mirror of
git://nv-tegra.nvidia.com/linux-nv-oot.git
synced 2025-12-22 17:25:35 +03:00
The legacy tegra IVC driver is used only in AON driver. Rest of client are already moved to the IVC drier from core kernel. Move the driver to AON folder and limit the usage of driver to AON driver only. Bug 4430467 Change-Id: Id0e9aeaf3415d33812556b82bfb0adc4941b2f41 Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/c/linux-nv-oot/+/3039674 GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
990 lines
25 KiB
C
990 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Inter-VM Communication
|
|
*
|
|
* Copyright (c) 2014-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/err.h>
|
|
#include <asm/compiler.h>
|
|
|
|
#include "tegra-ivc.h"
|
|
#include "tegra-ivc-instance.h"
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline void ivc_rmb(void)
|
|
{
|
|
smp_rmb();
|
|
}
|
|
|
|
static inline void ivc_wmb(void)
|
|
{
|
|
smp_wmb();
|
|
}
|
|
|
|
static inline void ivc_mb(void)
|
|
{
|
|
smp_mb();
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void ivc_rmb(void)
|
|
{
|
|
rmb();
|
|
}
|
|
|
|
static inline void ivc_wmb(void)
|
|
{
|
|
wmb();
|
|
}
|
|
|
|
static inline void ivc_mb(void)
|
|
{
|
|
mb();
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* IVC channel reset protocol.
|
|
*
|
|
* Each end uses its tx_channel.state to indicate its synchronization state.
|
|
*/
|
|
enum ivc_state {
|
|
/*
|
|
* This value is zero for backwards compatibility with services that
|
|
* assume channels to be initially zeroed. Such channels are in an
|
|
* initially valid state, but cannot be asynchronously reset, and must
|
|
* maintain a valid state at all times.
|
|
*
|
|
* The transmitting end can enter the established state from the sync or
|
|
* ack state when it observes the receiving endpoint in the ack or
|
|
* established state, indicating that has cleared the counters in our
|
|
* rx_channel.
|
|
*/
|
|
ivc_state_established = 0,
|
|
|
|
/*
|
|
* If an endpoint is observed in the sync state, the remote endpoint is
|
|
* allowed to clear the counters it owns asynchronously with respect to
|
|
* the current endpoint. Therefore, the current endpoint is no longer
|
|
* allowed to communicate.
|
|
*/
|
|
ivc_state_sync,
|
|
|
|
/*
|
|
* When the transmitting end observes the receiving end in the sync
|
|
* state, it can clear the w_count and r_count and transition to the ack
|
|
* state. If the remote endpoint observes us in the ack state, it can
|
|
* return to the established state once it has cleared its counters.
|
|
*/
|
|
ivc_state_ack
|
|
};
|
|
|
|
/*
|
|
* This structure is divided into two-cache aligned parts, the first is only
|
|
* written through the tx_channel pointer, while the second is only written
|
|
* through the rx_channel pointer. This delineates ownership of the cache lines,
|
|
* which is critical to performance and necessary in non-cache coherent
|
|
* implementations.
|
|
*/
|
|
struct ivc_channel_header {
|
|
union {
|
|
struct {
|
|
/* fields owned by the transmitting end */
|
|
uint32_t w_count;
|
|
uint32_t state;
|
|
};
|
|
uint8_t w_align[IVC_ALIGN];
|
|
};
|
|
union {
|
|
/* fields owned by the receiving end */
|
|
uint32_t r_count;
|
|
uint8_t r_align[IVC_ALIGN];
|
|
};
|
|
};
|
|
|
|
static inline bool is_u32_subtraction_safe(uint32_t a, uint32_t b)
|
|
{
|
|
return (a >= b);
|
|
}
|
|
|
|
static inline uint32_t safe_subtract_u32(uint32_t a, uint32_t b)
|
|
{
|
|
if (!is_u32_subtraction_safe(a, b))
|
|
BUG();
|
|
else
|
|
return (a - b);
|
|
}
|
|
|
|
static inline bool is_u64_addition_safe(uint64_t a, uint64_t b)
|
|
{
|
|
return (ULLONG_MAX - a >= b);
|
|
}
|
|
|
|
static inline uint64_t safe_add_u64(uint64_t a, uint64_t b)
|
|
{
|
|
if (!is_u64_addition_safe(a, b))
|
|
BUG();
|
|
else
|
|
return (a + b);
|
|
}
|
|
|
|
static inline bool is_u32_addition_safe(uint32_t a, uint32_t b)
|
|
{
|
|
return (UINT_MAX - a >= b);
|
|
}
|
|
|
|
static inline uint32_t safe_add_u32(uint32_t a, uint32_t b)
|
|
{
|
|
if (!is_u32_addition_safe(a, b))
|
|
BUG();
|
|
else
|
|
return (a + b);
|
|
}
|
|
|
|
static inline bool is_u32_u32__u32_multiplication_safe(uint32_t a, uint32_t b)
|
|
{
|
|
if (a == 0U || b == 0U)
|
|
return true;
|
|
return ((UINT_MAX / b) >= a);
|
|
}
|
|
|
|
static inline bool is_u32_u32__u64_multiplication_safe(uint32_t a, uint32_t b)
|
|
{
|
|
if (a == 0U || b == 0U)
|
|
return true;
|
|
return ((ULLONG_MAX / b) >= (a * 1ULL));
|
|
}
|
|
|
|
static inline uint64_t safe_mult_u32_u32__u64(uint32_t a, uint32_t b)
|
|
{
|
|
if (!is_u32_u32__u64_multiplication_safe(a, b))
|
|
BUG();
|
|
else
|
|
return ((uint64_t)a * (uint64_t)b);
|
|
}
|
|
|
|
static inline void ivc_invalidate_counter(struct ivc *ivc,
|
|
dma_addr_t handle)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_cpu(ivc->peer_device, handle, IVC_ALIGN,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void ivc_flush_counter(struct ivc *ivc, dma_addr_t handle)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_device(ivc->peer_device, handle, IVC_ALIGN,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
static inline int ivc_channel_empty(struct ivc *ivc,
|
|
struct ivc_channel_header *ch)
|
|
{
|
|
/*
|
|
* This function performs multiple checks on the same values with
|
|
* security implications, so create snapshots with READ_ONCE() to
|
|
* ensure that these checks use the same values.
|
|
*/
|
|
uint32_t w_count = READ_ONCE(ch->w_count);
|
|
uint32_t r_count = READ_ONCE(ch->r_count);
|
|
|
|
/*
|
|
* Perform an over-full check to prevent denial of service attacks where
|
|
* a server could be easily fooled into believing that there's an
|
|
* extremely large number of frames ready, since receivers are not
|
|
* expected to check for full or over-full conditions.
|
|
*
|
|
* Although the channel isn't empty, this is an invalid case caused by
|
|
* a potentially malicious peer, so returning empty is safer, because it
|
|
* gives the impression that the channel has gone silent.
|
|
*/
|
|
if (w_count - r_count > ivc->nframes)
|
|
return 1;
|
|
|
|
return w_count == r_count;
|
|
}
|
|
|
|
static inline int ivc_channel_full(struct ivc *ivc,
|
|
struct ivc_channel_header *ch)
|
|
{
|
|
/*
|
|
* Invalid cases where the counters indicate that the queue is over
|
|
* capacity also appear full.
|
|
*/
|
|
return READ_ONCE(ch->w_count) - READ_ONCE(ch->r_count)
|
|
>= ivc->nframes;
|
|
}
|
|
|
|
static inline uint32_t ivc_channel_avail_count(struct ivc *ivc,
|
|
struct ivc_channel_header *ch)
|
|
{
|
|
/*
|
|
* This function isn't expected to be used in scenarios where an
|
|
* over-full situation can lead to denial of service attacks. See the
|
|
* comment in ivc_channel_empty() for an explanation about special
|
|
* over-full considerations.
|
|
*/
|
|
return READ_ONCE(ch->w_count) - READ_ONCE(ch->r_count);
|
|
}
|
|
|
|
static inline void ivc_advance_tx(struct ivc *ivc)
|
|
{
|
|
WRITE_ONCE(ivc->tx_channel->w_count, (READ_ONCE(ivc->tx_channel->w_count) + 1));
|
|
|
|
if (ivc->w_pos == ivc->nframes - 1)
|
|
ivc->w_pos = 0;
|
|
else
|
|
ivc->w_pos++;
|
|
}
|
|
|
|
static inline void ivc_advance_rx(struct ivc *ivc)
|
|
{
|
|
WRITE_ONCE(ivc->rx_channel->r_count, (READ_ONCE(ivc->rx_channel->r_count) + 1));
|
|
|
|
if (ivc->r_pos == ivc->nframes - 1)
|
|
ivc->r_pos = 0;
|
|
else
|
|
ivc->r_pos++;
|
|
}
|
|
|
|
static inline int ivc_check_read(struct ivc *ivc)
|
|
{
|
|
/*
|
|
* tx_channel->state is set locally, so it is not synchronized with
|
|
* state from the remote peer. The remote peer cannot reset its
|
|
* transmit counters until we've acknowledged its synchronization
|
|
* request, so no additional synchronization is required because an
|
|
* asynchronous transition of rx_channel->state to ivc_state_ack is not
|
|
* allowed.
|
|
*/
|
|
if (ivc->tx_channel->state != ivc_state_established)
|
|
return -ECONNRESET;
|
|
|
|
/*
|
|
* Avoid unnecessary invalidations when performing repeated accesses to
|
|
* an IVC channel by checking the old queue pointers first.
|
|
* Synchronization is only necessary when these pointers indicate empty
|
|
* or full.
|
|
*/
|
|
if (!ivc_channel_empty(ivc, ivc->rx_channel))
|
|
return 0;
|
|
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
|
|
}
|
|
|
|
static inline int ivc_check_write(struct ivc *ivc)
|
|
{
|
|
if (ivc->tx_channel->state != ivc_state_established)
|
|
return -ECONNRESET;
|
|
|
|
if (!ivc_channel_full(ivc, ivc->tx_channel))
|
|
return 0;
|
|
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
|
|
}
|
|
|
|
int tegra_ivc_can_read(struct ivc *ivc)
|
|
{
|
|
return ivc_check_read(ivc) == 0;
|
|
}
|
|
|
|
int tegra_ivc_can_write(struct ivc *ivc)
|
|
{
|
|
return ivc_check_write(ivc) == 0;
|
|
}
|
|
|
|
int tegra_ivc_tx_empty(struct ivc *ivc)
|
|
{
|
|
BUILD_BUG_ON(offsetof(struct ivc_channel_header, r_count) > (UINT_MAX * 1ULL));
|
|
ivc_invalidate_counter(ivc, safe_add_u32(ivc->tx_handle,
|
|
offsetof(struct ivc_channel_header, r_count)));
|
|
return ivc_channel_empty(ivc, ivc->tx_channel);
|
|
}
|
|
|
|
uint32_t tegra_ivc_tx_frames_available(struct ivc *ivc)
|
|
{
|
|
BUILD_BUG_ON(offsetof(struct ivc_channel_header, r_count) > (UINT_MAX * 1ULL));
|
|
ivc_invalidate_counter(ivc, safe_add_u32(ivc->tx_handle,
|
|
offsetof(struct ivc_channel_header, r_count)));
|
|
return safe_subtract_u32(ivc->nframes,
|
|
safe_subtract_u32(READ_ONCE(ivc->tx_channel->w_count),
|
|
READ_ONCE(ivc->tx_channel->r_count)));
|
|
}
|
|
|
|
static void *ivc_frame_pointer(struct ivc *ivc, struct ivc_channel_header *ch,
|
|
uint32_t frame)
|
|
{
|
|
BUG_ON(frame >= ivc->nframes);
|
|
return (void *)((uintptr_t)(ch + 1) + ivc->frame_size * frame);
|
|
}
|
|
|
|
static inline dma_addr_t ivc_frame_handle(struct ivc *ivc,
|
|
dma_addr_t channel_handle, uint32_t frame)
|
|
{
|
|
BUG_ON(!ivc->peer_device);
|
|
BUG_ON(frame >= ivc->nframes);
|
|
|
|
return safe_add_u64(safe_add_u64(channel_handle, sizeof(struct ivc_channel_header)),
|
|
safe_mult_u32_u32__u64(ivc->frame_size, frame));
|
|
}
|
|
|
|
static inline void ivc_invalidate_frame(struct ivc *ivc,
|
|
dma_addr_t channel_handle, unsigned int frame, uint64_t offset, size_t len)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_cpu(ivc->peer_device,
|
|
safe_add_u64(ivc_frame_handle(ivc, channel_handle, frame), offset),
|
|
len, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void ivc_flush_frame(struct ivc *ivc, dma_addr_t channel_handle,
|
|
unsigned int frame, uint64_t offset, size_t len)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
|
|
dma_sync_single_for_device(ivc->peer_device,
|
|
safe_add_u64(ivc_frame_handle(ivc, channel_handle, frame), offset),
|
|
len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static int ivc_read_frame(struct ivc *ivc, void *buf, void __user *user_buf,
|
|
size_t max_read)
|
|
{
|
|
const void *src;
|
|
int result;
|
|
|
|
BUG_ON(buf && user_buf);
|
|
|
|
if (max_read > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_read(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Order observation of w_pos potentially indicating new data before
|
|
* data read.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0, max_read);
|
|
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
|
|
|
/*
|
|
* When compiled with optimizations, different versions of this
|
|
* function should be inlined into tegra_ivc_read_frame() or
|
|
* tegra_ivc_read_frame_user(). This should ensure that the user
|
|
* version does not add overhead to the kernel version.
|
|
*/
|
|
if (buf) {
|
|
memcpy(buf, src, max_read);
|
|
} else if (user_buf) {
|
|
if (copy_to_user(user_buf, src, max_read))
|
|
return -EFAULT;
|
|
} else
|
|
BUG();
|
|
|
|
ivc_advance_rx(ivc);
|
|
ivc_flush_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
/*
|
|
* Ensure our write to r_pos occurs before our read from w_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from full to non-full.
|
|
* The available count can only asynchronously increase, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
|
|
ivc->notify(ivc);
|
|
|
|
return (int)max_read;
|
|
}
|
|
|
|
int tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read)
|
|
{
|
|
return ivc_read_frame(ivc, buf, NULL, max_read);
|
|
}
|
|
|
|
int tegra_ivc_read_user(struct ivc *ivc, void __user *buf, size_t max_read)
|
|
{
|
|
return ivc_read_frame(ivc, NULL, buf, max_read);
|
|
}
|
|
|
|
/* peek in the next rx buffer at offset off, the count bytes */
|
|
int tegra_ivc_read_peek(struct ivc *ivc, void *buf, size_t off, size_t count)
|
|
{
|
|
const void *src;
|
|
int result;
|
|
|
|
if (!is_u64_addition_safe(off, count))
|
|
return -EFAULT;
|
|
|
|
if (off > ivc->frame_size || off + count > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_read(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Order observation of w_pos potentially indicating new data before
|
|
* data read.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, off, count);
|
|
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
|
|
|
memcpy(buf, (void *)((uintptr_t)src + off), count);
|
|
|
|
/* note, no interrupt is generated */
|
|
|
|
return (int)count;
|
|
}
|
|
|
|
/* directly peek at the next frame rx'ed */
|
|
void *tegra_ivc_read_get_next_frame(struct ivc *ivc)
|
|
{
|
|
int result = ivc_check_read(ivc);
|
|
if (result)
|
|
return ERR_PTR(result);
|
|
|
|
/*
|
|
* Order observation of w_pos potentially indicating new data before
|
|
* data read.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0,
|
|
ivc->frame_size);
|
|
return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
|
}
|
|
|
|
int tegra_ivc_read_advance(struct ivc *ivc)
|
|
{
|
|
/*
|
|
* No read barriers or synchronization here: the caller is expected to
|
|
* have already observed the channel non-empty. This check is just to
|
|
* catch programming errors.
|
|
*/
|
|
int result = ivc_check_read(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
if (!is_u64_addition_safe(ivc->rx_handle, offsetof(struct ivc_channel_header, r_count)))
|
|
return -EFAULT;
|
|
if (!is_u64_addition_safe(ivc->rx_handle, offsetof(struct ivc_channel_header, w_count)))
|
|
return -EFAULT;
|
|
if (!is_u32_subtraction_safe(ivc->nframes, 1))
|
|
return -EFAULT;
|
|
|
|
ivc_advance_rx(ivc);
|
|
|
|
ivc_flush_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
/*
|
|
* Ensure our write to r_pos occurs before our read from w_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from full to non-full.
|
|
* The available count can only asynchronously increase, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
|
|
ivc->notify(ivc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ivc_write_frame(struct ivc *ivc, const void *buf,
|
|
const void __user *user_buf, size_t size)
|
|
{
|
|
void *p;
|
|
int result;
|
|
|
|
BUG_ON(buf && user_buf);
|
|
|
|
if (size > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_write(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
|
|
|
/*
|
|
* When compiled with optimizations, different versions of this
|
|
* function should be inlined into tegra_ivc_write_frame() or
|
|
* tegra_ivc_write_frame_user(). This should ensure that the user
|
|
* version does not add overhead to the kernel version.
|
|
*/
|
|
if (buf) {
|
|
memcpy(p, buf, size);
|
|
} else if (user_buf) {
|
|
if (copy_from_user(p, user_buf, size))
|
|
return -EFAULT;
|
|
} else
|
|
BUG();
|
|
|
|
memset(p + size, 0, ivc->frame_size - size);
|
|
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, size);
|
|
|
|
/*
|
|
* Ensure that updated data is visible before the w_pos counter
|
|
* indicates that it is ready.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
ivc_advance_tx(ivc);
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Ensure our write to w_pos occurs before our read from r_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from empty to non-empty.
|
|
* The available count can only asynchronously decrease, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
|
|
ivc->notify(ivc);
|
|
|
|
return (int)size;
|
|
}
|
|
|
|
int tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size)
|
|
{
|
|
return ivc_write_frame(ivc, buf, NULL, size);
|
|
}
|
|
|
|
int tegra_ivc_write_user(struct ivc *ivc, const void __user *user_buf,
|
|
size_t size)
|
|
{
|
|
return ivc_write_frame(ivc, NULL, user_buf, size);
|
|
}
|
|
|
|
/* poke in the next tx buffer at offset off, the count bytes */
|
|
int tegra_ivc_write_poke(struct ivc *ivc, const void *buf, size_t off,
|
|
size_t count)
|
|
{
|
|
void *dest;
|
|
int result;
|
|
|
|
if (!is_u64_addition_safe(off, count))
|
|
return -EFAULT;
|
|
|
|
if ((off > UINT_MAX) || (count > INT_MAX)
|
|
|| (off + count) > UINT_MAX) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (off > ivc->frame_size || off + count > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_write(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
dest = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
|
memcpy(dest + off, buf, count);
|
|
|
|
return (int)count;
|
|
}
|
|
|
|
/* directly poke at the next frame to be tx'ed */
|
|
void *tegra_ivc_write_get_next_frame(struct ivc *ivc)
|
|
{
|
|
int result = ivc_check_write(ivc);
|
|
if (result)
|
|
return ERR_PTR(result);
|
|
|
|
return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
|
}
|
|
|
|
/* advance the tx buffer */
|
|
int tegra_ivc_write_advance(struct ivc *ivc)
|
|
{
|
|
int result = ivc_check_write(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, ivc->frame_size);
|
|
|
|
/*
|
|
* Order any possible stores to the frame before update of w_pos.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
ivc_advance_tx(ivc);
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Ensure our write to w_pos occurs before our read from r_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from empty to non-empty.
|
|
* The available count can only asynchronously decrease, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
BUILD_BUG_ON(offsetof(struct ivc_channel_header,
|
|
r_count) > (UINT_MAX * 1ULL));
|
|
if (!is_u32_addition_safe(ivc->tx_handle,
|
|
offsetof(struct ivc_channel_header, r_count)))
|
|
return -EFAULT;
|
|
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
|
|
ivc->notify(ivc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tegra_ivc_channel_reset(struct ivc *ivc)
|
|
{
|
|
ivc->tx_channel->state = ivc_state_sync;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
ivc->notify(ivc);
|
|
}
|
|
|
|
/*
|
|
* ===============================================================
|
|
* IVC State Transition Table - see tegra_ivc_channel_notified()
|
|
* ===============================================================
|
|
*
|
|
* local remote action
|
|
* ----- ------ -----------------------------------
|
|
* SYNC EST <none>
|
|
* SYNC ACK reset counters; move to EST; notify
|
|
* SYNC SYNC reset counters; move to ACK; notify
|
|
* ACK EST move to EST; notify
|
|
* ACK ACK move to EST; notify
|
|
* ACK SYNC reset counters; move to ACK; notify
|
|
* EST EST <none>
|
|
* EST ACK <none>
|
|
* EST SYNC reset counters; move to ACK; notify
|
|
*
|
|
* ===============================================================
|
|
*/
|
|
|
|
int tegra_ivc_channel_notified(struct ivc *ivc)
|
|
{
|
|
enum ivc_state peer_state;
|
|
|
|
/* Copy the receiver's state out of shared memory. */
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
peer_state = READ_ONCE(ivc->rx_channel->state);
|
|
|
|
if (peer_state == ivc_state_sync) {
|
|
/*
|
|
* Order observation of ivc_state_sync before stores clearing
|
|
* tx_channel.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
/*
|
|
* Reset tx_channel counters. The remote end is in the SYNC
|
|
* state and won't make progress until we change our state,
|
|
* so the counters are not in use at this time.
|
|
*/
|
|
ivc->tx_channel->w_count = 0;
|
|
ivc->rx_channel->r_count = 0;
|
|
|
|
ivc->w_pos = 0;
|
|
ivc->r_pos = 0;
|
|
|
|
/*
|
|
* Ensure that counters appear cleared before new state can be
|
|
* observed.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
/*
|
|
* Move to ACK state. We have just cleared our counters, so it
|
|
* is now safe for the remote end to start using these values.
|
|
*/
|
|
ivc->tx_channel->state = ivc_state_ack;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Notify remote end to observe state transition.
|
|
*/
|
|
ivc->notify(ivc);
|
|
|
|
} else if (ivc->tx_channel->state == ivc_state_sync &&
|
|
peer_state == ivc_state_ack) {
|
|
/*
|
|
* Order observation of ivc_state_sync before stores clearing
|
|
* tx_channel.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
/*
|
|
* Reset tx_channel counters. The remote end is in the ACK
|
|
* state and won't make progress until we change our state,
|
|
* so the counters are not in use at this time.
|
|
*/
|
|
ivc->tx_channel->w_count = 0;
|
|
ivc->rx_channel->r_count = 0;
|
|
|
|
ivc->w_pos = 0;
|
|
ivc->r_pos = 0;
|
|
|
|
/*
|
|
* Ensure that counters appear cleared before new state can be
|
|
* observed.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
/*
|
|
* Move to ESTABLISHED state. We know that the remote end has
|
|
* already cleared its counters, so it is safe to start
|
|
* writing/reading on this channel.
|
|
*/
|
|
ivc->tx_channel->state = ivc_state_established;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Notify remote end to observe state transition.
|
|
*/
|
|
ivc->notify(ivc);
|
|
|
|
} else if (ivc->tx_channel->state == ivc_state_ack) {
|
|
/*
|
|
* At this point, we have observed the peer to be in either
|
|
* the ACK or ESTABLISHED state. Next, order observation of
|
|
* peer state before storing to tx_channel.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
/*
|
|
* Move to ESTABLISHED state. We know that we have previously
|
|
* cleared our counters, and we know that the remote end has
|
|
* cleared its counters, so it is safe to start writing/reading
|
|
* on this channel.
|
|
*/
|
|
ivc->tx_channel->state = ivc_state_established;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Notify remote end to observe state transition.
|
|
*/
|
|
ivc->notify(ivc);
|
|
|
|
} else {
|
|
/*
|
|
* There is no need to handle any further action. Either the
|
|
* channel is already fully established, or we are waiting for
|
|
* the remote end to catch up with our current state. Refer
|
|
* to the diagram in "IVC State Transition Table" above.
|
|
*/
|
|
}
|
|
|
|
return ivc->tx_channel->state == ivc_state_established ? 0 : -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Temporary routine for re-synchronizing the channel across a reboot.
|
|
*/
|
|
int tegra_ivc_channel_sync(struct ivc *ivc)
|
|
{
|
|
if ((ivc == NULL) || (ivc->nframes == 0)) {
|
|
return -EINVAL;
|
|
} else {
|
|
ivc->w_pos = ivc->tx_channel->w_count % ivc->nframes;
|
|
ivc->r_pos = ivc->rx_channel->r_count % ivc->nframes;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t tegra_ivc_align(size_t size)
|
|
{
|
|
return (safe_add_u64(size, IVC_ALIGN - 1ULL)) & ~(IVC_ALIGN - 1ULL);
|
|
}
|
|
|
|
unsigned int tegra_ivc_total_queue_size(unsigned int queue_size)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct ivc_channel_header) > (UINT_MAX * 1ULL));
|
|
if (queue_size & (IVC_ALIGN - 1)) {
|
|
pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
|
|
__func__, queue_size, IVC_ALIGN);
|
|
return 0;
|
|
}
|
|
return safe_add_u32(queue_size, sizeof(struct ivc_channel_header));
|
|
}
|
|
|
|
static int check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2,
|
|
unsigned int nframes, unsigned int frame_size)
|
|
{
|
|
BUG_ON(offsetof(struct ivc_channel_header, w_count) & (IVC_ALIGN - 1));
|
|
BUG_ON(offsetof(struct ivc_channel_header, r_count) & (IVC_ALIGN - 1));
|
|
BUG_ON(sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1));
|
|
|
|
if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
|
|
pr_err("nframes * frame_size overflows\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The headers must at least be aligned enough for counters
|
|
* to be accessed atomically.
|
|
*/
|
|
if (queue_base1 & (IVC_ALIGN - 1)) {
|
|
pr_err("ivc channel start not aligned: %lx\n", queue_base1);
|
|
return -EINVAL;
|
|
}
|
|
if (queue_base2 & (IVC_ALIGN - 1)) {
|
|
pr_err("ivc channel start not aligned: %lx\n", queue_base2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (frame_size & (IVC_ALIGN - 1)) {
|
|
pr_err("frame size not adequately aligned: %u\n", frame_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (queue_base1 < queue_base2) {
|
|
if (queue_base1 + frame_size * nframes > queue_base2) {
|
|
pr_err("queue regions overlap: %lx + %x, %x\n",
|
|
queue_base1, frame_size,
|
|
frame_size * nframes);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (queue_base2 + frame_size * nframes > queue_base1) {
|
|
pr_err("queue regions overlap: %lx + %x, %x\n",
|
|
queue_base2, frame_size,
|
|
frame_size * nframes);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ivc_init_body(struct ivc *ivc, uintptr_t rx_base,
|
|
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
|
|
unsigned int nframes, unsigned int frame_size,
|
|
struct device *peer_device, void (*notify)(struct ivc *))
|
|
{
|
|
size_t queue_size;
|
|
|
|
int result = check_ivc_params(rx_base, tx_base, nframes, frame_size);
|
|
if (result)
|
|
return result;
|
|
|
|
BUG_ON(!ivc);
|
|
BUG_ON(!notify);
|
|
|
|
if (!is_u32_u32__u32_multiplication_safe(nframes, frame_size))
|
|
return -EFAULT;
|
|
|
|
queue_size = tegra_ivc_total_queue_size(nframes * frame_size);
|
|
|
|
/*
|
|
* All sizes that can be returned by communication functions should
|
|
* fit in an int.
|
|
*/
|
|
if (frame_size > INT_MAX)
|
|
return -E2BIG;
|
|
|
|
ivc->rx_channel = (struct ivc_channel_header *)rx_base;
|
|
ivc->tx_channel = (struct ivc_channel_header *)tx_base;
|
|
|
|
if (peer_device) {
|
|
if (rx_handle && !dma_mapping_error(peer_device, rx_handle)) {
|
|
ivc->rx_handle = rx_handle;
|
|
ivc->tx_handle = tx_handle;
|
|
} else {
|
|
ivc->rx_handle = dma_map_single(peer_device,
|
|
ivc->rx_channel, queue_size, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(peer_device, ivc->rx_handle))
|
|
return -ENOMEM;
|
|
|
|
ivc->tx_handle = dma_map_single(peer_device,
|
|
ivc->tx_channel, queue_size, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(peer_device, ivc->tx_handle)) {
|
|
dma_unmap_single(peer_device, ivc->rx_handle,
|
|
queue_size, DMA_BIDIRECTIONAL);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
ivc->notify = notify;
|
|
ivc->frame_size = frame_size;
|
|
ivc->nframes = nframes;
|
|
ivc->peer_device = peer_device;
|
|
|
|
/*
|
|
* These values aren't necessarily correct until the channel has been
|
|
* reset.
|
|
*/
|
|
ivc->w_pos = 0;
|
|
ivc->r_pos = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base,
|
|
unsigned int nframes, unsigned int frame_size,
|
|
struct device *peer_device, void (*notify)(struct ivc *))
|
|
{
|
|
return tegra_ivc_init_body(ivc, rx_base, 0, tx_base,
|
|
0, nframes, frame_size, peer_device, notify);
|
|
}
|
|
|
|
int tegra_ivc_init_with_dma_handle(struct ivc *ivc, uintptr_t rx_base,
|
|
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
|
|
unsigned int nframes, unsigned int frame_size,
|
|
struct device *peer_device, void (*notify)(struct ivc *))
|
|
{
|
|
return tegra_ivc_init_body(ivc, rx_base, rx_handle, tx_base,
|
|
tx_handle, nframes, frame_size, peer_device, notify);
|
|
}
|