mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
Fix violations of MISRA rule 5.4 in Posix unit. JIRA NVGPU-6534 Change-Id: I9471e5fca913ca8cc19403998fdbe5450fb49879 Signed-off-by: ajesh <akv@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2488184 (cherry picked from commit f9bc21ca8d96e9c531a1b0077cfe1e78502e7ee5) Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2491855 Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com> Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com> Reviewed-by: Alex Waterman <alexw@nvidia.com> Reviewed-by: Vaibhav Kachore <vkachore@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> GVS: Gerrit_Virtual_Submit Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
628 lines
14 KiB
C
628 lines
14 KiB
C
/*
|
|
* Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include <unit/io.h>
|
|
#include <unit/unit.h>
|
|
|
|
#include <nvgpu/utils.h>
|
|
|
|
#include "posix-utils.h"
|
|
|
|
#define KHZ (1000U)
|
|
#define MHZ (1000000U)
|
|
|
|
#define ARRAY1_SIZE 4
|
|
#define ARRAY2_SIZE 10
|
|
|
|
#define PAGE_ALIGN_TEST_VALUE 0x3fffffff
|
|
#define ALIGN_TEST_VALUE 0xffff
|
|
#define ALIGN_WITH_VALUE 0x10
|
|
#define ALIGN_WITH_MASK 0x3
|
|
|
|
#define TO_ROUND_VALUE 11U
|
|
#define ROUND_BY_VALUE 4U
|
|
#define ROUND_UP_RESULT 12U
|
|
#define ROUND_DOWN_RESULT 8U
|
|
|
|
struct test_container {
|
|
uint32_t var1;
|
|
uint32_t var2;
|
|
};
|
|
|
|
struct test_container cont = {20, 30};
|
|
|
|
/*
|
|
* Test to ensure the EXPECT_BUG construct works as intended by making sure it
|
|
* behaves properly when BUG is called or not.
|
|
* In the event that EXPECT_BUG is completely broken, the call to BUG() would
|
|
* cause the unit to crash and report a failure correctly.
|
|
*/
|
|
int test_hamming_weight(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
unsigned int result;
|
|
unsigned int i;
|
|
uint8_t hwt_8bit;
|
|
uint16_t hwt_16bit;
|
|
uint32_t hwt_32bit;
|
|
uint64_t hwt_64bit;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
hwt_8bit = (unsigned int) 1 << i;
|
|
result = nvgpu_posix_hweight8(hwt_8bit);
|
|
if (result != 1) {
|
|
unit_return_fail(m,
|
|
"8 bit hwt failed for %d\n", hwt_8bit);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
hwt_16bit = (unsigned int) 1 << i;
|
|
result = nvgpu_posix_hweight16(hwt_16bit);
|
|
if (result != 1) {
|
|
unit_return_fail(m,
|
|
"16 bit hwt failed for %d\n", hwt_16bit);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
hwt_32bit = (unsigned int) 1 << i;
|
|
result = nvgpu_posix_hweight32(hwt_32bit);
|
|
if (result != 1) {
|
|
unit_return_fail(m,
|
|
"32 bit hwt failed for %d\n", hwt_32bit);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
hwt_32bit = (unsigned int) 1 << i;
|
|
result = hweight32(hwt_32bit);
|
|
if (result != 1) {
|
|
unit_return_fail(m,
|
|
"hweight32 failed for %d\n", hwt_32bit);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
hwt_64bit = (unsigned long) 1 << i;
|
|
result = nvgpu_posix_hweight64(hwt_64bit);
|
|
if (result != 1) {
|
|
unit_return_fail(m,
|
|
"64 bit hwt failed for %lx\n", hwt_64bit);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
hwt_64bit = (unsigned long) 1 << i;
|
|
result = hweight_long(hwt_64bit);
|
|
if (result != 1) {
|
|
unit_return_fail(m,
|
|
"hweight_long failed for %lx\n", hwt_64bit);
|
|
}
|
|
}
|
|
|
|
hwt_8bit = 0x0;
|
|
result = nvgpu_posix_hweight8(hwt_8bit);
|
|
if (result != 0) {
|
|
unit_return_fail(m,
|
|
"8 bit hwt failed for %d\n", hwt_8bit);
|
|
}
|
|
|
|
hwt_8bit = 0xff;
|
|
result = nvgpu_posix_hweight8(hwt_8bit);
|
|
if (result != 8) {
|
|
unit_return_fail(m,
|
|
"8 bit hwt failed for %d\n", hwt_8bit);
|
|
}
|
|
|
|
hwt_16bit = 0x0;
|
|
result = nvgpu_posix_hweight16(hwt_16bit);
|
|
if (result != 0) {
|
|
unit_return_fail(m,
|
|
"16 bit hwt failed for %d\n", hwt_16bit);
|
|
}
|
|
|
|
hwt_16bit = 0xffff;
|
|
result = nvgpu_posix_hweight16(hwt_16bit);
|
|
if (result != 16) {
|
|
unit_return_fail(m,
|
|
"16 bit hwt failed for %d\n", hwt_16bit);
|
|
}
|
|
|
|
hwt_32bit = 0x0;
|
|
result = nvgpu_posix_hweight32(hwt_32bit);
|
|
if (result != 0) {
|
|
unit_return_fail(m,
|
|
"32 bit hwt failed for %d\n", hwt_32bit);
|
|
}
|
|
|
|
hwt_32bit = 0xffffffff;
|
|
result = nvgpu_posix_hweight32(hwt_32bit);
|
|
if (result != 32) {
|
|
unit_return_fail(m,
|
|
"32 bit hwt failed for %d\n", hwt_32bit);
|
|
}
|
|
|
|
hwt_32bit = 0x0;
|
|
result = hweight32(hwt_32bit);
|
|
if (result != 0) {
|
|
unit_return_fail(m,
|
|
"hweight32 failed for %d\n", hwt_32bit);
|
|
}
|
|
|
|
hwt_32bit = 0xffffffff;
|
|
result = hweight32(hwt_32bit);
|
|
if (result != 32) {
|
|
unit_return_fail(m,
|
|
"hweight32 failed for %d\n", hwt_32bit);
|
|
}
|
|
|
|
hwt_64bit = 0x0;
|
|
result = nvgpu_posix_hweight64(hwt_64bit);
|
|
if (result != 0) {
|
|
unit_return_fail(m,
|
|
"64 bit hwt failed for %ld\n", hwt_64bit);
|
|
}
|
|
|
|
hwt_64bit = 0xffffffffffffffff;
|
|
result = nvgpu_posix_hweight64(hwt_64bit);
|
|
if (result != 64) {
|
|
unit_return_fail(m,
|
|
"64 bit hwt failed for %ld\n", hwt_64bit);
|
|
}
|
|
|
|
hwt_64bit = 0x0;
|
|
result = hweight_long(hwt_64bit);
|
|
if (result != 0) {
|
|
unit_return_fail(m,
|
|
"hweight_long failed for %ld\n", hwt_64bit);
|
|
}
|
|
|
|
hwt_64bit = 0xffffffffffffffff;
|
|
result = hweight_long(hwt_64bit);
|
|
if (result != 64) {
|
|
unit_return_fail(m,
|
|
"hweight_long failed for %ld\n", hwt_64bit);
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_be32tocpu(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t pattern;
|
|
uint32_t result;
|
|
uint8_t *ptr;
|
|
|
|
pattern = 0xaabbccdd;
|
|
|
|
ptr = (uint8_t*)&pattern;
|
|
|
|
result = be32_to_cpu(pattern);
|
|
|
|
if (*ptr == 0xdd) {
|
|
if (result != 0xddccbbaa) {
|
|
unit_return_fail(m,
|
|
"be32tocpu failed for %x %x\n",
|
|
pattern, result);
|
|
}
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_minmax(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t i;
|
|
uint32_t a;
|
|
uint32_t b;
|
|
uint32_t c;
|
|
uint32_t result;
|
|
|
|
a = 10;
|
|
b = 20;
|
|
c = 30;
|
|
for (i = 0; i < 10; i++) {
|
|
result = min(a, b);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min failure %d\n", result);
|
|
}
|
|
|
|
result = min(b, a);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min failure %d\n", result);
|
|
}
|
|
|
|
a += 5;
|
|
b += 5;
|
|
}
|
|
|
|
a = 100;
|
|
b = 200;
|
|
c = 300;
|
|
for (i = 0; i < 10; i++) {
|
|
result = min3(a, b, c);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min3 failure %d\n", result);
|
|
}
|
|
|
|
result = min3(a, c, b);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min3 failure %d\n", result);
|
|
}
|
|
|
|
result = min3(b, a, c);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min3 failure %d\n", result);
|
|
}
|
|
|
|
result = min3(b, c, a);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min3 failure %d\n", result);
|
|
}
|
|
|
|
result = min3(c, a, b);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min3 failure %d\n", result);
|
|
}
|
|
|
|
result = min3(c, b, a);
|
|
if (result != a) {
|
|
unit_return_fail(m, "min3 failure %d\n", result);
|
|
}
|
|
|
|
a += 5;
|
|
b += 5;
|
|
c += 5;
|
|
}
|
|
|
|
b = 2000;
|
|
c = 3000;
|
|
for (i = 0; i < 10; i++) {
|
|
result = min_t(uint32_t, b, c);
|
|
if (result != b) {
|
|
unit_return_fail(m, "min_t failure %d\n", result);
|
|
}
|
|
|
|
result = min_t(uint32_t, c, b);
|
|
if (result != b) {
|
|
unit_return_fail(m, "min_t failure %d\n", result);
|
|
}
|
|
|
|
b += 100;
|
|
c += 100;
|
|
}
|
|
|
|
a = 1000;
|
|
b = 2000;
|
|
for (i = 0; i < 10; i++) {
|
|
result = max(a, b);
|
|
if (result != b) {
|
|
unit_return_fail(m, "max failure %d\n", result);
|
|
}
|
|
|
|
result = max(b, a);
|
|
if (result != b) {
|
|
unit_return_fail(m, "max failure %d\n", result);
|
|
}
|
|
|
|
a += 100;
|
|
b += 100;
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_arraysize(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t result;
|
|
uint32_t array1[ARRAY1_SIZE] = {0};
|
|
uint64_t array2[ARRAY2_SIZE] = {0};
|
|
|
|
result = ARRAY_SIZE(array1);
|
|
if (result != ARRAY1_SIZE) {
|
|
unit_return_fail(m, "ARRAY SIZE failure %d\n", result);
|
|
}
|
|
|
|
result = ARRAY_SIZE(array2);
|
|
if (result != ARRAY2_SIZE) {
|
|
unit_return_fail(m, "ARRAY SIZE failure %d\n", result);
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_typecheck(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t result;
|
|
unsigned int test1;
|
|
unsigned long test2;
|
|
signed int test3;
|
|
signed long test4;
|
|
|
|
result = IS_UNSIGNED_TYPE(test1);
|
|
if (!result) {
|
|
unit_return_fail(m,
|
|
"IS_UNSIGNED_TYPE failure for uint %d\n", result);
|
|
}
|
|
|
|
result = IS_UNSIGNED_TYPE(test2);
|
|
if (!result) {
|
|
unit_return_fail(m,
|
|
"IS_UNSIGNED_TYPE failure for ulong %d\n", result);
|
|
}
|
|
|
|
result = IS_UNSIGNED_TYPE(test3);
|
|
if (result) {
|
|
unit_return_fail(m,
|
|
"IS_UNSIGNED_TYPE failure for int %d\n", result);
|
|
}
|
|
|
|
result = IS_UNSIGNED_LONG_TYPE(test2);
|
|
if (!result) {
|
|
unit_return_fail(m,
|
|
"IS_UNSIGNED_LONG_TYPE failure for ulong %d\n",
|
|
result);
|
|
}
|
|
|
|
result = IS_UNSIGNED_LONG_TYPE(test4);
|
|
if (result) {
|
|
unit_return_fail(m,
|
|
"IS_UNSIGNED_LONG_TYPE failure for long %d\n",
|
|
result);
|
|
}
|
|
|
|
result = IS_SIGNED_LONG_TYPE(test2);
|
|
if (result) {
|
|
unit_return_fail(m,
|
|
"IS_SIGNED_LONG_TYPE failure for ulong %d\n",
|
|
result);
|
|
}
|
|
|
|
result = IS_SIGNED_LONG_TYPE(test4);
|
|
if (!result) {
|
|
unit_return_fail(m,
|
|
"IS_SIGNED_LONG_TYPE failure for long %d\n",
|
|
result);
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_align_macros(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t result;
|
|
unsigned int test1;
|
|
|
|
test1 = ALIGN_TEST_VALUE;
|
|
result = ALIGN_WITH_VALUE;
|
|
test1 = NVGPU_ALIGN(test1, result);
|
|
if (test1 & (ALIGN_WITH_VALUE - 1)) {
|
|
unit_return_fail(m,
|
|
"ALIGN failure %x\n", test1);
|
|
}
|
|
|
|
test1 = ALIGN_TEST_VALUE;
|
|
result = ALIGN_WITH_MASK;
|
|
test1 = ALIGN_MASK(test1, result);
|
|
if (test1 & ALIGN_WITH_MASK) {
|
|
unit_return_fail(m,
|
|
"ALIGN_MASK failure %x\n", test1);
|
|
}
|
|
|
|
test1 = PAGE_ALIGN_TEST_VALUE;
|
|
result = PAGE_ALIGN(test1);
|
|
if (result & (NVGPU_CPU_PAGE_SIZE - 1)) {
|
|
unit_return_fail(m,
|
|
"PAGE_ALIGN failure %x\n", result);
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_round_macros(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t result, i, test1;
|
|
|
|
for (i = 1; i < 8; i++) {
|
|
result = 1U << i;
|
|
if (round_mask(test1, result) != (result - 1U)) {
|
|
unit_return_fail(m,
|
|
"round_mask failure %d\n", result);
|
|
}
|
|
}
|
|
|
|
result = ROUND_BY_VALUE;
|
|
for (i = 0; i < ROUND_BY_VALUE; i++) {
|
|
test1 = (ROUND_DOWN_RESULT + 1U) + i;
|
|
if (round_up(test1, result) != ROUND_UP_RESULT) {
|
|
unit_return_fail(m, "round_up failure %d %d\n", test1, i);
|
|
}
|
|
}
|
|
|
|
result = ROUND_BY_VALUE;
|
|
for (i = 0; i < ROUND_BY_VALUE; i++) {
|
|
test1 = (ROUND_UP_RESULT - 1U) - i;
|
|
if (round_down(test1, result) != ROUND_DOWN_RESULT) {
|
|
unit_return_fail(m, "round_down failure\n");
|
|
}
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_write_once(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t result, i, test1;
|
|
|
|
test1 = 20;
|
|
for (i = 0 ; i < 10; i++) {
|
|
test1 += 1;
|
|
WRITE_ONCE(result, test1);
|
|
if (result != test1) {
|
|
unit_return_fail(m,
|
|
"WRITE_ONCE failure %d\n", result);
|
|
}
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_div_macros(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t result, test1;
|
|
uint64_t test2, test5;
|
|
|
|
test1 = 199/20;
|
|
test2 = DIV_ROUND_UP_U64(199, 20);
|
|
if (test2 != (test1 + 1)) {
|
|
unit_return_fail(m,
|
|
"DIV_ROUND_UP_U64 failure %ld\n", test2);
|
|
}
|
|
|
|
test1 = 239/40;
|
|
result = DIV_ROUND_UP((uint32_t) 239, (uint32_t) 40);
|
|
if (result != (test1 + 1)) {
|
|
unit_return_fail(m,
|
|
"DIV_ROUND_UP failure %d\n", result);
|
|
}
|
|
|
|
test1 = 640;
|
|
result = 100;
|
|
do_div(test1, result);
|
|
if (test1 != 6) {
|
|
unit_return_fail(m,
|
|
"do_div failure %d\n", test1);
|
|
}
|
|
|
|
test2 = 800;
|
|
test5 = 200;
|
|
result = div64_u64(test2, test5);
|
|
if (result != (test2/test5)) {
|
|
unit_return_fail(m,
|
|
"div64_u64 failure %d\n", result);
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_containerof(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
struct test_container *contptr;
|
|
struct test_container *contptr1;
|
|
struct test_container *contptr2;
|
|
uint32_t *varptr1;
|
|
uint32_t *varptr2;
|
|
|
|
contptr = &cont;
|
|
varptr1 = &cont.var1;
|
|
varptr2 = &cont.var2;
|
|
|
|
contptr1 = container_of(varptr1, struct test_container, var1);
|
|
contptr2 = container_of(varptr2, struct test_container, var2);
|
|
|
|
if ((contptr1 != contptr) || (contptr2 != contptr)) {
|
|
unit_return_fail(m, "container_of failure\n");
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
int test_hertzconversion(struct unit_module *m,
|
|
struct gk20a *g, void *args)
|
|
{
|
|
uint32_t i, hz, khz, mhz;
|
|
uint64_t long_hz;
|
|
|
|
for (i = 1; i < 10; i++) {
|
|
hz = i * 1000U;
|
|
khz = HZ_TO_KHZ(hz);
|
|
if (khz != i) {
|
|
unit_return_fail(m, "HZ_TO_KHZ failure\n");
|
|
}
|
|
|
|
if (hz != KHZ_TO_HZ(i)) {
|
|
unit_return_fail(m, "KHZ_TO_HZ failure\n");
|
|
}
|
|
|
|
hz = i * 1000000U;
|
|
mhz = HZ_TO_MHZ(hz);
|
|
if (mhz != i) {
|
|
unit_return_fail(m, "HZ_TO_MHZ failure\n");
|
|
}
|
|
|
|
long_hz = i * 1000000U;
|
|
mhz = HZ_TO_MHZ_ULL(long_hz);
|
|
if (mhz != i) {
|
|
unit_return_fail(m, "HZ_TO_MHZ_ULL failure\n");
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
khz = i * 1000U;
|
|
mhz = KHZ_TO_MHZ(khz);
|
|
if (mhz != i) {
|
|
unit_return_fail(m, "KHZ_TO_MHZ failure\n");
|
|
}
|
|
|
|
if (khz != MHZ_TO_KHZ(i)) {
|
|
unit_return_fail(m, "MHZ_TO_KHZ failure\n");
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
hz = i * 1000000;
|
|
if (hz != MHZ_TO_HZ_ULL(i)) {
|
|
unit_return_fail(m, "MHZ_TO_HZ_ULL failure\n");
|
|
}
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
struct unit_module_test posix_utils_tests[] = {
|
|
UNIT_TEST(hweight_test, test_hamming_weight, NULL, 0),
|
|
UNIT_TEST(be32tocpu_test, test_be32tocpu, NULL, 0),
|
|
UNIT_TEST(minmax_test, test_minmax, NULL, 0),
|
|
UNIT_TEST(arraysize_test, test_arraysize, NULL, 0),
|
|
UNIT_TEST(typecheck_test, test_typecheck, NULL, 0),
|
|
UNIT_TEST(alignmacros_test, test_align_macros, NULL, 0),
|
|
UNIT_TEST(roundmacros_test, test_round_macros, NULL, 0),
|
|
UNIT_TEST(writeonce_test, test_write_once, NULL, 0),
|
|
UNIT_TEST(divmacros_test, test_div_macros, NULL, 0),
|
|
UNIT_TEST(containerof_test, test_containerof, NULL, 0),
|
|
UNIT_TEST(conversion_test, test_hertzconversion, NULL, 0),
|
|
};
|
|
|
|
UNIT_MODULE(posix_utils, posix_utils_tests, UNIT_PRIO_POSIX_TEST);
|