Files
linux-nvgpu/userspace/units/priv_ring/nvgpu-priv_ring.c
2025-12-19 15:25:44 -08:00

416 lines
12 KiB
C

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <unit/unit.h>
#include <unit/io.h>
#include <nvgpu/posix/io.h>
#include <nvgpu/cic.h>
#include <nvgpu/gk20a.h>
#include <hal/priv_ring/priv_ring_gm20b.h>
#include <hal/priv_ring/priv_ring_gp10b.h>
#include <hal/init/hal_gv11b_litter.h>
#include <hal/mc/mc_gp10b.h>
#include "hal/cic/cic_gv11b.h"
#include <nvgpu/hw/gv11b/hw_pri_ringstation_sys_gv11b.h>
#include <nvgpu/hw/gv11b/hw_pri_ringstation_gpc_gv11b.h>
#include <nvgpu/hw/gv11b/hw_pri_ringmaster_gv11b.h>
#include <nvgpu/hw/gv11b/hw_proj_gv11b.h>
#include <nvgpu/hw/gv11b/hw_mc_gv11b.h>
#include "nvgpu-priv_ring.h"
u32 read_cmd_reg = 3U;
/*
* Write callback.
*/
static void writel_access_reg_fn(struct gk20a *g,
struct nvgpu_reg_access *access)
{
nvgpu_posix_io_writel_reg_space(g, access->addr, access->value);
}
/*
* Read callback.
*/
static void readl_access_reg_fn(struct gk20a *g,
struct nvgpu_reg_access *access)
{
/* Completion of clear_interrupts is indicated by value of
* pri_ringmaster_command_r() changing from
* pri_ringmaster_command_cmd_ack_interrupt_f() to
* pri_ringmaster_command_cmd_no_cmd_v().
*
* During ISR, the pri_ringmaster_command_r() register is polled to
* check if its value changed to no_cmd.
* To get complete branch coverage in priv_ring.isr(), after
* "read_cmd_reg" read attempts, the value of pri_ringmaster_command_r()
* is read as pri_ringmaster_command_cmd_no_cmd_v().
* This maps to clearing interrupts after "read_cmd_reg" polling
* attempts.
*/
if (access->addr == pri_ringmaster_command_r()) {
if (read_cmd_reg == 0U) {
access->value = pri_ringmaster_command_cmd_no_cmd_v();
return;
}
read_cmd_reg = nvgpu_safe_sub_u32(read_cmd_reg, 1U);
}
access->value = nvgpu_posix_io_readl_reg_space(g, access->addr);
}
static struct nvgpu_posix_io_callbacks test_reg_callbacks = {
/* Write APIs all can use the same accessor. */
.writel = writel_access_reg_fn,
.writel_check = writel_access_reg_fn,
.bar1_writel = writel_access_reg_fn,
.usermode_writel = writel_access_reg_fn,
/* Likewise for the read APIs. */
.__readl = readl_access_reg_fn,
.readl = readl_access_reg_fn,
.bar1_readl = readl_access_reg_fn,
};
/* NV_PRIV_MASTER register space */
#define NV_PRIV_MASTER_START 0x00120000U
#define NV_PRIV_MASTER_SIZE 0x000003FFU
/* NV_PRIV_SYS register space */
#define NV_PRIV_SYS_START 0x00122000U
#define NV_PRIV_SYS_SIZE 0x000007FFU
/* NV_PRIV_GPC register space */
#define NV_PRIV_GPC_START 0x00128000U
#define NV_PRIV_GPC_SIZE 0x000007FFU
/* NV_PRIV_GPC register space */
#define NV_PMC_START 0x00000000U
#define NV_PMC_SIZE 0x00000FFFU
int test_priv_ring_setup(struct unit_module *m, struct gk20a *g, void *args)
{
/* Init HAL */
g->ops.priv_ring.enable_priv_ring = gm20b_priv_ring_enable;
g->ops.priv_ring.isr = gp10b_priv_ring_isr;
g->ops.priv_ring.isr_handle_0 = gp10b_priv_ring_isr_handle_0;
g->ops.priv_ring.isr_handle_1 = gp10b_priv_ring_isr_handle_1;
g->ops.priv_ring.decode_error_code = gp10b_priv_ring_decode_error_code;
g->ops.priv_ring.set_ppriv_timeout_settings =
gm20b_priv_set_timeout_settings;
g->ops.priv_ring.enum_ltc = gm20b_priv_ring_enum_ltc;
g->ops.priv_ring.get_gpc_count = gm20b_priv_ring_get_gpc_count;
g->ops.priv_ring.get_fbp_count = gm20b_priv_ring_get_fbp_count;
g->ops.get_litter_value = gv11b_get_litter_value;
g->ops.mc.intr_stall_unit_config =
mc_gp10b_intr_stall_unit_config;
g->ops.cic.init = gv11b_cic_init;
g->ops.cic.report_err = nvgpu_cic_report_err_safety_services;
/* Map register space NV_PRIV_MASTER */
if (nvgpu_posix_io_add_reg_space(g, NV_PRIV_MASTER_START,
NV_PRIV_MASTER_SIZE) != 0) {
unit_err(m, "%s: failed to register space: NV_PRIV_MASTER\n",
__func__);
return UNIT_FAIL;
}
/* Map register space NV_PRIV_SYS */
if (nvgpu_posix_io_add_reg_space(g, NV_PRIV_SYS_START,
NV_PRIV_SYS_SIZE) != 0) {
unit_err(m, "%s: failed to register space: NV_PRIV_SYS\n",
__func__);
return UNIT_FAIL;
}
/* Map register space NV_PRIV_GPC */
if (nvgpu_posix_io_add_reg_space(g, NV_PRIV_GPC_START,
NV_PRIV_GPC_SIZE) != 0) {
unit_err(m, "%s: failed to register space: NV_PRIV_GPC\n",
__func__);
return UNIT_FAIL;
}
/* Map register space NV_PMC */
if (nvgpu_posix_io_add_reg_space(g, NV_PMC_START,
NV_PMC_SIZE) != 0) {
unit_err(m, "%s: failed to register space: NV_PMC\n",
__func__);
return UNIT_FAIL;
}
(void)nvgpu_posix_register_io(g, &test_reg_callbacks);
if (nvgpu_cic_init_common(g) != 0) {
unit_err(m, "%s: Failed to initialize CIC\n",
__func__);
return UNIT_FAIL;
}
return UNIT_SUCCESS;
}
int test_priv_ring_free_reg_space(struct unit_module *m, struct gk20a *g,
void *args)
{
/* Free register space */
nvgpu_posix_io_delete_reg_space(g, NV_PRIV_MASTER_START);
nvgpu_posix_io_delete_reg_space(g, NV_PRIV_SYS_START);
nvgpu_posix_io_delete_reg_space(g, NV_PRIV_GPC_START);
nvgpu_posix_io_delete_reg_space(g, NV_PMC_START);
return UNIT_SUCCESS;
}
int test_enable_priv_ring(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = UNIT_SUCCESS;
int err = 0;
/*
* Case 1: enable_priv_ring passes
*
* 1) Configure "read_cmd_reg"=1U, this ensures that ring enumerations
* completes before max_retry attempts.
* 2) Write pri_ringmaster_start_results_r=0x1
* 3) Call g->ops.priv_ring.enable_priv_ring(g)
*/
read_cmd_reg = 1U;
nvgpu_posix_io_writel_reg_space(g,
pri_ringmaster_start_results_r(), 0x1);
err = g->ops.priv_ring.enable_priv_ring(g);
if (err != 0) {
unit_err(m, "priv_ring.enable_priv_ring HAL failed.\n");
ret = UNIT_FAIL;
goto end;
}
/*
* Case 2: enable_priv_ring times out.
*
* 1) Configure "read_cmd_reg"=U32_MAX, this ensures that
* ring enumerations times out after max_retry attempts.
* 2) Call g->ops.priv_ring.enable_priv_ring(g)
*/
read_cmd_reg = U32_MAX;
err = g->ops.priv_ring.enable_priv_ring(g);
if (err != -ETIMEDOUT) {
unit_err(m, "priv_ring.enable_priv_ring HAL timeout failed.\n");
ret = UNIT_FAIL;
goto end;
}
/*
* Case 3: enable_priv_ring enumeration fails
*
* 1) Configure "read_cmd_reg"=1U, this ensures that ring enumerations
* completes before max_retry attempts.
* 3) Write pri_ringmaster_start_results_r=0x0
* 2) Call g->ops.priv_ring.enable_priv_ring(g)
*/
read_cmd_reg = 1U;
nvgpu_posix_io_writel_reg_space(g,
pri_ringmaster_start_results_r(), 0x0);
err = g->ops.priv_ring.enable_priv_ring(g);
if (err != -1) {
unit_err(m, "priv_ring.enable_priv_ring HAL failed"
" to detect enumeration fault.\n");
ret = UNIT_FAIL;
goto end;
}
end:
read_cmd_reg = 3U; // Restore to default
return ret;
}
int test_set_ppriv_timeout_settings(struct unit_module *m, struct gk20a *g,
void *args)
{
int ret = UNIT_SUCCESS;
u32 val_sys;
u32 val_gpc;
/* Call set_ppriv_timeout_settings HAL to set the timeout values
* to 0x800.
*/
g->ops.priv_ring.set_ppriv_timeout_settings(g);
/* Read back the registers to make sure the timeouts are set to 0x800 */
val_sys = nvgpu_posix_io_readl_reg_space(g,
pri_ringstation_sys_master_config_r(0x15));
val_gpc = nvgpu_posix_io_readl_reg_space(g,
pri_ringstation_gpc_master_config_r(0xa));
if ((val_sys != 0x800) || (val_gpc != 0x800)) {
unit_err(m, "Timeout setting failed.\n");
ret = UNIT_FAIL;
}
return ret;
}
int test_enum_ltc(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = UNIT_SUCCESS;
u32 val;
/* Set pri_ringmaster_enum_ltc_r to 0x1D */
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_ltc_r(), 0x1DU);
val = g->ops.priv_ring.enum_ltc(g);
if (val != 0x1DU) {
unit_err(m, "enum LTC parsing incorrect.\n");
ret = UNIT_FAIL;
}
return ret;
}
int test_get_gpc_count(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = UNIT_SUCCESS;
u32 val;
/* Set Count field in pri_ringmaster_enum_gpc_r to 0x1D */
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_gpc_r(), 0x1DU);
val = g->ops.priv_ring.get_gpc_count(g);
if (val != 0x1DU) {
unit_err(m, "enum GPC count parsing incorrect.\n");
ret = UNIT_FAIL;
}
return ret;
}
int test_get_fbp_count(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = UNIT_SUCCESS;
u32 val;
/* Set Count field in pri_ringmaster_enum_fbp_r to 0x1D */
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_fbp_r(), 0x1DU);
val = g->ops.priv_ring.get_fbp_count(g);
if (val != 0x1DU) {
unit_err(m, "enum FBP count parsing incorrect.\n");
ret = UNIT_FAIL;
}
return ret;
}
int test_priv_ring_isr(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = UNIT_SUCCESS;
/* Set status0 such that:
* 1. start_conn_fault (Bit 0:0) = 1.
* 2. disconnect_fault (Bit 1:1) = 1.
* 3. overflow_fault (Bit 2:2) = 1.
* 4. gbl_write_error (Bit 8:8) = 1.
* So status0 = 0x00000107*/
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status0_r(),
0x00000107U);
/* Set status1 such that:
* 1. gbl_write_error (Bit 31:0) = 0x14.
*/
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status1_r(),
0x00000014U);
/* Set Count field in pri_ringmaster_enum_gpc_r to 0x1D. */
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_gpc_r(), 0x1DU);
/* Call priv_ring ISR and clear the interrupts using readl callback. */
g->ops.priv_ring.isr(g);
/* For better branch coveage, call ISR with:
* g->ops.priv_ring.decode_error_code = NULL.
*/
g->ops.priv_ring.decode_error_code = NULL;
g->ops.priv_ring.isr(g);
/* To cover negative case in for loop, call ISR with
* g->ops.priv_ring.get_gpc_count(g) = 0.
*/
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_gpc_r(), 0x0U);
g->ops.priv_ring.isr(g);
/* Call the ISR again without clearing the interrupts and setting
* status0 and status1 to 0 to cover additional branches.
*/
read_cmd_reg = U32_MAX;
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status0_r(), 0U);
nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status1_r(), 0U);
g->ops.priv_ring.isr(g);
return ret;
}
u32 error_codes[] = {
0xBADF1100U,
0xBADF1800U,
0xBADF1A00U,
0xBADF2000U,
0xBADF2100U,
0xBADF3000U,
0xBADF3100U,
0xBADF4100U,
0xBADF4200U,
0xBADF5100U,
0xBADF5500U,
0xBADF5600U,
};
int test_decode_error_code(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = UNIT_SUCCESS;
u32 i;
/* Call priv_ring ISR and clear the interrupts using readl callback. */
for (i = 0; i < sizeof(error_codes)/sizeof(u32); i++) {
g->ops.priv_ring.decode_error_code(g, error_codes[i]);
}
return ret;
}
struct unit_module_test priv_ring_tests[] = {
UNIT_TEST(priv_ring_setup, test_priv_ring_setup, NULL, 0),
UNIT_TEST(priv_ring_enable_priv_ring, test_enable_priv_ring, NULL, 0),
UNIT_TEST(priv_ring_set_ppriv_timeout_settings,
test_set_ppriv_timeout_settings, NULL, 0),
UNIT_TEST(priv_ring_enum_ltc, test_enum_ltc, NULL, 0),
UNIT_TEST(priv_ring_get_gpc_count, test_get_gpc_count, NULL, 0),
UNIT_TEST(priv_ring_get_fbp_count, test_get_fbp_count, NULL, 0),
UNIT_TEST(priv_ring_decode_error_code, test_decode_error_code, NULL, 0),
UNIT_TEST(priv_ring_isr, test_priv_ring_isr, NULL, 0),
UNIT_TEST(priv_ring_free_reg_space,
test_priv_ring_free_reg_space, NULL, 0),
};
UNIT_MODULE(priv_ring, priv_ring_tests, UNIT_PRIO_NVGPU_TEST);