Open source GPL/LGPL release

This commit is contained in:
svcmobrel-release
2022-07-21 16:03:29 -07:00
commit f338182221
2260 changed files with 576813 additions and 0 deletions

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,514 @@
/*
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/list.h>
#include <nvgpu/log2.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/enabled.h>
#include <nvgpu/static_analysis.h>
#include "pd_cache_priv.h"
static inline struct nvgpu_pd_mem_entry *
nvgpu_pd_mem_entry_from_list_entry(struct nvgpu_list_node *node)
{
return (struct nvgpu_pd_mem_entry *)
((uintptr_t)node -
offsetof(struct nvgpu_pd_mem_entry, list_entry));
};
static inline struct nvgpu_pd_mem_entry *
nvgpu_pd_mem_entry_from_tree_entry(struct nvgpu_rbtree_node *node)
{
return (struct nvgpu_pd_mem_entry *)
((uintptr_t)node -
offsetof(struct nvgpu_pd_mem_entry, tree_entry));
};
static u32 nvgpu_pd_cache_nr(u32 bytes)
{
unsigned long tmp = ilog2((unsigned long)bytes >>
((unsigned long)NVGPU_PD_CACHE_MIN_SHIFT - 1UL));
nvgpu_assert(tmp <= U32_MAX);
return (u32)tmp;
}
static u32 nvgpu_pd_cache_get_nr_entries(struct nvgpu_pd_mem_entry *pentry)
{
BUG_ON(pentry->pd_size == 0);
return (nvgpu_safe_cast_u64_to_u32(NVGPU_PD_CACHE_SIZE)) /
pentry->pd_size;
}
/*
* Return the _physical_ address of a page directory.
*/
u64 nvgpu_pd_gpu_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
{
u64 page_addr;
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
page_addr = nvgpu_mem_get_phys_addr(g, pd->mem);
} else {
page_addr = nvgpu_mem_get_addr(g, pd->mem);
}
return nvgpu_safe_add_u64(page_addr, U64(pd->mem_offs));
}
u32 nvgpu_pd_offset_from_index(const struct gk20a_mmu_level *l, u32 pd_idx)
{
return nvgpu_safe_mult_u32(pd_idx, l->entry_size) / U32(sizeof(u32));
}
void nvgpu_pd_write(struct gk20a *g, struct nvgpu_gmmu_pd *pd,
size_t w, u32 data)
{
u64 tmp_offset = nvgpu_safe_add_u64((pd->mem_offs / sizeof(u32)), w);
nvgpu_mem_wr32(g, pd->mem,
nvgpu_safe_cast_u64_to_u32(tmp_offset),
data);
}
int nvgpu_pd_cache_init(struct gk20a *g)
{
struct nvgpu_pd_cache *cache;
u32 i;
/*
* This gets called from finalize_poweron() so we need to make sure we
* don't reinit the pd_cache over and over.
*/
if (g->mm.pd_cache != NULL) {
return 0;
}
cache = nvgpu_kzalloc(g, sizeof(*cache));
if (cache == NULL) {
nvgpu_err(g, "Failed to alloc pd_cache!");
return -ENOMEM;
}
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
nvgpu_init_list_node(&cache->full[i]);
nvgpu_init_list_node(&cache->partial[i]);
}
cache->mem_tree = NULL;
nvgpu_mutex_init(&cache->lock);
g->mm.pd_cache = cache;
pd_dbg(g, "PD cache initialized!");
return 0;
}
void nvgpu_pd_cache_fini(struct gk20a *g)
{
u32 i;
struct nvgpu_pd_cache *cache = g->mm.pd_cache;
if (cache == NULL) {
return;
}
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
nvgpu_assert(nvgpu_list_empty(&cache->full[i]));
nvgpu_assert(nvgpu_list_empty(&cache->partial[i]));
}
nvgpu_kfree(g, g->mm.pd_cache);
g->mm.pd_cache = NULL;
}
/*
* This is the simple pass-through for greater than page or page sized PDs.
*
* Note: this does not need the cache lock since it does not modify any of the
* PD cache data structures.
*/
int nvgpu_pd_cache_alloc_direct(struct gk20a *g,
struct nvgpu_gmmu_pd *pd, u32 bytes)
{
int err;
unsigned long flags = 0;
pd_dbg(g, "PD-Alloc [D] %u bytes", bytes);
pd->mem = nvgpu_kzalloc(g, sizeof(*pd->mem));
if (pd->mem == NULL) {
nvgpu_err(g, "OOM allocating nvgpu_mem struct!");
return -ENOMEM;
}
/*
* If bytes == NVGPU_CPU_PAGE_SIZE then it's impossible to get a discontiguous DMA
* allocation. Some DMA implementations may, despite this fact, still
* use the contiguous pool for page sized allocations. As such only
* request explicitly contiguous allocs if the page directory is larger
* than the page size. Also, of course, this is all only revelant for
* GPUs not using an IOMMU. If there is an IOMMU DMA allocs are always
* going to be virtually contiguous and we don't have to force the
* underlying allocations to be physically contiguous as well.
*/
if (!nvgpu_iommuable(g) && (bytes > NVGPU_CPU_PAGE_SIZE)) {
flags = NVGPU_DMA_PHYSICALLY_ADDRESSED;
}
err = nvgpu_dma_alloc_flags(g, flags, bytes, pd->mem);
if (err != 0) {
nvgpu_err(g, "OOM allocating page directory!");
nvgpu_kfree(g, pd->mem);
return -ENOMEM;
}
pd->cached = false;
pd->mem_offs = 0;
return 0;
}
/*
* Make a new nvgpu_pd_cache_entry and allocate a PD from it. Update the passed
* pd to reflect this allocation.
*/
static int nvgpu_pd_cache_alloc_new(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd,
u32 bytes)
{
struct nvgpu_pd_mem_entry *pentry;
u64 flags = 0UL;
int32_t err;
pd_dbg(g, "PD-Alloc [C] New: offs=0");
pentry = nvgpu_kzalloc(g, sizeof(*pentry));
if (pentry == NULL) {
nvgpu_err(g, "OOM allocating pentry!");
return -ENOMEM;
}
if (!nvgpu_iommuable(g) && (NVGPU_PD_CACHE_SIZE > NVGPU_CPU_PAGE_SIZE)) {
flags = NVGPU_DMA_PHYSICALLY_ADDRESSED;
}
err = nvgpu_dma_alloc_flags(g, flags,
NVGPU_PD_CACHE_SIZE, &pentry->mem);
if (err != 0) {
nvgpu_kfree(g, pentry);
/* Not enough contiguous space, but a direct
* allocation may work
*/
if (err == -ENOMEM) {
return nvgpu_pd_cache_alloc_direct(g, pd, bytes);
}
nvgpu_err(g, "Unable to DMA alloc!");
return -ENOMEM;
}
pentry->pd_size = bytes;
nvgpu_list_add(&pentry->list_entry,
&cache->partial[nvgpu_pd_cache_nr(bytes)]);
/*
* This allocates the very first PD table in the set of tables in this
* nvgpu_pd_mem_entry.
*/
nvgpu_set_bit(0U, pentry->alloc_map);
pentry->allocs = 1;
/*
* Now update the nvgpu_gmmu_pd to reflect this allocation.
*/
pd->mem = &pentry->mem;
pd->mem_offs = 0;
pd->cached = true;
pentry->tree_entry.key_start = (u64)(uintptr_t)&pentry->mem;
nvgpu_rbtree_insert(&pentry->tree_entry, &cache->mem_tree);
return 0;
}
static int nvgpu_pd_cache_alloc_from_partial(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry,
struct nvgpu_gmmu_pd *pd)
{
u32 bit_offs;
u32 mem_offs;
u32 nr_bits = nvgpu_pd_cache_get_nr_entries(pentry);
/*
* Find and allocate an open PD.
*/
bit_offs = nvgpu_safe_cast_u64_to_u32(
find_first_zero_bit(pentry->alloc_map, nr_bits));
mem_offs = nvgpu_safe_mult_u32(bit_offs, pentry->pd_size);
pd_dbg(g, "PD-Alloc [C] Partial: offs=%u nr_bits=%d src=0x%p",
bit_offs, nr_bits, pentry);
/* Bit map full. Somethings wrong. */
nvgpu_assert(bit_offs < nr_bits);
nvgpu_set_bit(bit_offs, pentry->alloc_map);
pentry->allocs = nvgpu_safe_add_u32(pentry->allocs, 1U);
/*
* First update the pd.
*/
pd->mem = &pentry->mem;
pd->mem_offs = mem_offs;
pd->cached = true;
/*
* Now make sure the pentry is in the correct list (full vs partial).
*/
if (pentry->allocs >= nr_bits) {
pd_dbg(g, "Adding pentry to full list!");
nvgpu_list_del(&pentry->list_entry);
nvgpu_list_add(&pentry->list_entry,
&cache->full[nvgpu_pd_cache_nr(pentry->pd_size)]);
}
return 0;
}
/*
* Get a partially full nvgpu_pd_mem_entry. Returns NULL if there is no partial
* nvgpu_pd_mem_entry's.
*/
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_get_partial(
struct nvgpu_pd_cache *cache, u32 bytes)
{
struct nvgpu_list_node *list =
&cache->partial[nvgpu_pd_cache_nr(bytes)];
if (nvgpu_list_empty(list)) {
return NULL;
}
return nvgpu_list_first_entry(list,
nvgpu_pd_mem_entry,
list_entry);
}
/*
* Allocate memory from an nvgpu_mem for the page directory.
*/
static int nvgpu_pd_cache_alloc(struct gk20a *g, struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd, u32 bytes)
{
struct nvgpu_pd_mem_entry *pentry;
int err;
bool bytes_valid;
pd_dbg(g, "PD-Alloc [C] %u bytes", bytes);
bytes_valid = bytes >= NVGPU_PD_CACHE_MIN;
if (bytes_valid) {
bytes_valid = (bytes & nvgpu_safe_sub_u32(bytes, 1U)) == 0U;
}
if (!bytes_valid) {
pd_dbg(g, "PD-Alloc [C] Invalid (bytes=%u)!", bytes);
return -EINVAL;
}
nvgpu_assert(bytes < NVGPU_PD_CACHE_SIZE);
pentry = nvgpu_pd_cache_get_partial(cache, bytes);
if (pentry == NULL) {
err = nvgpu_pd_cache_alloc_new(g, cache, pd, bytes);
} else {
err = nvgpu_pd_cache_alloc_from_partial(g, cache, pentry, pd);
}
if (err != 0) {
nvgpu_err(g, "PD-Alloc [C] Failed!");
}
return err;
}
/*
* Allocate the DMA memory for a page directory. This handles the necessary PD
* cache logistics. Since on Parker and later GPUs some of the page directories
* are smaller than a page packing these PDs together saves a lot of memory.
*/
int nvgpu_pd_alloc(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd, u32 bytes)
{
struct gk20a *g = gk20a_from_vm(vm);
int err;
/*
* Simple case: PD is bigger than a page so just do a regular DMA
* alloc.
*/
if (bytes >= NVGPU_PD_CACHE_SIZE) {
err = nvgpu_pd_cache_alloc_direct(g, pd, bytes);
if (err != 0) {
return err;
}
pd->pd_size = bytes;
return 0;
}
if (g->mm.pd_cache == NULL) {
nvgpu_do_assert();
return -ENOMEM;
}
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
err = nvgpu_pd_cache_alloc(g, g->mm.pd_cache, pd, bytes);
if (err == 0) {
pd->pd_size = bytes;
}
nvgpu_mutex_release(&g->mm.pd_cache->lock);
return err;
}
static void nvgpu_pd_cache_free_direct(struct gk20a *g,
struct nvgpu_gmmu_pd *pd)
{
pd_dbg(g, "PD-Free [D] 0x%p", pd->mem);
if (pd->mem == NULL) {
return;
}
nvgpu_dma_free(g, pd->mem);
nvgpu_kfree(g, pd->mem);
pd->mem = NULL;
}
static void nvgpu_pd_cache_free_mem_entry(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry)
{
nvgpu_dma_free(g, &pentry->mem);
nvgpu_list_del(&pentry->list_entry);
nvgpu_rbtree_unlink(&pentry->tree_entry, &cache->mem_tree);
nvgpu_kfree(g, pentry);
}
static void nvgpu_pd_cache_do_free(struct gk20a *g,
struct nvgpu_pd_cache *cache,
struct nvgpu_pd_mem_entry *pentry,
struct nvgpu_gmmu_pd *pd)
{
u32 bit = pd->mem_offs / pentry->pd_size;
/* Mark entry as free. */
nvgpu_clear_bit(bit, pentry->alloc_map);
pentry->allocs = nvgpu_safe_sub_u32(pentry->allocs, 1U);
if (pentry->allocs > 0U) {
/*
* Partially full still. If it was already on the partial list
* this just re-adds it.
*
* Since the memory used for the entries is still mapped, if
* igpu make sure the entries are invalidated so that the hw
* doesn't acccidentally try to prefetch non-existent fb memory.
*
* As IOMMU prefetching of invalid pd entries cause the IOMMU fault,
* fill them with zero.
*/
if ((nvgpu_iommuable(g)) &&
(NVGPU_PD_CACHE_SIZE > NVGPU_CPU_SMALL_PAGE_SIZE) &&
(pd->mem->cpu_va != NULL)) {
(void)memset(((u8 *)pd->mem->cpu_va + pd->mem_offs), 0,
pd->pd_size);
}
nvgpu_list_del(&pentry->list_entry);
nvgpu_list_add(&pentry->list_entry,
&cache->partial[nvgpu_pd_cache_nr(pentry->pd_size)]);
} else {
/* Empty now so free it. */
nvgpu_pd_cache_free_mem_entry(g, cache, pentry);
}
pd->mem = NULL;
}
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_look_up(
struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd)
{
struct nvgpu_rbtree_node *node = NULL;
nvgpu_rbtree_search((u64)(uintptr_t)pd->mem, &node,
cache->mem_tree);
if (node == NULL) {
return NULL;
}
return nvgpu_pd_mem_entry_from_tree_entry(node);
}
static void nvgpu_pd_cache_free(struct gk20a *g, struct nvgpu_pd_cache *cache,
struct nvgpu_gmmu_pd *pd)
{
struct nvgpu_pd_mem_entry *pentry;
pd_dbg(g, "PD-Free [C] 0x%p", pd->mem);
pentry = nvgpu_pd_cache_look_up(cache, pd);
if (pentry == NULL) {
nvgpu_do_assert_print(g, "Attempting to free non-existent pd");
return;
}
nvgpu_pd_cache_do_free(g, cache, pentry, pd);
}
void nvgpu_pd_free(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd)
{
struct gk20a *g = gk20a_from_vm(vm);
/*
* Simple case: just DMA free.
*/
if (!pd->cached) {
return nvgpu_pd_cache_free_direct(g, pd);
}
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
nvgpu_pd_cache_free(g, g->mm.pd_cache, pd);
nvgpu_mutex_release(&g->mm.pd_cache->lock);
}

View File

@@ -0,0 +1,177 @@
/*
* Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef NVGPU_GMMU_PD_CACHE_PRIV_H
#define NVGPU_GMMU_PD_CACHE_PRIV_H
/**
* @file
*
* Page directory cache private interface
* --------------------------------------
*
* To save memory when using sub-page sized PD levels in Pascal and beyond a way
* of packing PD tables together is necessary. If a PD table only requires 1024
* bytes, then it is possible to have 4 of these PDs in one page. This is even
* more pronounced for 256 byte PD tables.
*
* This also matters for page directories on any chip when using a 64K page
* granule. Having 4K PDs packed into a 64K page saves a bunch of memory. Even
* more so for the 256B PDs on Pascal+.
*
* The pd cache is basially just a slab allocator. Each instance of the nvgpu
* driver makes one of these structs:
*
* struct nvgpu_pd_cache {
* struct nvgpu_list_node full[NVGPU_PD_CACHE_COUNT];
* struct nvgpu_list_node partial[NVGPU_PD_CACHE_COUNT];
*
* struct nvgpu_rbtree_node *mem_tree;
* };
*
* There are two sets of lists, the full and the partial. The full lists contain
* pages of memory for which all the memory in that page is in use. The partial
* lists contain partially full pages of memory which can be used for more PD
* allocations. There a couple of assumptions here:
*
* 1. PDs greater than or equal to the page size bypass the pd cache.
* 2. PDs are always power of 2 and greater than %NVGPU_PD_CACHE_MIN bytes.
*
* There are NVGPU_PD_CACHE_COUNT full lists and the same number of partial
* lists. For a 4Kb page NVGPU_PD_CACHE_COUNT is 4. This is enough space for
* 256, 512, 1024, and 2048 byte PDs.
*
* nvgpu_pd_alloc() will allocate a PD for the GMMU. It will check if the PD
* size is page size or larger and choose the correct allocation scheme - either
* from the PD cache or directly. Similarly nvgpu_pd_free() will free a PD
* allocated by nvgpu_pd_alloc().
*/
#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/list.h>
#include <nvgpu/rbtree.h>
#include <nvgpu/lock.h>
#define pd_dbg(g, fmt, args...) nvgpu_log(g, gpu_dbg_pd_cache, fmt, ##args)
/**
* Minimum size of a cache. The number of different caches in the nvgpu_pd_cache
* structure is of course depending on this.
*/
#define NVGPU_PD_CACHE_MIN 256UL
/**
* MIN_SHIFT is the right number of bits to shift to determine
* which list to use in the array of lists.
*/
#define NVGPU_PD_CACHE_MIN_SHIFT 9UL
/**
* Maximum PD cache count. This specifies the number of slabs; since each
* slab represents a PO2 increase in size a count of 8 leads to:
*
* NVGPU_PD_CACHE_SIZE = 256B * 2^8 = 64KB
*
* For Linux with 4K pages, if the cache size is larger than 4KB then we
* need to allocate from CMA. This puts a lot of pressure on the CMA space.
* For kernel with a PAGE_SIZE of 64K this isn't the case, so allow the
* PD cache size to be 64K if PAGE_SIZE > 4K (i.e PAGE_SIZE == 64K).
*/
#ifdef __KERNEL__
# if NVGPU_CPU_PAGE_SIZE > 4096
# define NVGPU_PD_CACHE_COUNT 8UL
# else
# define NVGPU_PD_CACHE_COUNT 4UL
# endif
#else
#define NVGPU_PD_CACHE_COUNT 8UL
#endif
#define NVGPU_PD_CACHE_SIZE (NVGPU_PD_CACHE_MIN * \
(1UL << NVGPU_PD_CACHE_COUNT))
/**
* This structure describes a slab within the slab allocator.
*/
struct nvgpu_pd_mem_entry {
/**
* Structure for storing the PD memory information.
*/
struct nvgpu_mem mem;
/**
* Size of the page directories (not the mem).
*/
u32 pd_size;
/**
* alloc_map is a bitmap showing which PDs have been allocated.
* The size of mem will always
* be one page. pd_size will always be a power of 2.
*/
DECLARE_BITMAP(alloc_map, NVGPU_PD_CACHE_SIZE / NVGPU_PD_CACHE_MIN);
/**
* Total number of allocations in this PD.
*/
u32 allocs;
/**
* This is a list node within the list. The list node will be either from
* a full or partial list in #nvgpu_pd_cache.
*/
struct nvgpu_list_node list_entry;
/**
* This is a tree node within the node.
*/
struct nvgpu_rbtree_node tree_entry;
};
/**
* A cache for allocating PD memory. This enables smaller PDs to be packed
* into single pages.
*/
struct nvgpu_pd_cache {
/**
* Array of lists of full nvgpu_pd_mem_entries and partially full
* nvgpu_pd_mem_entries.
*/
struct nvgpu_list_node full[NVGPU_PD_CACHE_COUNT];
/**
* Array of lists of empty nvgpu_pd_mem_entries and partially
* empty nvgpu_pd_mem_entries.
*/
struct nvgpu_list_node partial[NVGPU_PD_CACHE_COUNT];
/**
* Tree of all allocated struct nvgpu_mem's for fast look up.
*/
struct nvgpu_rbtree_node *mem_tree;
/**
* All access to the cache much be locked. This protects the lists and
* the rb tree.
*/
struct nvgpu_mutex lock;
};
#endif /* NVGPU_GMMU_PD_CACHE_PRIV_H */

View File

@@ -0,0 +1,119 @@
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/gk20a.h>
#include <nvgpu/static_analysis.h>
#include <nvgpu/string.h>
#include <nvgpu/gmmu.h>
u32 nvgpu_gmmu_default_big_page_size(void)
{
return U32(SZ_64K);
}
/*
* MSS NVLINK HW settings are in force_snoop mode.
* This will force all the GPU mappings to be coherent.
* By default the mem aperture is set to sysmem_non_coherent and will use L2
* atomics.
* Change target pte aperture to sysmem_coherent if mem attribute requests for
* platform atomics to use rmw atomic capability.
*
*/
u32 nvgpu_gmmu_aperture_mask(struct gk20a *g,
enum nvgpu_aperture mem_ap,
bool platform_atomic_attr,
u32 sysmem_mask,
u32 sysmem_coh_mask,
u32 vidmem_mask)
{
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_PLATFORM_ATOMIC) &&
platform_atomic_attr) {
mem_ap = APERTURE_SYSMEM_COH;
}
return nvgpu_aperture_mask_raw(g, mem_ap,
sysmem_mask,
sysmem_coh_mask,
vidmem_mask);
}
static char *map_attrs_to_str(char *dest, struct nvgpu_gmmu_attrs *attrs)
{
dest[0] = attrs->cacheable ? 'C' : '-';
dest[1] = attrs->sparse ? 'S' : '-';
dest[2] = attrs->priv ? 'P' : '-';
dest[3] = attrs->valid ? 'V' : '-';
dest[4] = attrs->platform_atomic ? 'A' : '-';
dest[5] = '\0';
return dest;
}
void nvgpu_pte_dbg_print(struct gk20a *g,
struct nvgpu_gmmu_attrs *attrs,
const char *vm_name, u32 pd_idx, u32 mmu_level_entry_size,
u64 virt_addr, u64 phys_addr, u32 page_size, u32 *pte_w)
{
char attrs_str[6];
char ctag_str[32] = "\0";
const char *aperture_str = nvgpu_aperture_str(attrs->aperture);
const char *perm_str = nvgpu_gmmu_perm_str(attrs->rw_flag);
#ifdef CONFIG_NVGPU_COMPRESSION
u64 ctag_tmp = attrs->ctag;
u32 str_len = 0U;
u32 ctag_num = 0U;
/*
* attrs->ctag is incremented to count current page size as well.
* Subtract to get this page's ctag line number.
*/
if (ctag_tmp != 0ULL) {
ctag_tmp = nvgpu_safe_sub_u64(ctag_tmp, page_size);
}
ctag_num = nvgpu_safe_cast_u64_to_u32(ctag_tmp /
g->ops.fb.compression_page_size(g));
(void)strcpy(ctag_str, "ctag=0x\0");
str_len = (u32)strlen(ctag_str);
(void)nvgpu_strnadd_u32(ctag_str + str_len, ctag_num,
nvgpu_safe_sub_u32(31U, str_len), 16U);
#endif
(void)map_attrs_to_str(attrs_str, attrs);
pte_dbg(g, attrs,
"vm=%s "
"PTE: i=%-4u size=%-2u | "
"GPU %#-12llx phys %#-12llx "
"pgsz: %3dkb perm=%-2s kind=%#02x APT=%-6s %-5s "
"%s "
"[0x%08x, 0x%08x]",
vm_name,
pd_idx, mmu_level_entry_size,
virt_addr, phys_addr,
page_size >> 10,
perm_str,
attrs->kind_v,
aperture_str,
attrs_str,
ctag_str,
pte_w[1], pte_w[0]);
}