Files
nvethernetrm/osi/core/core_common.c
Narayan Reddy d3bd103871 osi: core: combine config_mac_pkt_filter_reg
Bug 3701869

Change-Id: I603bd57511f115fb5af42dca2a5804cf4926ebbb
Signed-off-by: Narayan Reddy <narayanr@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/kernel/nvethernetrm/+/2740658
Reviewed-by: Nagarjuna Kristam <nkristam@nvidia.com>
Reviewed-by: Bhadram Varka <vbhadram@nvidia.com>
Reviewed-by: Srinivas Ramachandran <srinivasra@nvidia.com>
GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
2022-09-08 21:01:51 -07:00

764 lines
23 KiB
C

/*
* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "../osi/common/common.h"
#include "core_common.h"
#include "mgbe_core.h"
#include "eqos_core.h"
#include "xpcs.h"
static inline nve32_t poll_check(struct osi_core_priv_data *const osi_core, nveu8_t *addr,
nveu32_t bit_check, nveu32_t *value)
{
nveu32_t retry = RETRY_COUNT;
nve32_t cond = COND_NOT_MET;
nveu32_t count;
nve32_t ret = 0;
/* Poll Until Poll Condition */
count = 0;
while (cond == COND_NOT_MET) {
if (count > retry) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"poll_check: timeout\n", 0ULL);
ret = -1;
goto fail;
}
count++;
*value = osi_readla(osi_core, addr);
if ((*value & bit_check) == OSI_NONE) {
cond = COND_MET;
} else {
osi_core->osd_ops.udelay(OSI_DELAY_1000US);
}
}
fail:
return ret;
}
nve32_t hw_poll_for_swr(struct osi_core_priv_data *const osi_core)
{
nveu32_t dma_mode_val = 0U;
const nveu32_t dma_mode[2] = { EQOS_DMA_BMR, MGBE_DMA_MODE };
void *addr = osi_core->base;
return poll_check(osi_core, ((nveu8_t *)addr + dma_mode[osi_core->mac]),
DMA_MODE_SWR, &dma_mode_val);
}
void hw_start_mac(struct osi_core_priv_data *const osi_core)
{
void *addr = osi_core->base;
nveu32_t value;
const nveu32_t mac_mcr_te_reg[2] = { EQOS_MAC_MCR, MGBE_MAC_TMCR };
const nveu32_t mac_mcr_re_reg[2] = { EQOS_MAC_MCR, MGBE_MAC_RMCR };
const nveu32_t set_bit_te[2] = { EQOS_MCR_TE, MGBE_MAC_TMCR_TE };
const nveu32_t set_bit_re[2] = { EQOS_MCR_RE, MGBE_MAC_RMCR_RE };
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value |= set_bit_te[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
value |= set_bit_re[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
}
void hw_stop_mac(struct osi_core_priv_data *const osi_core)
{
void *addr = osi_core->base;
nveu32_t value;
const nveu32_t mac_mcr_te_reg[2] = { EQOS_MAC_MCR, MGBE_MAC_TMCR };
const nveu32_t mac_mcr_re_reg[2] = { EQOS_MAC_MCR, MGBE_MAC_RMCR };
const nveu32_t clear_bit_te[2] = { EQOS_MCR_TE, MGBE_MAC_TMCR_TE };
const nveu32_t clear_bit_re[2] = { EQOS_MCR_RE, MGBE_MAC_RMCR_RE };
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value &= ~clear_bit_te[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_te_reg[osi_core->mac]));
value = osi_readla(osi_core, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
value &= ~clear_bit_re[osi_core->mac];
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_mcr_re_reg[osi_core->mac]));
}
nve32_t hw_set_mode(struct osi_core_priv_data *const osi_core, const nve32_t mode)
{
void *base = osi_core->base;
nveu32_t mcr_val;
nve32_t ret = 0;
const nveu32_t set_bit[2] = { EQOS_MCR_DO, EQOS_MCR_DM };
const nveu32_t clear_bit[2] = { EQOS_MCR_DM, EQOS_MCR_DO };
/* don't allow only if loopback mode is other than 0 or 1 */
if ((mode != OSI_FULL_DUPLEX) && (mode != OSI_HALF_DUPLEX)) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Invalid duplex mode\n", 0ULL);
ret = -1;
goto fail;
}
if (osi_core->mac == OSI_MAC_HW_EQOS) {
mcr_val = osi_readla(osi_core, (nveu8_t *)base + EQOS_MAC_MCR);
mcr_val |= set_bit[mode];
mcr_val &= ~clear_bit[mode];
osi_writela(osi_core, mcr_val, ((nveu8_t *)base + EQOS_MAC_MCR));
}
fail:
return ret;
}
nve32_t hw_set_speed(struct osi_core_priv_data *const osi_core, const nve32_t speed)
{
nveu32_t value;
nve32_t ret = 0;
void *base = osi_core->base;
const nveu32_t mac_mcr[2] = { EQOS_MAC_MCR, MGBE_MAC_TMCR };
if ((osi_core->mac == OSI_MAC_HW_EQOS && speed > OSI_SPEED_1000) ||
(osi_core->mac == OSI_MAC_HW_MGBE && (speed < OSI_SPEED_2500 ||
speed > OSI_SPEED_10000))) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"unsupported speed\n", (nveul64_t)speed);
ret = -1;
goto fail;
}
value = osi_readla(osi_core, ((nveu8_t *)base + mac_mcr[osi_core->mac]));
switch (speed) {
default:
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_HW_FAIL,
"unsupported speed\n", (nveul64_t)speed);
ret = -1;
goto fail;
case OSI_SPEED_10:
value |= EQOS_MCR_PS;
value &= ~EQOS_MCR_FES;
break;
case OSI_SPEED_100:
value |= EQOS_MCR_PS;
value |= EQOS_MCR_FES;
break;
case OSI_SPEED_1000:
value &= ~EQOS_MCR_PS;
value &= ~EQOS_MCR_FES;
break;
case OSI_SPEED_2500:
value |= MGBE_MAC_TMCR_SS_2_5G;
break;
case OSI_SPEED_5000:
value |= MGBE_MAC_TMCR_SS_5G;
break;
case OSI_SPEED_10000:
value &= ~MGBE_MAC_TMCR_SS_10G;
break;
}
osi_writela(osi_core, value, ((nveu8_t *)osi_core->base + mac_mcr[osi_core->mac]));
if (osi_core->mac == OSI_MAC_HW_MGBE) {
if (xpcs_init(osi_core) < 0) {
ret = -1;
goto fail;
}
ret = xpcs_start(osi_core);
if (ret < 0) {
goto fail;
}
}
fail:
return ret;
}
nve32_t hw_flush_mtl_tx_queue(struct osi_core_priv_data *const osi_core,
const nveu32_t qinx)
{
void *addr = osi_core->base;
nveu32_t tx_op_mode_val = 0U;
nveu32_t value;
const nveu32_t tx_op_mode[2] = { EQOS_MTL_CHX_TX_OP_MODE(qinx),
MGBE_MTL_CHX_TX_OP_MODE(qinx)};
/* Read Tx Q Operating Mode Register and flush TxQ */
value = osi_readla(osi_core, ((nveu8_t *)addr + tx_op_mode[osi_core->mac]));
value |= MTL_QTOMR_FTQ;
osi_writela(osi_core, value, ((nveu8_t *)addr + tx_op_mode[osi_core->mac]));
/* Poll Until FTQ bit resets for Successful Tx Q flush */
return poll_check(osi_core, ((nveu8_t *)addr + tx_op_mode[osi_core->mac]),
MTL_QTOMR_FTQ, &tx_op_mode_val);
}
nve32_t hw_config_fw_err_pkts(struct osi_core_priv_data *osi_core,
const nveu32_t qinx, const nveu32_t enable_fw_err_pkts)
{
nveu32_t val;
nve32_t ret = 0;
const nveu32_t rx_op_mode[2] = { EQOS_MTL_CHX_RX_OP_MODE(qinx),
MGBE_MTL_CHX_RX_OP_MODE(qinx)};
const nveu32_t max_q[2] = { OSI_EQOS_MAX_NUM_QUEUES,
OSI_MGBE_MAX_NUM_QUEUES};
/* Check for valid enable_fw_err_pkts and qinx values */
if ((enable_fw_err_pkts != OSI_ENABLE &&
enable_fw_err_pkts != OSI_DISABLE) ||
(qinx >= max_q[osi_core->mac])) {
ret = -1;
goto fail;
}
/* Read MTL RXQ Operation_Mode Register */
val = osi_readla(osi_core, ((nveu8_t *)osi_core->base +
rx_op_mode[osi_core->mac]));
/* enable_fw_err_pkts, 1 is for enable and 0 is for disable */
if (enable_fw_err_pkts == OSI_ENABLE) {
/* When enable_fw_err_pkts bit is set, all packets except
* the runt error packets are forwarded to the application
* or DMA.
*/
val |= MTL_RXQ_OP_MODE_FEP;
} else {
/* When this bit is reset, the Rx queue drops packets with error
* status (CRC error, GMII_ER, watchdog timeout, or overflow)
*/
val &= ~MTL_RXQ_OP_MODE_FEP;
}
/* Write to FEP bit of MTL RXQ Operation Mode Register to enable or
* disable the forwarding of error packets to DMA or application.
*/
osi_writela(osi_core, val, ((nveu8_t *)osi_core->base +
rx_op_mode[osi_core->mac]));
fail:
return ret;
}
nve32_t hw_config_rxcsum_offload(struct osi_core_priv_data *const osi_core,
nveu32_t enabled)
{
void *addr = osi_core->base;
nveu32_t value;
nve32_t ret = 0;
const nveu32_t rxcsum_mode[2] = { EQOS_MAC_MCR, MGBE_MAC_RMCR};
const nveu32_t ipc_value[2] = { EQOS_MCR_IPC, MGBE_MAC_RMCR_IPC};
if (enabled != OSI_ENABLE && enabled != OSI_DISABLE) {
ret = -1;
goto fail;
}
value = osi_readla(osi_core, ((nveu8_t *)addr + rxcsum_mode[osi_core->mac]));
if (enabled == OSI_ENABLE) {
value |= ipc_value[osi_core->mac];
} else {
value &= ~ipc_value[osi_core->mac];
}
osi_writela(osi_core, value, ((nveu8_t *)addr + rxcsum_mode[osi_core->mac]));
fail:
return ret;
}
nve32_t hw_set_systime_to_mac(struct osi_core_priv_data *const osi_core,
const nveu32_t sec, const nveu32_t nsec)
{
void *addr = osi_core->base;
nveu32_t mac_tcr = 0U;
nve32_t ret = 0;
const nveu32_t mac_tscr[2] = { EQOS_MAC_TCR, MGBE_MAC_TCR};
const nveu32_t mac_stsur[2] = { EQOS_MAC_STSUR, MGBE_MAC_STSUR};
const nveu32_t mac_stnsur[2] = { EQOS_MAC_STNSUR, MGBE_MAC_STNSUR};
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSINIT, &mac_tcr);
if (ret == -1) {
goto fail;
}
/* write seconds value to MAC_System_Time_Seconds_Update register */
osi_writela(osi_core, sec, ((nveu8_t *)addr + mac_stsur[osi_core->mac]));
/* write nano seconds value to MAC_System_Time_Nanoseconds_Update
* register
*/
osi_writela(osi_core, nsec, ((nveu8_t *)addr + mac_stnsur[osi_core->mac]));
/* issue command to update the configured secs and nsecs values */
mac_tcr |= MAC_TCR_TSINIT;
osi_writela(osi_core, mac_tcr, ((nveu8_t *)addr + mac_tscr[osi_core->mac]));
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSINIT, &mac_tcr);
fail:
return ret;
}
nve32_t hw_config_addend(struct osi_core_priv_data *const osi_core,
const nveu32_t addend)
{
void *addr = osi_core->base;
nveu32_t mac_tcr = 0U;
nve32_t ret = 0;
const nveu32_t mac_tscr[2] = { EQOS_MAC_TCR, MGBE_MAC_TCR};
const nveu32_t mac_tar[2] = { EQOS_MAC_TAR, MGBE_MAC_TAR};
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSADDREG, &mac_tcr);
if (ret == -1) {
goto fail;
}
/* write addend value to MAC_Timestamp_Addend register */
osi_writela(osi_core, addend, ((nveu8_t *)addr + mac_tar[osi_core->mac]));
/* issue command to update the configured addend value */
mac_tcr |= MAC_TCR_TSADDREG;
osi_writela(osi_core, mac_tcr, ((nveu8_t *)addr + mac_tscr[osi_core->mac]));
ret = poll_check(osi_core, ((nveu8_t *)addr + mac_tscr[osi_core->mac]),
MAC_TCR_TSADDREG, &mac_tcr);
fail:
return ret;
}
#ifndef OSI_STRIPPED_LIB
void hw_config_tscr(struct osi_core_priv_data *const osi_core, const nveu32_t ptp_filter)
#else
void hw_config_tscr(struct osi_core_priv_data *const osi_core, OSI_UNUSED const nveu32_t ptp_filter)
#endif /* !OSI_STRIPPED_LIB */
{
void *addr = osi_core->base;
struct core_local *l_core = (struct core_local *)osi_core;
nveu32_t mac_tcr = 0U;
#ifndef OSI_STRIPPED_LIB
nveu32_t i = 0U, temp = 0U;
#endif /* !OSI_STRIPPED_LIB */
nveu32_t value = 0x0U;
const nveu32_t mac_tscr[2] = { EQOS_MAC_TCR, MGBE_MAC_TCR};
const nveu32_t mac_pps[2] = { EQOS_MAC_PPS_CTL, MGBE_MAC_PPS_CTL};
#ifndef OSI_STRIPPED_LIB
if (ptp_filter != OSI_DISABLE) {
mac_tcr = (OSI_MAC_TCR_TSENA | OSI_MAC_TCR_TSCFUPDT | OSI_MAC_TCR_TSCTRLSSR);
for (i = 0U; i < 32U; i++) {
temp = ptp_filter & OSI_BIT(i);
switch (temp) {
case OSI_MAC_TCR_SNAPTYPSEL_1:
mac_tcr |= OSI_MAC_TCR_SNAPTYPSEL_1;
break;
case OSI_MAC_TCR_SNAPTYPSEL_2:
mac_tcr |= OSI_MAC_TCR_SNAPTYPSEL_2;
break;
case OSI_MAC_TCR_SNAPTYPSEL_3:
mac_tcr |= OSI_MAC_TCR_SNAPTYPSEL_3;
break;
case OSI_MAC_TCR_TSIPV4ENA:
mac_tcr |= OSI_MAC_TCR_TSIPV4ENA;
break;
case OSI_MAC_TCR_TSIPV6ENA:
mac_tcr |= OSI_MAC_TCR_TSIPV6ENA;
break;
case OSI_MAC_TCR_TSEVENTENA:
mac_tcr |= OSI_MAC_TCR_TSEVENTENA;
break;
case OSI_MAC_TCR_TSMASTERENA:
mac_tcr |= OSI_MAC_TCR_TSMASTERENA;
break;
case OSI_MAC_TCR_TSVER2ENA:
mac_tcr |= OSI_MAC_TCR_TSVER2ENA;
break;
case OSI_MAC_TCR_TSIPENA:
mac_tcr |= OSI_MAC_TCR_TSIPENA;
break;
case OSI_MAC_TCR_AV8021ASMEN:
mac_tcr |= OSI_MAC_TCR_AV8021ASMEN;
break;
case OSI_MAC_TCR_TSENALL:
mac_tcr |= OSI_MAC_TCR_TSENALL;
break;
case OSI_MAC_TCR_CSC:
mac_tcr |= OSI_MAC_TCR_CSC;
break;
default:
break;
}
}
} else {
/* Disabling the MAC time stamping */
mac_tcr = OSI_DISABLE;
}
#else
mac_tcr = (OSI_MAC_TCR_TSENA | OSI_MAC_TCR_TSCFUPDT | OSI_MAC_TCR_TSCTRLSSR
| OSI_MAC_TCR_TSVER2ENA | OSI_MAC_TCR_TSIPENA | OSI_MAC_TCR_TSIPV6ENA |
OSI_MAC_TCR_TSIPV4ENA | OSI_MAC_TCR_SNAPTYPSEL_1);
#endif /* !OSI_STRIPPED_LIB */
osi_writela(osi_core, mac_tcr, ((nveu8_t *)addr + mac_tscr[osi_core->mac]));
value = osi_readla(osi_core, (nveu8_t *)addr + mac_pps[osi_core->mac]);
value &= ~MAC_PPS_CTL_PPSCTRL0;
if (l_core->pps_freq == OSI_ENABLE) {
value |= OSI_ENABLE;
}
osi_writela(osi_core, value, ((nveu8_t *)addr + mac_pps[osi_core->mac]));
}
void hw_config_ssir(struct osi_core_priv_data *const osi_core)
{
nveul64_t val = 0U;
void *addr = osi_core->base;
const struct core_local *l_core = (struct core_local *)osi_core;
const nveu32_t mac_ssir[2] = { EQOS_MAC_SSIR, MGBE_MAC_SSIR};
const nveu32_t ptp_ssinc[3] = {OSI_PTP_SSINC_4, OSI_PTP_SSINC_6, OSI_PTP_SSINC_4};
/* by default Fine method is enabled */
/* Fix the SSINC value based on Exact MAC used */
val = ptp_ssinc[l_core->l_mac_ver];
val |= val << MAC_SSIR_SSINC_SHIFT;
/* update Sub-second Increment Value */
osi_writela(osi_core, (nveu32_t)val, ((nveu8_t *)addr + mac_ssir[osi_core->mac]));
}
nve32_t hw_ptp_tsc_capture(struct osi_core_priv_data *const osi_core,
struct osi_core_ptp_tsc_data *data)
{
#ifndef OSI_STRIPPED_LIB
const struct core_local *l_core = (struct core_local *)osi_core;
#endif /* !OSI_STRIPPED_LIB */
void *addr = osi_core->base;
nveu32_t tsc_ptp = 0U;
nve32_t ret = 0;
#ifndef OSI_STRIPPED_LIB
/* This code is NA for Orin use case */
if (l_core->l_mac_ver < MAC_CORE_VER_TYPE_EQOS_5_30) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"ptp_tsc: older IP\n", 0ULL);
ret = -1;
goto exit;
}
#endif /* !OSI_STRIPPED_LIB */
osi_writela(osi_core, OSI_ENABLE, (nveu8_t *)osi_core->base + WRAP_SYNC_TSC_PTP_CAPTURE);
ret = poll_check(osi_core, ((nveu8_t *)addr + WRAP_SYNC_TSC_PTP_CAPTURE),
OSI_ENABLE, &tsc_ptp);
if (ret == -1) {
goto exit;
}
data->tsc_low_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_TSC_CAPTURE_LOW);
data->tsc_high_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_TSC_CAPTURE_HIGH);
data->ptp_low_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_PTP_CAPTURE_LOW);
data->ptp_high_bits = osi_readla(osi_core, (nveu8_t *)osi_core->base +
WRAP_PTP_CAPTURE_HIGH);
exit:
return ret;
}
static inline void config_l2_da_perfect_inverse_match(
struct osi_core_priv_data *osi_core,
nveu32_t perfect_inverse_match)
{
nveu32_t value = 0U;
value = osi_readla(osi_core, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
value &= ~MAC_PFR_DAIF;
if (perfect_inverse_match == OSI_INV_MATCH) {
/* Set DA Inverse Filtering */
value |= MAC_PFR_DAIF;
}
osi_writela(osi_core, value, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
}
nve32_t hw_config_mac_pkt_filter_reg(struct osi_core_priv_data *const osi_core,
const struct osi_filter *filter)
{
nveu32_t value = 0U;
nve32_t ret = 0;
value = osi_readla(osi_core, ((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
/*Retain all other values */
value &= (MAC_PFR_DAIF | MAC_PFR_DBF | MAC_PFR_SAIF |
MAC_PFR_SAF | MAC_PFR_PCF | MAC_PFR_VTFE |
MAC_PFR_IPFE | MAC_PFR_DNTU | MAC_PFR_RA);
if ((filter->oper_mode & OSI_OPER_EN_PERFECT) != OSI_DISABLE) {
value |= MAC_PFR_HPF;
}
#ifndef OSI_STRIPPED_LIB
if ((filter->oper_mode & OSI_OPER_DIS_PERFECT) != OSI_DISABLE) {
value &= ~MAC_PFR_HPF;
}
if ((filter->oper_mode & OSI_OPER_EN_PROMISC) != OSI_DISABLE) {
value |= MAC_PFR_PR;
}
if ((filter->oper_mode & OSI_OPER_DIS_PROMISC) != OSI_DISABLE) {
value &= ~MAC_PFR_PR;
}
if ((filter->oper_mode & OSI_OPER_EN_ALLMULTI) != OSI_DISABLE) {
value |= MAC_PFR_PM;
}
if ((filter->oper_mode & OSI_OPER_DIS_ALLMULTI) != OSI_DISABLE) {
value &= ~MAC_PFR_PM;
}
#endif /* !OSI_STRIPPED_LIB */
osi_writela(osi_core, value,
((nveu8_t *)osi_core->base + MAC_PKT_FILTER_REG));
#ifndef OSI_STRIPPED_LIB
if ((filter->oper_mode & OSI_OPER_EN_L2_DA_INV) != OSI_DISABLE) {
config_l2_da_perfect_inverse_match(osi_core, OSI_INV_MATCH);
}
if ((filter->oper_mode & OSI_OPER_DIS_L2_DA_INV) != OSI_DISABLE) {
#endif /* !OSI_STRIPPED_LIB */
config_l2_da_perfect_inverse_match(osi_core, OSI_PFT_MATCH);
#ifndef OSI_STRIPPED_LIB
}
#endif /* !OSI_STRIPPED_LIB */
return ret;
}
#ifndef OSI_STRIPPED_LIB
/**
* @brief hw_est_read - indirect read the GCL to Software own list
* (SWOL)
*
* @param[in] base: MAC base IOVA address.
* @param[in] addr_val: Address offset for indirect write.
* @param[in] data: Data to be written at offset.
* @param[in] gcla: Gate Control List Address, 0 for ETS register.
* 1 for GCL memory.
* @param[in] bunk: Memory bunk from which vlaues will be read. Possible
* value 0 or 1.
* @param[in] mac: MAC index
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
static inline nve32_t hw_est_read(struct osi_core_priv_data *osi_core,
nveu32_t addr_val, nveu32_t *data,
nveu32_t gcla, nveu32_t bunk,
nveu32_t mac)
{
nve32_t retry = 1000;
nveu32_t val = 0U;
nve32_t ret;
const nveu32_t MTL_EST_GCL_CONTROL[MAX_MAC_IP_TYPES] = {
EQOS_MTL_EST_GCL_CONTROL, MGBE_MTL_EST_GCL_CONTROL};
const nveu32_t MTL_EST_DATA[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_DATA,
MGBE_MTL_EST_DATA};
*data = 0U;
val &= ~MTL_EST_ADDR_MASK;
val |= (gcla == 1U) ? 0x0U : MTL_EST_GCRR;
val |= MTL_EST_SRWO | MTL_EST_R1W0 | MTL_EST_DBGM | bunk | addr_val;
osi_writela(osi_core, val, (nveu8_t *)osi_core->base +
MTL_EST_GCL_CONTROL[mac]);
while (--retry > 0) {
val = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_GCL_CONTROL[mac]);
if ((val & MTL_EST_SRWO) == MTL_EST_SRWO) {
continue;
}
osi_core->osd_ops.udelay(OSI_DELAY_1US);
break;
}
if (((val & MTL_EST_ERR0) == MTL_EST_ERR0) ||
(retry <= 0)) {
ret = -1;
goto err;
}
*data = osi_readla(osi_core, (nveu8_t *)osi_core->base +
MTL_EST_DATA[mac]);
ret = 0;
err:
return ret;
}
/**
* @brief eqos_gcl_validate - validate GCL from user
*
* Algorithm: validate GCL size and width of time interval value
*
* @param[in] osi_core: OSI core private data structure.
* @param[in] est: Configuration input argument.
* @param[in] mac: MAC index
*
* @note MAC should be init and started. see osi_start_mac()
*
* @retval 0 on success
* @retval -1 on failure.
*/
nve32_t gcl_validate(struct osi_core_priv_data *const osi_core,
struct osi_est_config *const est,
const nveu32_t *btr, nveu32_t mac)
{
const struct core_local *l_core = (struct core_local *)osi_core;
const nveu32_t PTP_CYCLE_8[MAX_MAC_IP_TYPES] = {EQOS_8PTP_CYCLE,
MGBE_8PTP_CYCLE};
const nveu32_t MTL_EST_CONTROL[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CONTROL,
MGBE_MTL_EST_CONTROL};
const nveu32_t MTL_EST_STATUS[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_STATUS,
MGBE_MTL_EST_STATUS};
const nveu32_t MTL_EST_BTR_LOW[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_BTR_LOW,
MGBE_MTL_EST_BTR_LOW};
const nveu32_t MTL_EST_BTR_HIGH[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_BTR_HIGH,
MGBE_MTL_EST_BTR_HIGH};
const nveu32_t MTL_EST_CTR_LOW[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CTR_LOW,
MGBE_MTL_EST_CTR_LOW};
const nveu32_t MTL_EST_CTR_HIGH[MAX_MAC_IP_TYPES] = {EQOS_MTL_EST_CTR_HIGH,
MGBE_MTL_EST_CTR_HIGH};
nveu32_t i;
nveu64_t sum_ti = 0U;
nveu64_t sum_tin = 0U;
nveu64_t ctr = 0U;
nveu64_t btr_new = 0U;
nveu32_t btr_l, btr_h, ctr_l, ctr_h;
nveu32_t bunk = 0U;
nveu32_t est_status;
nveu64_t old_btr, old_ctr;
nve32_t ret;
nveu32_t val = 0U;
nveu64_t rem = 0U;
const struct est_read hw_read_arr[4] = {
{&btr_l, MTL_EST_BTR_LOW[mac]},
{&btr_h, MTL_EST_BTR_HIGH[mac]},
{&ctr_l, MTL_EST_CTR_LOW[mac]},
{&ctr_h, MTL_EST_CTR_HIGH[mac]}};
if (est->llr > l_core->gcl_dep) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"input argument more than GCL depth\n",
(nveul64_t)est->llr);
return -1;
}
ctr = ((nveu64_t)est->ctr[1] * OSI_NSEC_PER_SEC) + est->ctr[0];
btr_new = (((nveu64_t)btr[1] + est->btr_offset[1]) * OSI_NSEC_PER_SEC) +
(btr[0] + est->btr_offset[0]);
for (i = 0U; i < est->llr; i++) {
if (est->gcl[i] <= l_core->gcl_width_val) {
sum_ti += ((nveu64_t)est->gcl[i] & l_core->ti_mask);
if ((sum_ti > ctr) &&
((ctr - sum_tin) >= PTP_CYCLE_8[mac])) {
continue;
} else if (((ctr - sum_ti) != 0U) &&
((ctr - sum_ti) < PTP_CYCLE_8[mac])) {
OSI_CORE_ERR(osi_core->osd,
OSI_LOG_ARG_INVALID,
"CTR issue due to trancate\n",
(nveul64_t)i);
return -1;
} else {
//do nothing
}
sum_tin = sum_ti;
continue;
}
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"validation of GCL entry failed\n",
(nveul64_t)i);
return -1;
}
/* Check for BTR in case of new ETS while current GCL enabled */
val = osi_readla(osi_core,
(nveu8_t *)osi_core->base +
MTL_EST_CONTROL[mac]);
if ((val & MTL_EST_CONTROL_EEST) != MTL_EST_CONTROL_EEST) {
return 0;
}
/* Read EST_STATUS for bunk */
est_status = osi_readla(osi_core,
(nveu8_t *)osi_core->base +
MTL_EST_STATUS[mac]);
if ((est_status & MTL_EST_STATUS_SWOL) == 0U) {
bunk = MTL_EST_DBGB;
}
/* Read last BTR and CTR */
for (i = 0U; i < (sizeof(hw_read_arr) / sizeof(hw_read_arr[0])); i++) {
ret = hw_est_read(osi_core, hw_read_arr[i].addr,
hw_read_arr[i].var, OSI_DISABLE,
bunk, mac);
if (ret < 0) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"Reading failed for index\n",
(nveul64_t)i);
return ret;
}
}
old_btr = btr_l + ((nveu64_t)btr_h * OSI_NSEC_PER_SEC);
old_ctr = ctr_l + ((nveu64_t)ctr_h * OSI_NSEC_PER_SEC);
if (old_btr > btr_new) {
rem = (old_btr - btr_new) % old_ctr;
if ((rem != OSI_NONE) && (rem < PTP_CYCLE_8[mac])) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"invalid BTR", (nveul64_t)rem);
return -1;
}
} else if (btr_new > old_btr) {
rem = (btr_new - old_btr) % old_ctr;
if ((rem != OSI_NONE) && (rem < PTP_CYCLE_8[mac])) {
OSI_CORE_ERR(osi_core->osd, OSI_LOG_ARG_INVALID,
"invalid BTR", (nveul64_t)rem);
return -1;
}
} else {
// Nothing to do
}
return 0;
}
#endif /* !OSI_STRIPPED_LIB */