRE_IEHS |
MTL_EST_ITRE_IEHF | MTL_EST_ITRE_IEBE |
MTL_EST_ITRE_IECC);
osi_writela(osi_core, mtl_est_ir, (nveu8_t *)osi_core->base +
MTL_EST_ITRE[osi_core->mac]);
}
/**
* @brief enable_fpe_interrupts - Enable MTL interrupts
*
* Algorithm: enable FPE interrupts
*
* @param[in] osi_core: OSI core private data structure.
*
* @note MAC should be init and started. see osi_start_mac()
*/
static inline void enable_fpe_interrupts(struct osi_core_priv_data *osi_core)
{
nveu32_t value = OSI_DISABLE;
const nveu32_t MAC_IER[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_IMR,
MGBE_MAC_IER,
MGBE_MAC_IER
};
const nveu32_t IMR_FPEIE[OSI_MAX_MAC_IP_TYPES] = {
EQOS_IMR_FPEIE,
MGBE_IMR_FPEIE,
MGBE_IMR_FPEIE
};
/* Read MAC IER Register and enable Frame Preemption Interrupt
* Enable */
value = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MAC_IER[osi_core->mac]);
value |= IMR_FPEIE[osi_core->mac];
osi_writela(osi_core, value, (nveu8_t *)osi_core->base +
MAC_IER[osi_core->mac]);
}
/**
* @brief save_gcl_params - save GCL configs in local core structure
*
* @param[in] osi_core: OSI core private data structure.
*
* @note MAC should be init and started. see osi_start_mac()
*/
static inline void save_gcl_params(struct osi_core_priv_data *osi_core)
{
struct core_local *l_core = (struct core_local *)(void *)osi_core;
const nveu32_t gcl_widhth[4] = {0, OSI_MAX_24BITS, OSI_MAX_28BITS,
OSI_MAX_32BITS};
const nveu32_t gcl_ti_mask[4] = {0, OSI_MASK_16BITS, OSI_MASK_20BITS,
OSI_MASK_24BITS};
const nveu32_t gcl_depthth[6] = {0, OSI_GCL_SIZE_64, OSI_GCL_SIZE_128,
OSI_GCL_SIZE_256, OSI_GCL_SIZE_512,
OSI_GCL_SIZE_1024};
l_core->gcl_width_val = gcl_widhth[l_core->hw_features.gcl_width];
l_core->ti_mask = gcl_ti_mask[l_core->hw_features.gcl_width];
l_core->gcl_dep = gcl_depthth[l_core->hw_features.gcl_depth];
}
/**
* @brief hw_tsn_init - initialize TSN feature
*
* Algorithm:
* 1) If hardware support EST,
* a) Set default EST configuration
* b) Set enable interrupts
* 2) If hardware supports FPE
* a) Set default FPE configuration
* b) enable interrupts
*
* @param[in] osi_core: OSI core private data structure.
*
* @note MAC should be init and started. see osi_start_mac()
*/
void hw_tsn_init(struct osi_core_priv_data *osi_core)
{
nveu32_t val = 0x0;
nveu32_t temp = 0U;
const nveu32_t MTL_EST_CONTROL[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL
};
const nveu32_t MTL_EST_CONTROL_PTOV[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_PTOV,
MGBE_MTL_EST_CONTROL_PTOV,
MGBE_MTL_EST_CONTROL_PTOV
};
const nveu32_t MTL_EST_PTOV_RECOMMEND[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_PTOV_RECOMMEND,
MGBE_MTL_EST_PTOV_RECOMMEND,
MGBE_MTL_EST_PTOV_RECOMMEND
};
const nveu32_t MTL_EST_CONTROL_PTOV_SHIFT[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_PTOV_SHIFT,
MGBE_MTL_EST_CONTROL_PTOV_SHIFT,
MGBE_MTL_EST_CONTROL_PTOV_SHIFT
};
const nveu32_t MTL_EST_CONTROL_CTOV[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_CTOV,
MGBE_MTL_EST_CONTROL_CTOV,
MGBE_MTL_EST_CONTROL_CTOV
};
const nveu32_t MTL_EST_CTOV_RECOMMEND[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CTOV_RECOMMEND,
MGBE_MTL_EST_CTOV_RECOMMEND,
MGBE_MTL_EST_CTOV_RECOMMEND
};
const nveu32_t MTL_EST_CONTROL_CTOV_SHIFT[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_CTOV_SHIFT,
MGBE_MTL_EST_CONTROL_CTOV_SHIFT,
MGBE_MTL_EST_CONTROL_CTOV_SHIFT
};
const nveu32_t MTL_EST_CONTROL_LCSE[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_LCSE,
MGBE_MTL_EST_CONTROL_LCSE,
MGBE_MTL_EST_CONTROL_LCSE
};
const nveu32_t MTL_EST_CONTROL_LCSE_VAL[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_LCSE_VAL,
MGBE_MTL_EST_CONTROL_LCSE_VAL,
MGBE_MTL_EST_CONTROL_LCSE_VAL
};
const nveu32_t MTL_EST_CONTROL_DDBF[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_CONTROL_DDBF,
MGBE_MTL_EST_CONTROL_DDBF,
MGBE_MTL_EST_CONTROL_DDBF
};
const nveu32_t MTL_EST_OVERHEAD[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_OVERHEAD,
MGBE_MTL_EST_OVERHEAD,
MGBE_MTL_EST_OVERHEAD
};
const nveu32_t MTL_EST_OVERHEAD_OVHD[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_OVERHEAD_OVHD,
MGBE_MTL_EST_OVERHEAD_OVHD,
MGBE_MTL_EST_OVERHEAD_OVHD
};
const nveu32_t MTL_EST_OVERHEAD_RECOMMEND[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_OVERHEAD_RECOMMEND,
MGBE_MTL_EST_OVERHEAD_RECOMMEND,
MGBE_MTL_EST_OVERHEAD_RECOMMEND
};
const nveu32_t MAC_RQC1R[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_RQC1R,
MGBE_MAC_RQC1R,
MGBE_MAC_RQC1R
};
const nveu32_t MAC_RQC1R_RQ[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_RQC1R_FPRQ,
MGBE_MAC_RQC1R_RQ,
MGBE_MAC_RQC1R_RQ
};
const nveu32_t MAC_RQC1R_RQ_SHIFT[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_RQC1R_FPRQ_SHIFT,
MGBE_MAC_RQC1R_RQ_SHIFT,
MGBE_MAC_RQC1R_RQ_SHIFT
};
/* Configure EST paramenters */
save_gcl_params(osi_core);
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MTL_EST_CONTROL[osi_core->mac]);
/*
* PTOV PTP clock period * 6
* dual-port RAM based asynchronous FIFO controllers or
* Single-port RAM based synchronous FIFO controllers
* CTOV 96 x Tx clock period
* :
* :
* set other default value
*/
val &= ~MTL_EST_CONTROL_PTOV[osi_core->mac];
temp = MTL_EST_PTOV_RECOMMEND[osi_core->mac];
temp = temp << ((MTL_EST_CONTROL_PTOV_SHIFT[osi_core->mac]) & 0x1FU);
val |= temp;
val &= ~MTL_EST_CONTROL_CTOV[osi_core->mac];
temp = MTL_EST_CTOV_RECOMMEND[osi_core->mac];
temp = temp << ((MTL_EST_CONTROL_CTOV_SHIFT[osi_core->mac]) & 0x1FU);
val |= temp;
/*Loop Count to report Scheduling Error*/
val &= ~MTL_EST_CONTROL_LCSE[osi_core->mac];
val |= MTL_EST_CONTROL_LCSE_VAL[osi_core->mac];
if (osi_core->mac == OSI_MAC_HW_EQOS) {
val &= ~EQOS_MTL_EST_CONTROL_DFBS;
}
val &= ~MTL_EST_CONTROL_DDBF[osi_core->mac];
val |= MTL_EST_CONTROL_DDBF[osi_core->mac];
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MTL_EST_CONTROL[osi_core->mac]);
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MTL_EST_OVERHEAD[osi_core->mac]);
val &= ~MTL_EST_OVERHEAD_OVHD[osi_core->mac];
/* As per hardware programming info */
val |= MTL_EST_OVERHEAD_RECOMMEND[osi_core->mac];
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MTL_EST_OVERHEAD[osi_core->mac]);
enable_mtl_interrupts(osi_core);
/* Configure FPE parameters */
val = osi_readla(osi_core, (nveu8_t *)osi_core->base + MAC_RQC1R[osi_core->mac]);
val &= ~MAC_RQC1R_RQ[osi_core->mac];
temp = osi_core->residual_queue;
temp = temp << ((MAC_RQC1R_RQ_SHIFT[osi_core->mac]) & 0x1FU);
temp = (temp & MAC_RQC1R_RQ[osi_core->mac]);
val |= temp;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MAC_RQC1R[osi_core->mac]);
if (osi_core->mac != OSI_MAC_HW_EQOS) {
val = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MGBE_MAC_RQC4R);
val &= ~MGBE_MAC_RQC4R_PMCBCQ;
temp = osi_core->residual_queue;
temp = temp << MGBE_MAC_RQC4R_PMCBCQ_SHIFT;
temp = (temp & MGBE_MAC_RQC4R_PMCBCQ);
val |= temp;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base + MGBE_MAC_RQC4R);
}
enable_fpe_interrupts(osi_core);
/* CBS setting for TC or TXQ for default configuration
user application should use IOCTL to set CBS as per requirement
*/
}
#ifdef HSI_SUPPORT
#ifdef NV_VLTEST_BUILD
/**
* @brief hsi_common_error_inject
*
* Algorithm:
* - For macsec HSI: trigger interrupt using MACSEC_*_INTERRUPT_SET_0 register
* - For mmc counter based: trigger interrupt by incrementing count by threshold value
* - For rest: Directly set the error detected as there is no other mean to induce error
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] error_code: Ethernet HSI error code
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
nve32_t hsi_common_error_inject(struct osi_core_priv_data *osi_core,
nveu32_t error_code)
{
nve32_t ret = 0;
const nveu32_t rx_isr_set[MAX_MACSEC_IP_TYPES] = {
MACSEC_RX_ISR_SET,
MACSEC_RX_ISR_SET_T26X};
const nveu32_t common_isr_set[MAX_MACSEC_IP_TYPES] = {
MACSEC_COMMON_ISR_SET,
MACSEC_COMMON_ISR_SET_T26X};
switch (error_code) {
case OSI_INBOUND_BUS_CRC_ERR:
osi_core->hsi.inject_crc_err_count =
osi_update_stats_counter(osi_core->hsi.inject_crc_err_count,
osi_core->hsi.err_count_threshold);
break;
case OSI_RECEIVE_CHECKSUM_ERR:
osi_core->hsi.inject_udp_err_count =
osi_update_stats_counter(osi_core->hsi.inject_udp_err_count,
osi_core->hsi.err_count_threshold);
break;
case OSI_MACSEC_RX_CRC_ERR:
osi_writela(osi_core, MACSEC_RX_MAC_CRC_ERROR,
(nveu8_t *)osi_core->macsec_base +
rx_isr_set[osi_core->macsec]);
break;
case OSI_MACSEC_TX_CRC_ERR:
osi_writela(osi_core, MACSEC_TX_MAC_CRC_ERROR,
(nveu8_t *)osi_core->macsec_base +
MACSEC_TX_ISR_SET);
break;
case OSI_MACSEC_RX_ICV_ERR:
osi_writela(osi_core, MACSEC_RX_ICV_ERROR,
(nveu8_t *)osi_core->macsec_base +
rx_isr_set[osi_core->macsec]);
break;
case OSI_MACSEC_REG_VIOL_ERR:
osi_writela(osi_core, MACSEC_SECURE_REG_VIOL,
(nveu8_t *)osi_core->macsec_base +
common_isr_set[osi_core->macsec]);
break;
case OSI_PHY_WRITE_VERIFY_ERR:
osi_core->hsi.err_code[PHY_WRITE_VERIFY_FAIL_IDX] = OSI_PHY_WRITE_VERIFY_ERR;
osi_core->hsi.report_err = OSI_ENABLE;
osi_core->hsi.report_count_err[PHY_WRITE_VERIFY_FAIL_IDX] = OSI_ENABLE;
break;
case OSI_TX_FRAME_ERR:
osi_core->hsi.report_count_err[TX_FRAME_ERR_IDX] = OSI_ENABLE;
osi_core->hsi.err_code[TX_FRAME_ERR_IDX] = OSI_TX_FRAME_ERR;
osi_core->hsi.report_err = OSI_ENABLE;
break;
case OSI_PCS_AUTONEG_ERR:
osi_core->hsi.err_code[AUTONEG_ERR_IDX] = OSI_PCS_AUTONEG_ERR;
osi_core->hsi.report_err = OSI_ENABLE;
osi_core->hsi.report_count_err[AUTONEG_ERR_IDX] = OSI_ENABLE;
break;
case OSI_XPCS_WRITE_FAIL_ERR:
osi_core->hsi.err_code[XPCS_WRITE_FAIL_IDX] = OSI_XPCS_WRITE_FAIL_ERR;
osi_core->hsi.report_err = OSI_ENABLE;
osi_core->hsi.report_count_err[XPCS_WRITE_FAIL_IDX] = OSI_ENABLE;
break;
case OSI_M2M_TSC_READ_ERR:
case OSI_M2M_TIME_CAL_ERR:
case OSI_M2M_ADJ_FREQ_ERR:
case OSI_M2M_ADJ_TIME_ERR:
case OSI_M2M_SET_TIME_ERR:
case OSI_M2M_CONFIG_PTP_ERR:
osi_core->hsi.report_err = OSI_ENABLE;
osi_core->hsi.err_code[MAC2MAC_ERR_IDX] = error_code;
break;
default:
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"Invalid error code\n", (nveu32_t)error_code);
ret = -1;
break;
}
return ret;
}
#endif
/**
* @brief hsi_update_mmc_val - function to read register and return value to callee
*
* Algorithm: Read the registers, check for boundary, if more, reset
* counters else return same to caller.
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] last_value: previous value of stats variable.
* @param[in] offset: HW register offset
*
* @note
* 1) MAC should be init and started. see osi_start_mac()
* 2) osi_core->osd should be populated
*
* @retval 0 on MMC counters overflow
* @retval value on current MMC counter value.
*/
static inline nveu64_t hsi_update_mmc_val(struct osi_core_priv_data *osi_core,
nveu64_t last_value,
nveu64_t offset)
{
nveu64_t temp = 0;
nveu32_t value = osi_readl((nveu8_t *)osi_core->base + offset);
const nveu32_t MMC_CNTRL[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_CNTRL,
MGBE_MMC_CNTRL,
MGBE_MMC_CNTRL
};
const nveu32_t MMC_CNTRL_CNTRST[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_CNTRL_CNTRST,
MGBE_MMC_CNTRL_CNTRST,
MGBE_MMC_CNTRL_CNTRST
};
temp = last_value + value;
if (temp < last_value) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_OUTOFBOUND,
"Value overflow resetting all counters\n", (nveul64_t)offset);
value = osi_readl((nveu8_t *)osi_core->base + MMC_CNTRL[osi_core->mac]);
/* self-clear bit in one clock cycle */
value |= MMC_CNTRL_CNTRST[osi_core->mac];
osi_writel(value, (nveu8_t *)osi_core->base + MMC_CNTRL[osi_core->mac]);
osi_memset(&osi_core->mmc, 0U, sizeof(struct osi_mmc_counters));
}
return temp;
}
/**
* @brief hsi_read_err - To read MMC error registers and update
* ether_mmc_counter structure variable
*
* Algorithm: Pass register offset and old value to helper function and
* update structure.
*
* @param[in] osi_core: OSI core private data structure.
*
* @note
* 1) MAC should be init and started. see osi_start_mac()
* 2) osi_core->osd should be populated
*/
void hsi_read_err(struct osi_core_priv_data *const osi_core)
{
struct osi_mmc_counters *mmc = &osi_core->mmc;
const nveu32_t RXCRCERROR[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_RXCRCERROR,
MGBE_MMC_RXCRCERROR_L,
MGBE_MMC_RXCRCERROR_L
};
const nveu32_t RXIPV4_HDRERR_PKTS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_RXIPV4_HDRERR_PKTS,
MGBE_MMC_RXIPV4_HDRERR_PKTS_L,
MGBE_MMC_RXIPV4_HDRERR_PKTS_L
};
const nveu32_t RXIPV6_HDRERR_PKTS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_RXIPV6_HDRERR_PKTS,
MGBE_MMC_RXIPV6_HDRERR_PKTS_L,
MGBE_MMC_RXIPV6_HDRERR_PKTS_L
};
const nveu32_t RXUDP_ERR_PKTS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_RXUDP_ERR_PKTS,
MGBE_MMC_RXUDP_ERR_PKTS_L,
MGBE_MMC_RXUDP_ERR_PKTS_L
};
const nveu32_t RXTCP_ERR_PKTS[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MMC_RXTCP_ERR_PKTS,
MGBE_MMC_RXTCP_ERR_PKTS_L,
MGBE_MMC_RXTCP_ERR_PKTS_L
};
mmc->mmc_rx_crc_error = hsi_update_mmc_val(osi_core, mmc->mmc_rx_crc_error,
RXCRCERROR[osi_core->mac]);
mmc->mmc_rx_ipv4_hderr = hsi_update_mmc_val(osi_core, mmc->mmc_rx_ipv4_hderr,
RXIPV4_HDRERR_PKTS[osi_core->mac]);
mmc->mmc_rx_ipv6_hderr = hsi_update_mmc_val(osi_core, mmc->mmc_rx_ipv6_hderr,
RXIPV6_HDRERR_PKTS[osi_core->mac]);
mmc->mmc_rx_udp_err = hsi_update_mmc_val(osi_core, mmc->mmc_rx_udp_err,
RXUDP_ERR_PKTS[osi_core->mac]);
mmc->mmc_rx_tcp_err = hsi_update_mmc_val(osi_core, mmc->mmc_rx_tcp_err,
RXTCP_ERR_PKTS[osi_core->mac]);
}
#endif /* HSI_SUPPORT */
/**
* @brief prepare_l3l4_ctr_reg - Prepare control register for L3L4 filters.
*
* @note
* Algorithm:
* - This sequence is used to prepare L3L4 control register for SA and DA Port Number matching.
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] l3_l4: Pointer to l3 l4 filter structure (osi_l3_l4_filter)
* @param[out] ctr_reg: Pointer to L3L4 CTR register value
*
* @note 1) MAC should be init and started. see osi_start_mac()
*
* @retval L3L4 CTR register value
*/
static void prepare_l3l4_ctr_reg(const struct osi_core_priv_data *const osi_core,
const struct osi_l3_l4_filter *const l3_l4,
nveu32_t *ctr_reg)
{
#ifndef OSI_STRIPPED_LIB
nveu32_t dma_routing_enable = l3_l4->dma_routing_enable;
nveu32_t dst_addr_match = l3_l4->data.dst.addr_match;
#else
nveu32_t dma_routing_enable = OSI_BIT(0);
nveu32_t dst_addr_match = OSI_BIT(0);
#endif /* !OSI_STRIPPED_LIB */
const nveu32_t dma_chan_en_shift[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MAC_L3L4_CTR_DMCHEN_SHIFT,
MGBE_MAC_L3L4_CTR_DMCHEN_SHIFT,
MGBE_MAC_L3L4_CTR_DMCHEN_SHIFT
};
nveu32_t value = 0U;
/* set routing dma channel */
value |= dma_routing_enable << (dma_chan_en_shift[osi_core->mac] & 0x1FU);
value |= l3_l4->dma_chan << MAC_L3L4_CTR_DMCHN_SHIFT;
/* Enable L3 filters for IPv4 DESTINATION addr matching */
value |= dst_addr_match << MAC_L3L4_CTR_L3DAM_SHIFT;
#ifndef OSI_STRIPPED_LIB
/* Enable L3 filters for IPv4 DESTINATION addr INV matching */
value |= l3_l4->data.dst.addr_match_inv << MAC_L3L4_CTR_L3DAIM_SHIFT;
/* Enable L3 filters for IPv4 SOURCE addr matching */
value |= (l3_l4->data.src.addr_match << MAC_L3L4_CTR_L3SAM_SHIFT) |
(l3_l4->data.src.addr_match_inv << MAC_L3L4_CTR_L3SAIM_SHIFT);
/* Enable L4 filters for DESTINATION port No matching */
value |= (l3_l4->data.dst.port_match << MAC_L3L4_CTR_L4DPM_SHIFT) |
(l3_l4->data.dst.port_match_inv << MAC_L3L4_CTR_L4DPIM_SHIFT);
/* Enable L4 filters for SOURCE Port No matching */
value |= (l3_l4->data.src.port_match << MAC_L3L4_CTR_L4SPM_SHIFT) |
(l3_l4->data.src.port_match_inv << MAC_L3L4_CTR_L4SPIM_SHIFT);
if (osi_core->mac == OSI_MAC_HW_MGBE_T26X) {
/* Enable combined L3 and L4 filters */
value |= l3_l4->data.is_l3l4_match_en << MAC_L3L4_CTR_L5TEN_SHIFT;
}
/* set udp / tcp port matching bit (for l4) */
value |= l3_l4->data.is_udp << MAC_L3L4_CTR_L4PEN_SHIFT;
/* set ipv4 / ipv6 protocol matching bit (for l3) */
value |= l3_l4->data.is_ipv6 << MAC_L3L4_CTR_L3PEN_SHIFT;
#endif /* !OSI_STRIPPED_LIB */
*ctr_reg = value;
}
/**
* @brief prepare_l3_addr_registers - prepare register data for IPv4/IPv6 address filtering
*
* @note
* Algorithm:
* - Update IPv4/IPv6 source/destination address for L3 layer filtering.
* - For IPv4, both source/destination address can be configured but
* for IPv6, only one of the source/destination address can be configured.
*
* @param[in] l3_l4: Pointer to l3 l4 filter structure (osi_l3_l4_filter)
* @param[out] l3_addr1_reg: Pointer to L3 ADDR1 register value
*
* @note 1) MAC should be init and started. see osi_start_mac()
*/
static void prepare_l3_addr_registers(const struct osi_l3_l4_filter *const l3_l4,
#ifndef OSI_STRIPPED_LIB
nveu32_t *l3_addr0_reg,
nveu32_t *l3_addr2_reg,
nveu32_t *l3_addr3_reg,
#endif /* !OSI_STRIPPED_LIB */
nveu32_t *l3_addr1_reg)
{
#ifndef OSI_STRIPPED_LIB
if (l3_l4->data.is_ipv6 == OSI_L3L4_ENABLE) {
const nveu16_t *addr;
/* For IPv6, either source address or destination
* address only one of them can be enabled
*/
if (l3_l4->data.src.addr_match == OSI_L3L4_ENABLE) {
/* select src address only */
addr = l3_l4->data.src.ip6_addr;
} else {
/* select dst address only */
addr = l3_l4->data.dst.ip6_addr;
}
/* update Bits[31:0] of 128-bit IP addr */
*l3_addr0_reg = addr[7] | ((nveu32_t)addr[6] << 16);
/* update Bits[63:32] of 128-bit IP addr */
*l3_addr1_reg = addr[5] | ((nveu32_t)addr[4] << 16);
/* update Bits[95:64] of 128-bit IP addr */
*l3_addr2_reg = addr[3] | ((nveu32_t)addr[2] << 16);
/* update Bits[127:96] of 128-bit IP addr */
*l3_addr3_reg = addr[1] | ((nveu32_t)addr[0] << 16);
} else {
#endif /* !OSI_STRIPPED_LIB */
const nveu8_t *addr;
nveu32_t value;
#ifndef OSI_STRIPPED_LIB
/* set source address */
addr = l3_l4->data.src.ip4_addr;
value = addr[3];
value |= (nveu32_t)addr[2] << 8;
value |= (nveu32_t)addr[1] << 16;
value |= (nveu32_t)addr[0] << 24;
*l3_addr0_reg = value;
#endif /* !OSI_STRIPPED_LIB */
/* set destination address */
addr = l3_l4->data.dst.ip4_addr;
value = addr[3];
value |= (nveu32_t)addr[2] << 8;
value |= (nveu32_t)addr[1] << 16;
value |= (nveu32_t)addr[0] << 24;
*l3_addr1_reg = value;
#ifndef OSI_STRIPPED_LIB
}
#endif /* !OSI_STRIPPED_LIB */
}
#ifndef OSI_STRIPPED_LIB
/**
* @brief prepare_l4_port_register - program source and destination port number
*
* @note
* Algorithm:
* - Program l4 address register with source and destination port numbers.
*
* @param[in] l3_l4: Pointer to l3 l4 filter structure (osi_l3_l4_filter)
* @param[out] l4_addr_reg: Pointer to L3 ADDR0 register value
*
* @note 1) MAC should be init and started. see osi_start_mac()
* 3) DCS bits should be enabled in RXQ to DMA mapping register
*/
static void prepare_l4_port_register(const struct osi_l3_l4_filter *const l3_l4,
nveu32_t *l4_addr_reg)
{
nveu32_t value = 0U;
/* set source port */
value |= ((nveu32_t)l3_l4->data.src.port_no
& MGBE_MAC_L4_ADDR_SP_MASK);
/* set destination port */
value |= (((nveu32_t)l3_l4->data.dst.port_no <<
MGBE_MAC_L4_ADDR_DP_SHIFT) & MGBE_MAC_L4_ADDR_DP_MASK);
*l4_addr_reg = value;
}
#endif /* !OSI_STRIPPED_LIB */
/**
* @brief prepare_l3l4_registers - function to prepare l3l4 registers
*
* @note
* Algorithm:
* - If filter to be enabled,
* - Prepare l3 ip address registers using prepare_l3_addr_registers().
* - Prepare l4 port register using prepare_l4_port_register().
* - Prepare l3l4 control register using prepare_l3l4_ctr_reg().
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] l3_l4: Pointer to l3 l4 filter structure (osi_l3_l4_filter)
* @param[out] l3_addr1_reg: Pointer to L3 ADDR1 register value
* @param[out] ctr_reg: Pointer to L3L4 CTR register value
*
* @note 1) MAC should be init and started. see osi_start_mac()
* 2) osi_core->osd should be populated
* 3) DCS bits should be enabled in RXQ to DMA mapping register
*/
void prepare_l3l4_registers(const struct osi_core_priv_data *const osi_core,
const struct osi_l3_l4_filter *const l3_l4,
#ifndef OSI_STRIPPED_LIB
nveu32_t *l3_addr0_reg,
nveu32_t *l3_addr2_reg,
nveu32_t *l3_addr3_reg,
nveu32_t *l4_addr_reg,
#endif /* !OSI_STRIPPED_LIB */
nveu32_t *l3_addr1_reg,
nveu32_t *ctr_reg)
{
/* prepare regiser data if filter to be enabled */
if (l3_l4->filter_enb_dis == OSI_L3L4_ENABLE) {
/* prepare l3 filter ip address register data */
prepare_l3_addr_registers(l3_l4,
#ifndef OSI_STRIPPED_LIB
l3_addr0_reg,
l3_addr2_reg,
l3_addr3_reg,
#endif /* !OSI_STRIPPED_LIB */
l3_addr1_reg);
#ifndef OSI_STRIPPED_LIB
/* prepare l4 filter port register data */
prepare_l4_port_register(l3_l4, l4_addr_reg);
#endif /* !OSI_STRIPPED_LIB */
/* prepare control register data */
prepare_l3l4_ctr_reg(osi_core, l3_l4, ctr_reg);
}
}
/**
* @brief hw_validate_avb_input- validate input arguments
*
* Algorithm:
* 1) Check if idle slope is valid
* 2) Check if send slope is valid
* 3) Check if hi credit is valid
* 4) Check if low credit is valid
*
* @param[in] osi_core: osi core priv data structure
* @param[in] avb: structure having configuration for avb algorithm
*
* @note 1) MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
nve32_t hw_validate_avb_input(struct osi_core_priv_data *const osi_core,
const struct osi_core_avb_algorithm *const avb)
{
nve32_t ret = 0;
nveu32_t ETS_QW_ISCQW_MASK[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_TXQ_ETS_QW_ISCQW_MASK,
MGBE_MTL_TCQ_ETS_QW_ISCQW_MASK,
MGBE_MTL_TCQ_ETS_QW_ISCQW_MASK
};
nveu32_t ETS_SSCR_SSC_MASK[OSI_MAX_MAC_IP_TYPES] = {
EQOS_MTL_TXQ_ETS_SSCR_SSC_MASK,
MGBE_MTL_TCQ_ETS_SSCR_SSC_MASK,
MGBE_MTL_TCQ_ETS_SSCR_SSC_MASK
};
nveu32_t ETS_HC_BOUND = 0x8000000U;
nveu32_t ETS_LC_BOUND = 0xF8000000U;
nveu32_t mac = osi_core->mac;
if (avb->idle_slope > ETS_QW_ISCQW_MASK[mac]) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Invalid idle_slope\n",
(nveul64_t)avb->idle_slope);
ret = -1;
goto fail;
}
if (avb->send_slope > ETS_SSCR_SSC_MASK[mac]) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Invalid send_slope\n",
(nveul64_t)avb->send_slope);
ret = -1;
goto fail;
}
if (avb->hi_credit > ETS_HC_BOUND) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Invalid hi credit\n",
(nveul64_t)avb->hi_credit);
ret = -1;
goto fail;
}
if ((avb->low_credit < ETS_LC_BOUND) &&
(avb->low_credit != 0U)) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Invalid low credit\n",
(nveul64_t)avb->low_credit);
ret = -1;
goto fail;
}
fail:
return ret;
}
void hw_config_flow_control(struct osi_core_priv_data *const osi_core)
{
nveu8_t *addr = (nveu8_t *)osi_core->base;
nveu32_t val;
/* Configure Tx flow control */
val = osi_readla(osi_core, addr + MAC_QX_TX_FLW_CTRL(0U));
val |= MAC_QX_TX_FLW_CTRL_TFE;
val &= ~MAC_PAUSE_TIME_MASK;
val |= MAC_PAUSE_TIME & MAC_PAUSE_TIME_MASK;
osi_writela(osi_core, val, addr + MAC_QX_TX_FLW_CTRL(0U));
/* configure Rx flow control */
val = osi_readla(osi_core, addr + MAC_RX_FLW_CTRL);
val |= MAC_RX_FLW_CTRL_RFE;
osi_writela(osi_core, val, addr + MAC_RX_FLW_CTRL);
}