ECC counter structures are freed without removing the node from the
stats_list. This can lead to invalid access due to dangling pointers.
Update the ecc counter free logic to set them to NULL upon free, to
remove them from stats_list and free them by validation.
Also updated some of the ecc init paths where error was not propa-
gated to callers and full ecc counters deallocation was not done.
Now, calling unit ecc_free from any context (with counters alloc-
ated or not) is harmless as requisite checks are in place.
bug 3326612
bug 3345977
Change-Id: I05eb6ed226cff9197ad37776912da9dcb7e0716d
Signed-off-by: Sagar Kamble <skamble@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2565264
Tested-by: Ashish Mhetre <amhetre@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: svc_kernel_abi <svc_kernel_abi@nvidia.com>
Reviewed-by: Konsta Holtta <kholtta@nvidia.com>
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
common.cic unit is divided into common.cic.mon and common.cic.rm
based on rm and mon process split.
CIC-mon subunit includes the code which is utilized in critical
interrupt handling path like initialization, error detection and
error reporting path. CIC-rm subunit includes the code corresponding
to rest of interrupt handling(like collecting error debug data from
registers) and ISR status management (status of deferred interrupts).
Split the CIC APIs and data-members into above two subunits.
JIRA NVGPU-6899
Change-Id: I151b59105ff570607c4a62e974785e9c1323ef69
Signed-off-by: Tejal Kudav <tkudav@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2551897
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Add a new Central Interrupt Controller(CIC) unit in common code.
The interrupt handling is done in a distributed manner currently.
The error handling policy for different errors resides in each unit's
ISR code. The goal is to converge this data under one central place -
the CIC unit.
This patch creates framework for CIC unit and moves the gv11b QNX
safety LUT to CIC unit. All the error reporting APIs from different
units are also moved to CIC.
New APIs are exposed by CIC unit to access its internal data like:
1. Struct err_desc - the static err handling /injection data per
error id
2. Num_hw_modules - the number of error reporting HW units
supported by CIC
Init and deinit of CIC unit:
1. CIC unit should be initialized earlyon during boot so that it
is available for any interrupt handling.
2. Initialize CIC just before the interrupts are enabled during
boot.
3. Similarly, CIC is disabled late during deinit cycle; right
after the interrupts are masked.
LUT:
1. LUT is currently used only for reporting error to safety
services in gv11b QNX safety build.
2. This error handling policy LUT currently has only two levels
of handing - correctable and quiecse.
3. Once, the error handling policy decision is moved from leaf
unit nodes to CIC, LUT will be updated to have additional levels
like fast recovery and full recovery.
4. Also, then a separate LUT will be added for each platform/build.
5. In current framework, the LUT is set to NULL for all
configurations except gv11b.
report_err() ops is added to report error to safety services.
This ops is only effective for gv11b qnx build; and set to NULL for
other configurations.
NVGPU-6521
NVGPU-6523
NVGPU-6750
NVGPU-6758
NVGPU-6760
NVGPU-6754
Change-Id: I24be7836a96d787741e37b732e19863ed8014635
Signed-off-by: Tejal Kudav <tkudav@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2518683
Reviewed-by: Ajesh K V <akv@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Separated set_atomic_mode functionality from
init_fs_state/enable_nvlink and created new
fb gops for set_atomic_mode.
In gpu init sequence, set_atomic_mode is
called after acr_construct_execute to take care
of design changes required for nvgpu-next
architectures.
Updated fb_gv11b_init_test to use set_atomic_mode
gops along with init_fs_state.
Bug 3268664
Change-Id: I1ab9eb21cc4cce77f3325c4e8821a75b6e85fba2
Signed-off-by: Seshendra Gadagottu <sgadagottu@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2508095
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Not sure if there's an actual bug or JIRA filed for this, but the
change here fixes a long standing bug in the MM code for unit tests.
Te GMMU programming code verifies that the CPU _physical_ address
programmed into the GMMU PDE0 is a valid Tegra SoC CPU physical
address. That means that it's not too large a value.
The POSIX imlementation of the nvgpu_mem related code used the CPU
virtual address as the "phys" address. Obviously, in userspace,
there's no access to physical addresses, so in some sense it's a
meaningless function. But the GMMU code does care, as described
above, about the format of the address.
The fix is simple enough: since the nvgpu_mem_get_addr() and
nvgpu_mem_get_phys_addr() values shouldn't actually be accessed by
the driver anyway (they could be vidmem addresses or IOVA addresses
in real life) ANDing them with 0xffffffff (e.g 32 bits) truncates
the potentially problematic CPU virtual address bits returned by
malloc() in the POSIX environment.
With this, a run of the unit test framework passes for me locally
on my Ubuntu 18 machine.
Also, clean up a few whitespace issues I noticed while I debugged
this and fix another long standing bug where the
NVGPU_DEFAULT_DBG_MASK was not being copied to g->log_mask during
gk20a struct init.
Change-Id: Ie92d3bd26240d194183b4376973d4d32cb6f9b8f
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2395953
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: Vijayakumar Subbu <vsubbu@nvidia.com>
Reviewed-by: Konsta Holtta <kholtta@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
This patch removes the reporting of _ECC_CORRECTED errors which are
not applicable to GV11B. Specifically, this patch removes the code
related to the reporting of the following service IDs:
NVGUARD_SERVICE_IGPU_SM_SWERR_LRF_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_CBU_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_PMU_SWERR_FALCON_DMEM_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_GPCCS_SWERR_FALCON_DMEM_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_FECS_SWERR_FALCON_DMEM_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_GCC_SWERR_L15_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_MMU_SWERR_L1TLB_FA_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_MMU_SWERR_L1TLB_SA_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_HUBMMU_SWERR_L2TLB_SA_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_HUBMMU_SWERR_TLB_SA_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_HUBMMU_SWERR_PTE_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_HUBMMU_SWERR_PDE0_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_ICACHE_L0_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_L1_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_ICACHE_L0_PREDECODE_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_ICACHE_L1_DATA_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_ICACHE_L1_PREDECODE_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_L1_TAG_MISS_FIFO_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_SM_SWERR_L1_TAG_S2R_PIXPRF_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_LTC_SWERR_CACHE_TSTG_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_LTC_SWERR_CACHE_RSTG_ECC_CORRECTED
NVGUARD_SERVICE_IGPU_LTC_SWERR_CACHE_DSTG_BE_ECC_CORRECTED
Bug 200616002
Change-Id: I199c396f9f6a6be007bd6d3c556199b5a73c3c91
Signed-off-by: Rajesh Devaraj <rdevaraj@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2349587
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: Antony Clince Alex <aalex@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
The ecc init, handling for the fb unit is refactored to improve reusability
for nvgpu-next.
The following changes have been done:
- fb.ecc:
This is a new subunit within fb and contains the following functions:
- init: Moved from fb.fb_ecc_init.
- free: Moved from fb.fb_ecc_free.
- l2tlb_error_mask: Fetch bit mask for corrected, uncorrected errors supported
by the unit.
- fb.intr:
This unit has been updated to include the following ecc interrupt, error
handlers:
- handle_ecc: Top level interrupt handler for fb ecc errors.
- handle_ecc_l2tlb: Handle errors within l2tlb memory.
- handle_ecc_hubtlb: Handle errors within hubtlb memory.
- handle_ecc_fillunit: Handle errors within fillunit memory
Jira: NVGPU-5032
Change-Id: I1a26c1823eb992e0e0175250b969f1186dff6e62
Signed-off-by: Antony Clince Alex <aalex@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2333271
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Many tests used various incarnations of the mock register framework.
This was based on a dump of gv11b registers. Tests that greatly
benefitted from having generally sane register values all rely
heavily on this framework.
However, every test essentially did their own thing. This was not
efficient and has caused a some issues in cleaning up the device and
host code.
Therefore introduce a much leaner and simplified register framework.
All unit tests now automatically get a good subset of the gv11b
registers auto-populated. As part of this also populate the HAL with
a nvgpu_detect_chip() call. Many tests can now _probably_ have all
their HAL init (except dummy HAL stuff) deleted. But this does
require a few fixups here and there to set HALs to NULL where tests
expect HALs to be NULL by default.
Where necessary HALs are cleared with a memset to prevent unwanted
code from executing.
Overall, this imposes a far smaller burden on tests to initialize
their environments.
Something to consider for the future, though, is how to handle
supporting multiple chips in the unit test world.
JIRA NVGPU-5422
Change-Id: Icf1a63f728e9c5671ee0fdb726c235ffbd2843e2
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2335334
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>