mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-24 02:22:34 +03:00
When requesting a gpc2clck below lowest V/f point, clock arbiter did not properly adjust target value to nearest V/f point. This could lead to lower than expected effective frequency. Fixed the logic to adjust to nearest V/f point. Bug 200412996 Change-Id: I36c24b4c081931e2ac54da14d49e46fcb14503e3 (cherry picked from commit 7ed1f8fb39f76208922daa91d00905cdb96b2304) Signed-off-by: Thomas Fleury <tfleury@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1763641 Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com> GVS: Gerrit_Virtual_Submit Reviewed-by: Vijayakumar Subbu <vsubbu@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
1656 lines
42 KiB
C
1656 lines
42 KiB
C
/*
|
|
* Copyright (c) 2016-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/bitops.h>
|
|
#include <nvgpu/lock.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/atomic.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/kref.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/barrier.h>
|
|
#include <nvgpu/cond.h>
|
|
#include <nvgpu/list.h>
|
|
#include <nvgpu/clk_arb.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "clk/clk.h"
|
|
#include "pstate/pstate.h"
|
|
#include "lpwr/lpwr.h"
|
|
#include "volt/volt.h"
|
|
|
|
int nvgpu_clk_notification_queue_alloc(struct gk20a *g,
|
|
struct nvgpu_clk_notification_queue *queue,
|
|
size_t events_number) {
|
|
queue->notifications = nvgpu_kcalloc(g, events_number,
|
|
sizeof(struct nvgpu_clk_notification));
|
|
if (!queue->notifications)
|
|
return -ENOMEM;
|
|
queue->size = events_number;
|
|
|
|
nvgpu_atomic_set(&queue->head, 0);
|
|
nvgpu_atomic_set(&queue->tail, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_clk_notification_queue_free(struct gk20a *g,
|
|
struct nvgpu_clk_notification_queue *queue) {
|
|
nvgpu_kfree(g, queue->notifications);
|
|
queue->size = 0;
|
|
nvgpu_atomic_set(&queue->head, 0);
|
|
nvgpu_atomic_set(&queue->tail, 0);
|
|
}
|
|
|
|
static void nvgpu_clk_arb_queue_notification(struct gk20a *g,
|
|
struct nvgpu_clk_notification_queue *queue,
|
|
u32 alarm_mask) {
|
|
|
|
u32 queue_index;
|
|
u64 timestamp;
|
|
|
|
queue_index = (nvgpu_atomic_inc_return(&queue->tail)) % queue->size;
|
|
/* get current timestamp */
|
|
timestamp = (u64) nvgpu_hr_timestamp();
|
|
|
|
queue->notifications[queue_index].timestamp = timestamp;
|
|
queue->notifications[queue_index].notification = alarm_mask;
|
|
|
|
}
|
|
|
|
static void nvgpu_clk_arb_set_global_alarm(struct gk20a *g, u32 alarm)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
|
|
u64 current_mask;
|
|
u32 refcnt;
|
|
u32 alarm_mask;
|
|
u64 new_mask;
|
|
|
|
do {
|
|
current_mask = nvgpu_atomic64_read(&arb->alarm_mask);
|
|
/* atomic operations are strong so they do not need masks */
|
|
|
|
refcnt = ((u32) (current_mask >> 32)) + 1;
|
|
alarm_mask = (u32) (current_mask & ~0) | alarm;
|
|
new_mask = ((u64) refcnt << 32) | alarm_mask;
|
|
|
|
} while (unlikely(current_mask !=
|
|
(u64)nvgpu_atomic64_cmpxchg(&arb->alarm_mask,
|
|
current_mask, new_mask)));
|
|
|
|
nvgpu_clk_arb_queue_notification(g, &arb->notification_queue, alarm);
|
|
}
|
|
|
|
|
|
static int nvgpu_clk_arb_update_vf_table(struct nvgpu_clk_arb *arb)
|
|
{
|
|
struct gk20a *g = arb->g;
|
|
struct nvgpu_clk_vf_table *table;
|
|
|
|
u32 i, j;
|
|
int status = -EINVAL;
|
|
u32 gpc2clk_voltuv = 0, mclk_voltuv = 0;
|
|
u32 gpc2clk_voltuv_sram = 0, mclk_voltuv_sram = 0;
|
|
u16 clk_cur;
|
|
u32 num_points;
|
|
|
|
struct clk_set_info *p5_info, *p0_info;
|
|
|
|
|
|
table = NV_ACCESS_ONCE(arb->current_vf_table);
|
|
/* make flag visible when all data has resolved in the tables */
|
|
nvgpu_smp_rmb();
|
|
|
|
table = (table == &arb->vf_table_pool[0]) ? &arb->vf_table_pool[1] :
|
|
&arb->vf_table_pool[0];
|
|
|
|
/* Get allowed memory ranges */
|
|
if (g->ops.clk_arb.get_arbiter_clk_range(g, CTRL_CLK_DOMAIN_GPC2CLK,
|
|
&arb->gpc2clk_min,
|
|
&arb->gpc2clk_max) < 0) {
|
|
nvgpu_err(g, "failed to fetch GPC2CLK range");
|
|
goto exit_vf_table;
|
|
}
|
|
if (g->ops.clk_arb.get_arbiter_clk_range(g, CTRL_CLK_DOMAIN_MCLK,
|
|
&arb->mclk_min,
|
|
&arb->mclk_max) < 0) {
|
|
nvgpu_err(g, "failed to fetch MCLK range");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
table->gpc2clk_num_points = MAX_F_POINTS;
|
|
table->mclk_num_points = MAX_F_POINTS;
|
|
|
|
if (clk_domain_get_f_points(arb->g, CTRL_CLK_DOMAIN_GPC2CLK,
|
|
&table->gpc2clk_num_points, arb->gpc2clk_f_points)) {
|
|
nvgpu_err(g, "failed to fetch GPC2CLK frequency points");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
if (clk_domain_get_f_points(arb->g, CTRL_CLK_DOMAIN_MCLK,
|
|
&table->mclk_num_points, arb->mclk_f_points)) {
|
|
nvgpu_err(g, "failed to fetch MCLK frequency points");
|
|
goto exit_vf_table;
|
|
}
|
|
if (!table->mclk_num_points || !table->gpc2clk_num_points) {
|
|
nvgpu_err(g, "empty queries to f points mclk %d gpc2clk %d",
|
|
table->mclk_num_points, table->gpc2clk_num_points);
|
|
status = -EINVAL;
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
memset(table->mclk_points, 0,
|
|
table->mclk_num_points*sizeof(struct nvgpu_clk_vf_point));
|
|
memset(table->gpc2clk_points, 0,
|
|
table->gpc2clk_num_points*sizeof(struct nvgpu_clk_vf_point));
|
|
|
|
p5_info = pstate_get_clk_set_info(g,
|
|
CTRL_PERF_PSTATE_P5, clkwhich_mclk);
|
|
if (!p5_info) {
|
|
nvgpu_err(g, "failed to get MCLK P5 info");
|
|
goto exit_vf_table;
|
|
}
|
|
p0_info = pstate_get_clk_set_info(g,
|
|
CTRL_PERF_PSTATE_P0, clkwhich_mclk);
|
|
if (!p0_info) {
|
|
nvgpu_err(g, "failed to get MCLK P0 info");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
for (i = 0, j = 0, num_points = 0, clk_cur = 0;
|
|
i < table->mclk_num_points; i++) {
|
|
|
|
if ((arb->mclk_f_points[i] >= arb->mclk_min) &&
|
|
(arb->mclk_f_points[i] <= arb->mclk_max) &&
|
|
(arb->mclk_f_points[i] != clk_cur)) {
|
|
|
|
table->mclk_points[j].mem_mhz = arb->mclk_f_points[i];
|
|
mclk_voltuv = mclk_voltuv_sram = 0;
|
|
|
|
status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_MCLK,
|
|
&table->mclk_points[j].mem_mhz, &mclk_voltuv,
|
|
CTRL_VOLT_DOMAIN_LOGIC);
|
|
if (status < 0) {
|
|
nvgpu_err(g,
|
|
"failed to get MCLK LOGIC voltage");
|
|
goto exit_vf_table;
|
|
}
|
|
status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_MCLK,
|
|
&table->mclk_points[j].mem_mhz,
|
|
&mclk_voltuv_sram,
|
|
CTRL_VOLT_DOMAIN_SRAM);
|
|
if (status < 0) {
|
|
nvgpu_err(g, "failed to get MCLK SRAM voltage");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
table->mclk_points[j].uvolt = mclk_voltuv;
|
|
table->mclk_points[j].uvolt_sram = mclk_voltuv_sram;
|
|
clk_cur = table->mclk_points[j].mem_mhz;
|
|
|
|
if ((clk_cur >= p5_info->min_mhz) &&
|
|
(clk_cur <= p5_info->max_mhz))
|
|
VF_POINT_SET_PSTATE_SUPPORTED(
|
|
&table->mclk_points[j],
|
|
CTRL_PERF_PSTATE_P5);
|
|
if ((clk_cur >= p0_info->min_mhz) &&
|
|
(clk_cur <= p0_info->max_mhz))
|
|
VF_POINT_SET_PSTATE_SUPPORTED(
|
|
&table->mclk_points[j],
|
|
CTRL_PERF_PSTATE_P0);
|
|
|
|
j++;
|
|
num_points++;
|
|
|
|
}
|
|
}
|
|
table->mclk_num_points = num_points;
|
|
|
|
p5_info = pstate_get_clk_set_info(g,
|
|
CTRL_PERF_PSTATE_P5, clkwhich_gpc2clk);
|
|
if (!p5_info) {
|
|
status = -EINVAL;
|
|
nvgpu_err(g, "failed to get GPC2CLK P5 info");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
p0_info = pstate_get_clk_set_info(g,
|
|
CTRL_PERF_PSTATE_P0, clkwhich_gpc2clk);
|
|
if (!p0_info) {
|
|
status = -EINVAL;
|
|
nvgpu_err(g, "failed to get GPC2CLK P0 info");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
/* GPC2CLK needs to be checked in two passes. The first determines the
|
|
* relationships between GPC2CLK, SYS2CLK and XBAR2CLK, while the
|
|
* second verifies that the clocks minimum is satisfied and sets
|
|
* the voltages
|
|
*/
|
|
for (i = 0, j = 0, num_points = 0, clk_cur = 0;
|
|
i < table->gpc2clk_num_points; i++) {
|
|
struct set_fll_clk setfllclk;
|
|
|
|
if ((arb->gpc2clk_f_points[i] >= arb->gpc2clk_min) &&
|
|
(arb->gpc2clk_f_points[i] <= arb->gpc2clk_max) &&
|
|
(arb->gpc2clk_f_points[i] != clk_cur)) {
|
|
|
|
table->gpc2clk_points[j].gpc_mhz =
|
|
arb->gpc2clk_f_points[i];
|
|
setfllclk.gpc2clkmhz = arb->gpc2clk_f_points[i];
|
|
status = clk_get_fll_clks(g, &setfllclk);
|
|
if (status < 0) {
|
|
nvgpu_err(g,
|
|
"failed to get GPC2CLK slave clocks");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
table->gpc2clk_points[j].sys_mhz =
|
|
setfllclk.sys2clkmhz;
|
|
table->gpc2clk_points[j].xbar_mhz =
|
|
setfllclk.xbar2clkmhz;
|
|
|
|
clk_cur = table->gpc2clk_points[j].gpc_mhz;
|
|
|
|
if ((clk_cur >= p5_info->min_mhz) &&
|
|
(clk_cur <= p5_info->max_mhz))
|
|
VF_POINT_SET_PSTATE_SUPPORTED(
|
|
&table->gpc2clk_points[j],
|
|
CTRL_PERF_PSTATE_P5);
|
|
if ((clk_cur >= p0_info->min_mhz) &&
|
|
(clk_cur <= p0_info->max_mhz))
|
|
VF_POINT_SET_PSTATE_SUPPORTED(
|
|
&table->gpc2clk_points[j],
|
|
CTRL_PERF_PSTATE_P0);
|
|
|
|
j++;
|
|
num_points++;
|
|
}
|
|
}
|
|
table->gpc2clk_num_points = num_points;
|
|
|
|
/* Second pass */
|
|
for (i = 0, j = 0; i < table->gpc2clk_num_points; i++) {
|
|
|
|
u16 alt_gpc2clk = table->gpc2clk_points[i].gpc_mhz;
|
|
|
|
gpc2clk_voltuv = gpc2clk_voltuv_sram = 0;
|
|
|
|
/* Check sysclk */
|
|
p5_info = pstate_get_clk_set_info(g,
|
|
VF_POINT_GET_PSTATE(&table->gpc2clk_points[i]),
|
|
clkwhich_sys2clk);
|
|
if (!p5_info) {
|
|
status = -EINVAL;
|
|
nvgpu_err(g, "failed to get SYS2CLK P5 info");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
/* sys2clk below clk min, need to find correct clock */
|
|
if (table->gpc2clk_points[i].sys_mhz < p5_info->min_mhz) {
|
|
for (j = i + 1; j < table->gpc2clk_num_points; j++) {
|
|
|
|
if (table->gpc2clk_points[j].sys_mhz >=
|
|
p5_info->min_mhz) {
|
|
|
|
|
|
table->gpc2clk_points[i].sys_mhz =
|
|
p5_info->min_mhz;
|
|
|
|
alt_gpc2clk = alt_gpc2clk <
|
|
table->gpc2clk_points[j].
|
|
gpc_mhz ?
|
|
table->gpc2clk_points[j].
|
|
gpc_mhz :
|
|
alt_gpc2clk;
|
|
break;
|
|
}
|
|
}
|
|
/* no VF exists that satisfies condition */
|
|
if (j == table->gpc2clk_num_points) {
|
|
nvgpu_err(g, "NO SYS2CLK VF point possible");
|
|
status = -EINVAL;
|
|
goto exit_vf_table;
|
|
}
|
|
}
|
|
|
|
/* Check xbarclk */
|
|
p5_info = pstate_get_clk_set_info(g,
|
|
VF_POINT_GET_PSTATE(&table->gpc2clk_points[i]),
|
|
clkwhich_xbar2clk);
|
|
if (!p5_info) {
|
|
status = -EINVAL;
|
|
nvgpu_err(g, "failed to get SYS2CLK P5 info");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
/* xbar2clk below clk min, need to find correct clock */
|
|
if (table->gpc2clk_points[i].xbar_mhz < p5_info->min_mhz) {
|
|
for (j = i; j < table->gpc2clk_num_points; j++) {
|
|
if (table->gpc2clk_points[j].xbar_mhz >=
|
|
p5_info->min_mhz) {
|
|
|
|
table->gpc2clk_points[i].xbar_mhz =
|
|
p5_info->min_mhz;
|
|
|
|
alt_gpc2clk = alt_gpc2clk <
|
|
table->gpc2clk_points[j].
|
|
gpc_mhz ?
|
|
table->gpc2clk_points[j].
|
|
gpc_mhz :
|
|
alt_gpc2clk;
|
|
break;
|
|
}
|
|
}
|
|
/* no VF exists that satisfies condition */
|
|
if (j == table->gpc2clk_num_points) {
|
|
status = -EINVAL;
|
|
nvgpu_err(g, "NO XBAR2CLK VF point possible");
|
|
|
|
goto exit_vf_table;
|
|
}
|
|
}
|
|
|
|
/* Calculate voltages */
|
|
status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_GPC2CLK,
|
|
&alt_gpc2clk, &gpc2clk_voltuv,
|
|
CTRL_VOLT_DOMAIN_LOGIC);
|
|
if (status < 0) {
|
|
nvgpu_err(g, "failed to get GPC2CLK LOGIC voltage");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_GPC2CLK,
|
|
&alt_gpc2clk,
|
|
&gpc2clk_voltuv_sram,
|
|
CTRL_VOLT_DOMAIN_SRAM);
|
|
if (status < 0) {
|
|
nvgpu_err(g, "failed to get GPC2CLK SRAM voltage");
|
|
goto exit_vf_table;
|
|
}
|
|
|
|
table->gpc2clk_points[i].uvolt = gpc2clk_voltuv;
|
|
table->gpc2clk_points[i].uvolt_sram = gpc2clk_voltuv_sram;
|
|
}
|
|
|
|
/* make table visible when all data has resolved in the tables */
|
|
nvgpu_smp_wmb();
|
|
arb->current_vf_table = table;
|
|
|
|
exit_vf_table:
|
|
|
|
if (status < 0)
|
|
nvgpu_clk_arb_set_global_alarm(g,
|
|
EVENT(ALARM_VF_TABLE_UPDATE_FAILED));
|
|
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
static void nvgpu_clk_arb_run_vf_table_cb(struct nvgpu_clk_arb *arb)
|
|
{
|
|
struct gk20a *g = arb->g;
|
|
u32 err;
|
|
|
|
/* get latest vf curve from pmu */
|
|
err = clk_vf_point_cache(g);
|
|
if (err) {
|
|
nvgpu_err(g, "failed to cache VF table");
|
|
nvgpu_clk_arb_set_global_alarm(g,
|
|
EVENT(ALARM_VF_TABLE_UPDATE_FAILED));
|
|
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
|
|
|
|
return;
|
|
}
|
|
nvgpu_clk_arb_update_vf_table(arb);
|
|
}
|
|
|
|
static u8 nvgpu_clk_arb_find_vf_point(struct nvgpu_clk_arb *arb,
|
|
u16 *gpc2clk, u16 *sys2clk, u16 *xbar2clk, u16 *mclk,
|
|
u32 *voltuv, u32 *voltuv_sram, u32 *nuvmin, u32 *nuvmin_sram)
|
|
{
|
|
u16 gpc2clk_target, mclk_target;
|
|
u32 gpc2clk_voltuv, gpc2clk_voltuv_sram;
|
|
u32 mclk_voltuv, mclk_voltuv_sram;
|
|
u32 pstate = VF_POINT_INVALID_PSTATE;
|
|
struct nvgpu_clk_vf_table *table;
|
|
u32 index, index_mclk;
|
|
struct nvgpu_clk_vf_point *mclk_vf = NULL;
|
|
|
|
do {
|
|
gpc2clk_target = *gpc2clk;
|
|
mclk_target = *mclk;
|
|
gpc2clk_voltuv = 0;
|
|
gpc2clk_voltuv_sram = 0;
|
|
mclk_voltuv = 0;
|
|
mclk_voltuv_sram = 0;
|
|
|
|
table = NV_ACCESS_ONCE(arb->current_vf_table);
|
|
/* pointer to table can be updated by callback */
|
|
nvgpu_smp_rmb();
|
|
|
|
if (!table)
|
|
continue;
|
|
if ((!table->gpc2clk_num_points) || (!table->mclk_num_points)) {
|
|
nvgpu_err(arb->g, "found empty table");
|
|
goto find_exit;
|
|
}
|
|
/* First we check MCLK to find out which PSTATE we are
|
|
* are requesting, and from there try to find the minimum
|
|
* GPC2CLK on the same PSTATE that satisfies the request.
|
|
* If no GPC2CLK can be found, then we need to up the PSTATE
|
|
*/
|
|
|
|
recalculate_vf_point:
|
|
for (index = 0; index < table->mclk_num_points; index++) {
|
|
if (table->mclk_points[index].mem_mhz >= mclk_target) {
|
|
mclk_vf = &table->mclk_points[index];
|
|
break;
|
|
}
|
|
}
|
|
if (index == table->mclk_num_points) {
|
|
mclk_vf = &table->mclk_points[index-1];
|
|
index = table->mclk_num_points - 1;
|
|
}
|
|
index_mclk = index;
|
|
|
|
/* round up the freq requests */
|
|
for (index = 0; index < table->gpc2clk_num_points; index++) {
|
|
pstate = VF_POINT_COMMON_PSTATE(
|
|
&table->gpc2clk_points[index], mclk_vf);
|
|
|
|
if ((table->gpc2clk_points[index].gpc_mhz >=
|
|
gpc2clk_target) &&
|
|
(pstate != VF_POINT_INVALID_PSTATE)) {
|
|
gpc2clk_target =
|
|
table->gpc2clk_points[index].gpc_mhz;
|
|
*sys2clk =
|
|
table->gpc2clk_points[index].sys_mhz;
|
|
*xbar2clk =
|
|
table->gpc2clk_points[index].xbar_mhz;
|
|
|
|
gpc2clk_voltuv =
|
|
table->gpc2clk_points[index].uvolt;
|
|
gpc2clk_voltuv_sram =
|
|
table->gpc2clk_points[index].uvolt_sram;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (index == table->gpc2clk_num_points) {
|
|
pstate = VF_POINT_COMMON_PSTATE(
|
|
&table->gpc2clk_points[index-1], mclk_vf);
|
|
if (pstate != VF_POINT_INVALID_PSTATE) {
|
|
gpc2clk_target =
|
|
table->gpc2clk_points[index-1].gpc_mhz;
|
|
*sys2clk =
|
|
table->gpc2clk_points[index-1].sys_mhz;
|
|
*xbar2clk =
|
|
table->gpc2clk_points[index-1].xbar_mhz;
|
|
|
|
gpc2clk_voltuv =
|
|
table->gpc2clk_points[index-1].uvolt;
|
|
gpc2clk_voltuv_sram =
|
|
table->gpc2clk_points[index-1].
|
|
uvolt_sram;
|
|
} else if (index_mclk >= table->mclk_num_points - 1) {
|
|
/* There is no available combination of MCLK
|
|
* and GPC2CLK, we need to fail this
|
|
*/
|
|
gpc2clk_target = 0;
|
|
mclk_target = 0;
|
|
pstate = VF_POINT_INVALID_PSTATE;
|
|
goto find_exit;
|
|
} else {
|
|
/* recalculate with higher PSTATE */
|
|
gpc2clk_target = *gpc2clk;
|
|
mclk_target = table->mclk_points[index_mclk+1].
|
|
mem_mhz;
|
|
goto recalculate_vf_point;
|
|
}
|
|
}
|
|
|
|
mclk_target = mclk_vf->mem_mhz;
|
|
mclk_voltuv = mclk_vf->uvolt;
|
|
mclk_voltuv_sram = mclk_vf->uvolt_sram;
|
|
|
|
} while (!table ||
|
|
(NV_ACCESS_ONCE(arb->current_vf_table) != table));
|
|
|
|
find_exit:
|
|
*voltuv = gpc2clk_voltuv > mclk_voltuv ? gpc2clk_voltuv : mclk_voltuv;
|
|
*voltuv_sram = gpc2clk_voltuv_sram > mclk_voltuv_sram ?
|
|
gpc2clk_voltuv_sram : mclk_voltuv_sram;
|
|
/* noise unaware vmin */
|
|
*nuvmin = mclk_voltuv;
|
|
*nuvmin_sram = mclk_voltuv_sram;
|
|
*gpc2clk = gpc2clk_target;
|
|
*mclk = mclk_target;
|
|
return pstate;
|
|
}
|
|
|
|
static int nvgpu_clk_arb_change_vf_point(struct gk20a *g, u16 gpc2clk_target,
|
|
u16 sys2clk_target, u16 xbar2clk_target, u16 mclk_target, u32 voltuv,
|
|
u32 voltuv_sram)
|
|
{
|
|
struct set_fll_clk fllclk;
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
int status;
|
|
|
|
fllclk.gpc2clkmhz = gpc2clk_target;
|
|
fllclk.sys2clkmhz = sys2clk_target;
|
|
fllclk.xbar2clkmhz = xbar2clk_target;
|
|
|
|
fllclk.voltuv = voltuv;
|
|
|
|
/* if voltage ascends we do:
|
|
* (1) FLL change
|
|
* (2) Voltage change
|
|
* (3) MCLK change
|
|
* If it goes down
|
|
* (1) MCLK change
|
|
* (2) Voltage change
|
|
* (3) FLL change
|
|
*/
|
|
|
|
/* descending */
|
|
if (voltuv < arb->voltuv_actual) {
|
|
status = g->ops.clk.mclk_change(g, mclk_target);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
status = volt_set_voltage(g, voltuv, voltuv_sram);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
status = clk_set_fll_clks(g, &fllclk);
|
|
if (status < 0)
|
|
return status;
|
|
} else {
|
|
status = clk_set_fll_clks(g, &fllclk);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
status = volt_set_voltage(g, voltuv, voltuv_sram);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
status = g->ops.clk.mclk_change(g, mclk_target);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 nvgpu_clk_arb_notify(struct nvgpu_clk_dev *dev,
|
|
struct nvgpu_clk_arb_target *target,
|
|
u32 alarm) {
|
|
|
|
struct nvgpu_clk_session *session = dev->session;
|
|
struct nvgpu_clk_arb *arb = session->g->clk_arb;
|
|
struct nvgpu_clk_notification *notification;
|
|
|
|
u32 queue_alarm_mask = 0;
|
|
u32 enabled_mask = 0;
|
|
u32 new_alarms_reported = 0;
|
|
u32 poll_mask = 0;
|
|
u32 tail, head;
|
|
u32 queue_index;
|
|
size_t size;
|
|
int index;
|
|
|
|
enabled_mask = nvgpu_atomic_read(&dev->enabled_mask);
|
|
size = arb->notification_queue.size;
|
|
|
|
/* queue global arbiter notifications in buffer */
|
|
do {
|
|
tail = nvgpu_atomic_read(&arb->notification_queue.tail);
|
|
/* copy items to the queue */
|
|
queue_index = nvgpu_atomic_read(&dev->queue.tail);
|
|
head = dev->arb_queue_head;
|
|
head = (tail - head) < arb->notification_queue.size ?
|
|
head : tail - arb->notification_queue.size;
|
|
|
|
for (index = head; _WRAPGTEQ(tail, index); index++) {
|
|
u32 alarm_detected;
|
|
|
|
notification = &arb->notification_queue.
|
|
notifications[(index+1) % size];
|
|
alarm_detected =
|
|
NV_ACCESS_ONCE(notification->notification);
|
|
|
|
if (!(enabled_mask & alarm_detected))
|
|
continue;
|
|
|
|
queue_index++;
|
|
dev->queue.notifications[
|
|
queue_index % dev->queue.size].timestamp =
|
|
NV_ACCESS_ONCE(notification->timestamp);
|
|
|
|
dev->queue.notifications[
|
|
queue_index % dev->queue.size].notification =
|
|
alarm_detected;
|
|
|
|
queue_alarm_mask |= alarm_detected;
|
|
}
|
|
} while (unlikely(nvgpu_atomic_read(&arb->notification_queue.tail) !=
|
|
(int)tail));
|
|
|
|
nvgpu_atomic_set(&dev->queue.tail, queue_index);
|
|
/* update the last notification we processed from global queue */
|
|
|
|
dev->arb_queue_head = tail;
|
|
|
|
/* Check if current session targets are met */
|
|
if (enabled_mask & EVENT(ALARM_LOCAL_TARGET_VF_NOT_POSSIBLE)) {
|
|
if ((target->gpc2clk < session->target->gpc2clk)
|
|
|| (target->mclk < session->target->mclk)) {
|
|
|
|
poll_mask |= (NVGPU_POLLIN | NVGPU_POLLPRI);
|
|
nvgpu_clk_arb_queue_notification(arb->g, &dev->queue,
|
|
EVENT(ALARM_LOCAL_TARGET_VF_NOT_POSSIBLE));
|
|
}
|
|
}
|
|
|
|
/* Check if there is a new VF update */
|
|
if (queue_alarm_mask & EVENT(VF_UPDATE))
|
|
poll_mask |= (NVGPU_POLLIN | NVGPU_POLLRDNORM);
|
|
|
|
/* Notify sticky alarms that were not reported on previous run*/
|
|
new_alarms_reported = (queue_alarm_mask |
|
|
(alarm & ~dev->alarms_reported & queue_alarm_mask));
|
|
|
|
if (new_alarms_reported & ~LOCAL_ALARM_MASK) {
|
|
/* check that we are not re-reporting */
|
|
if (new_alarms_reported & EVENT(ALARM_GPU_LOST))
|
|
poll_mask |= NVGPU_POLLHUP;
|
|
|
|
poll_mask |= (NVGPU_POLLIN | NVGPU_POLLPRI);
|
|
/* On next run do not report global alarms that were already
|
|
* reported, but report SHUTDOWN always
|
|
*/
|
|
dev->alarms_reported = new_alarms_reported & ~LOCAL_ALARM_MASK &
|
|
~EVENT(ALARM_GPU_LOST);
|
|
}
|
|
|
|
if (poll_mask) {
|
|
nvgpu_atomic_set(&dev->poll_mask, poll_mask);
|
|
nvgpu_clk_arb_event_post_event(dev);
|
|
}
|
|
|
|
return new_alarms_reported;
|
|
}
|
|
|
|
static void nvgpu_clk_arb_clear_global_alarm(struct gk20a *g, u32 alarm)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
|
|
u64 current_mask;
|
|
u32 refcnt;
|
|
u32 alarm_mask;
|
|
u64 new_mask;
|
|
|
|
do {
|
|
current_mask = nvgpu_atomic64_read(&arb->alarm_mask);
|
|
/* atomic operations are strong so they do not need masks */
|
|
|
|
refcnt = ((u32) (current_mask >> 32)) + 1;
|
|
alarm_mask = (u32) (current_mask & ~alarm);
|
|
new_mask = ((u64) refcnt << 32) | alarm_mask;
|
|
|
|
} while (unlikely(current_mask !=
|
|
(u64)nvgpu_atomic64_cmpxchg(&arb->alarm_mask,
|
|
current_mask, new_mask)));
|
|
}
|
|
|
|
static void nvgpu_clk_arb_run_arbiter_cb(struct nvgpu_clk_arb *arb)
|
|
{
|
|
struct nvgpu_clk_session *session;
|
|
struct nvgpu_clk_dev *dev;
|
|
struct nvgpu_clk_dev *tmp;
|
|
struct nvgpu_clk_arb_target *target, *actual;
|
|
struct gk20a *g = arb->g;
|
|
|
|
u32 pstate = VF_POINT_INVALID_PSTATE;
|
|
u32 voltuv, voltuv_sram;
|
|
bool mclk_set, gpc2clk_set;
|
|
u32 nuvmin, nuvmin_sram;
|
|
|
|
u32 alarms_notified = 0;
|
|
u32 current_alarm;
|
|
int status = 0;
|
|
|
|
/* Temporary variables for checking target frequency */
|
|
u16 gpc2clk_target, sys2clk_target, xbar2clk_target, mclk_target;
|
|
u16 gpc2clk_session_target, mclk_session_target;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
u64 t0, t1;
|
|
struct nvgpu_clk_arb_debug *debug;
|
|
|
|
#endif
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
/* bail out if gpu is down */
|
|
if (nvgpu_atomic64_read(&arb->alarm_mask) & EVENT(ALARM_GPU_LOST))
|
|
goto exit_arb;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
g->ops.ptimer.read_ptimer(g, &t0);
|
|
#endif
|
|
|
|
/* Only one arbiter should be running */
|
|
gpc2clk_target = 0;
|
|
mclk_target = 0;
|
|
|
|
nvgpu_spinlock_acquire(&arb->sessions_lock);
|
|
nvgpu_list_for_each_entry(session, &arb->sessions,
|
|
nvgpu_clk_session, link) {
|
|
if (!session->zombie) {
|
|
mclk_set = false;
|
|
gpc2clk_set = false;
|
|
target = (session->target == &session->target_pool[0] ?
|
|
&session->target_pool[1] :
|
|
&session->target_pool[0]);
|
|
nvgpu_spinlock_acquire(&session->session_lock);
|
|
if (!nvgpu_list_empty(&session->targets)) {
|
|
/* Copy over state */
|
|
target->mclk = session->target->mclk;
|
|
target->gpc2clk = session->target->gpc2clk;
|
|
/* Query the latest committed request */
|
|
nvgpu_list_for_each_entry_safe(dev, tmp, &session->targets,
|
|
nvgpu_clk_dev, node) {
|
|
if (!mclk_set && dev->mclk_target_mhz) {
|
|
target->mclk =
|
|
dev->mclk_target_mhz;
|
|
mclk_set = true;
|
|
}
|
|
if (!gpc2clk_set &&
|
|
dev->gpc2clk_target_mhz) {
|
|
target->gpc2clk =
|
|
dev->gpc2clk_target_mhz;
|
|
gpc2clk_set = true;
|
|
}
|
|
nvgpu_ref_get(&dev->refcount);
|
|
nvgpu_list_del(&dev->node);
|
|
nvgpu_spinlock_acquire(&arb->requests_lock);
|
|
nvgpu_list_add(&dev->node, &arb->requests);
|
|
nvgpu_spinlock_release(&arb->requests_lock);
|
|
}
|
|
session->target = target;
|
|
}
|
|
nvgpu_spinlock_release(&session->session_lock);
|
|
|
|
mclk_target = mclk_target > session->target->mclk ?
|
|
mclk_target : session->target->mclk;
|
|
|
|
gpc2clk_target =
|
|
gpc2clk_target > session->target->gpc2clk ?
|
|
gpc2clk_target : session->target->gpc2clk;
|
|
}
|
|
}
|
|
nvgpu_spinlock_release(&arb->sessions_lock);
|
|
|
|
gpc2clk_target = (gpc2clk_target > 0) ? gpc2clk_target :
|
|
arb->gpc2clk_default_mhz;
|
|
|
|
if (gpc2clk_target < arb->gpc2clk_min)
|
|
gpc2clk_target = arb->gpc2clk_min;
|
|
|
|
if (gpc2clk_target > arb->gpc2clk_max)
|
|
gpc2clk_target = arb->gpc2clk_max;
|
|
|
|
mclk_target = (mclk_target > 0) ? mclk_target :
|
|
arb->mclk_default_mhz;
|
|
|
|
if (mclk_target < arb->mclk_min)
|
|
mclk_target = arb->mclk_min;
|
|
|
|
if (mclk_target > arb->mclk_max)
|
|
mclk_target = arb->mclk_max;
|
|
|
|
sys2clk_target = 0;
|
|
xbar2clk_target = 0;
|
|
|
|
gpc2clk_session_target = gpc2clk_target;
|
|
mclk_session_target = mclk_target;
|
|
|
|
/* Query the table for the closest vf point to program */
|
|
pstate = nvgpu_clk_arb_find_vf_point(arb, &gpc2clk_target,
|
|
&sys2clk_target, &xbar2clk_target, &mclk_target, &voltuv,
|
|
&voltuv_sram, &nuvmin, &nuvmin_sram);
|
|
|
|
if (pstate == VF_POINT_INVALID_PSTATE) {
|
|
arb->status = -EINVAL;
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
|
|
if ((gpc2clk_target < gpc2clk_session_target) ||
|
|
(mclk_target < mclk_session_target))
|
|
nvgpu_clk_arb_set_global_alarm(g,
|
|
EVENT(ALARM_TARGET_VF_NOT_POSSIBLE));
|
|
|
|
if ((arb->actual->gpc2clk == gpc2clk_target) &&
|
|
(arb->actual->mclk == mclk_target) &&
|
|
(arb->voltuv_actual == voltuv)) {
|
|
goto exit_arb;
|
|
}
|
|
|
|
/* Program clocks */
|
|
/* A change in both mclk of gpc2clk may require a change in voltage */
|
|
|
|
nvgpu_mutex_acquire(&arb->pstate_lock);
|
|
status = nvgpu_lpwr_disable_pg(g, false);
|
|
|
|
status = clk_pmu_freq_controller_load(g, false,
|
|
CTRL_CLK_CLK_FREQ_CONTROLLER_ID_ALL);
|
|
if (status < 0) {
|
|
arb->status = status;
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
status = volt_set_noiseaware_vmin(g, nuvmin, nuvmin_sram);
|
|
if (status < 0) {
|
|
arb->status = status;
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
|
|
status = nvgpu_clk_arb_change_vf_point(g, gpc2clk_target,
|
|
sys2clk_target, xbar2clk_target, mclk_target, voltuv,
|
|
voltuv_sram);
|
|
if (status < 0) {
|
|
arb->status = status;
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
|
|
status = clk_pmu_freq_controller_load(g, true,
|
|
CTRL_CLK_CLK_FREQ_CONTROLLER_ID_ALL);
|
|
if (status < 0) {
|
|
arb->status = status;
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
|
|
status = nvgpu_lwpr_mclk_change(g, pstate);
|
|
if (status < 0) {
|
|
arb->status = status;
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
|
|
actual = NV_ACCESS_ONCE(arb->actual) == &arb->actual_pool[0] ?
|
|
&arb->actual_pool[1] : &arb->actual_pool[0];
|
|
|
|
/* do not reorder this pointer */
|
|
nvgpu_smp_rmb();
|
|
actual->gpc2clk = gpc2clk_target;
|
|
actual->mclk = mclk_target;
|
|
arb->voltuv_actual = voltuv;
|
|
actual->pstate = pstate;
|
|
arb->status = status;
|
|
|
|
/* Make changes visible to other threads */
|
|
nvgpu_smp_wmb();
|
|
arb->actual = actual;
|
|
|
|
status = nvgpu_lpwr_enable_pg(g, false);
|
|
if (status < 0) {
|
|
arb->status = status;
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* make status visible */
|
|
nvgpu_smp_mb();
|
|
goto exit_arb;
|
|
}
|
|
|
|
/* status must be visible before atomic inc */
|
|
nvgpu_smp_wmb();
|
|
nvgpu_atomic_inc(&arb->req_nr);
|
|
|
|
/* Unlock pstate change for PG */
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
|
|
/* VF Update complete */
|
|
nvgpu_clk_arb_set_global_alarm(g, EVENT(VF_UPDATE));
|
|
|
|
nvgpu_cond_signal_interruptible(&arb->request_wq);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
g->ops.ptimer.read_ptimer(g, &t1);
|
|
|
|
debug = arb->debug == &arb->debug_pool[0] ?
|
|
&arb->debug_pool[1] : &arb->debug_pool[0];
|
|
|
|
memcpy(debug, arb->debug, sizeof(arb->debug_pool[0]));
|
|
debug->switch_num++;
|
|
|
|
if (debug->switch_num == 1) {
|
|
debug->switch_max = debug->switch_min =
|
|
debug->switch_avg = (t1-t0)/1000;
|
|
debug->switch_std = 0;
|
|
} else {
|
|
s64 prev_avg;
|
|
s64 curr = (t1-t0)/1000;
|
|
|
|
debug->switch_max = curr > debug->switch_max ?
|
|
curr : debug->switch_max;
|
|
debug->switch_min = debug->switch_min ?
|
|
(curr < debug->switch_min ?
|
|
curr : debug->switch_min) : curr;
|
|
prev_avg = debug->switch_avg;
|
|
debug->switch_avg = (curr +
|
|
(debug->switch_avg * (debug->switch_num-1))) /
|
|
debug->switch_num;
|
|
debug->switch_std +=
|
|
(curr - debug->switch_avg) * (curr - prev_avg);
|
|
}
|
|
/* commit changes before exchanging debug pointer */
|
|
nvgpu_smp_wmb();
|
|
arb->debug = debug;
|
|
#endif
|
|
|
|
exit_arb:
|
|
if (status < 0) {
|
|
nvgpu_err(g, "Error in arbiter update");
|
|
nvgpu_clk_arb_set_global_alarm(g,
|
|
EVENT(ALARM_CLOCK_ARBITER_FAILED));
|
|
}
|
|
|
|
current_alarm = (u32) nvgpu_atomic64_read(&arb->alarm_mask);
|
|
/* notify completion for all requests */
|
|
nvgpu_spinlock_acquire(&arb->requests_lock);
|
|
nvgpu_list_for_each_entry_safe(dev, tmp, &arb->requests,
|
|
nvgpu_clk_dev, node) {
|
|
nvgpu_atomic_set(&dev->poll_mask, NVGPU_POLLIN | NVGPU_POLLRDNORM);
|
|
nvgpu_clk_arb_event_post_event(dev);
|
|
nvgpu_ref_put(&dev->refcount, nvgpu_clk_arb_free_fd);
|
|
nvgpu_list_del(&dev->node);
|
|
}
|
|
nvgpu_spinlock_release(&arb->requests_lock);
|
|
|
|
nvgpu_atomic_set(&arb->notification_queue.head,
|
|
nvgpu_atomic_read(&arb->notification_queue.tail));
|
|
/* notify event for all users */
|
|
nvgpu_spinlock_acquire(&arb->users_lock);
|
|
nvgpu_list_for_each_entry(dev, &arb->users, nvgpu_clk_dev, link) {
|
|
alarms_notified |=
|
|
nvgpu_clk_arb_notify(dev, arb->actual, current_alarm);
|
|
}
|
|
nvgpu_spinlock_release(&arb->users_lock);
|
|
|
|
/* clear alarms */
|
|
nvgpu_clk_arb_clear_global_alarm(g, alarms_notified &
|
|
~EVENT(ALARM_GPU_LOST));
|
|
}
|
|
|
|
/*
|
|
* Process one scheduled work item.
|
|
*/
|
|
static void nvgpu_clk_arb_worker_process_item(
|
|
struct nvgpu_clk_arb_work_item *work_item)
|
|
{
|
|
clk_arb_dbg(work_item->arb->g, " ");
|
|
|
|
if (work_item->item_type == CLK_ARB_WORK_UPDATE_VF_TABLE)
|
|
nvgpu_clk_arb_run_vf_table_cb(work_item->arb);
|
|
else if (work_item->item_type == CLK_ARB_WORK_UPDATE_ARB)
|
|
nvgpu_clk_arb_run_arbiter_cb(work_item->arb);
|
|
}
|
|
|
|
/**
|
|
* Tell the worker that one more work needs to be done.
|
|
*
|
|
* Increase the work counter to synchronize the worker with the new work. Wake
|
|
* up the worker. If the worker was already running, it will handle this work
|
|
* before going to sleep.
|
|
*/
|
|
static int nvgpu_clk_arb_worker_wakeup(struct gk20a *g)
|
|
{
|
|
int put;
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
put = nvgpu_atomic_inc_return(&g->clk_arb_worker.put);
|
|
nvgpu_cond_signal_interruptible(&g->clk_arb_worker.wq);
|
|
|
|
return put;
|
|
}
|
|
|
|
/**
|
|
* Test if there is some work pending.
|
|
*
|
|
* This is a pair for nvgpu_clk_arb_worker_wakeup to be called from the
|
|
* worker. The worker has an internal work counter which is incremented once
|
|
* per finished work item. This is compared with the number of queued jobs.
|
|
*/
|
|
static bool nvgpu_clk_arb_worker_pending(struct gk20a *g, int get)
|
|
{
|
|
bool pending = nvgpu_atomic_read(&g->clk_arb_worker.put) != get;
|
|
|
|
/* We don't need barriers because they are implicit in locking */
|
|
return pending;
|
|
}
|
|
|
|
/**
|
|
* Process the queued works for the worker thread serially.
|
|
*
|
|
* Flush all the work items in the queue one by one. This may block timeout
|
|
* handling for a short while, as these are serialized.
|
|
*/
|
|
static void nvgpu_clk_arb_worker_process(struct gk20a *g, int *get)
|
|
{
|
|
|
|
while (nvgpu_clk_arb_worker_pending(g, *get)) {
|
|
struct nvgpu_clk_arb_work_item *work_item = NULL;
|
|
|
|
nvgpu_spinlock_acquire(&g->clk_arb_worker.items_lock);
|
|
if (!nvgpu_list_empty(&g->clk_arb_worker.items)) {
|
|
work_item = nvgpu_list_first_entry(&g->clk_arb_worker.items,
|
|
nvgpu_clk_arb_work_item, worker_item);
|
|
nvgpu_list_del(&work_item->worker_item);
|
|
}
|
|
nvgpu_spinlock_release(&g->clk_arb_worker.items_lock);
|
|
|
|
if (!work_item) {
|
|
/*
|
|
* Woke up for some other reason, but there are no
|
|
* other reasons than a work item added in the items list
|
|
* currently, so warn and ack the message.
|
|
*/
|
|
nvgpu_warn(g, "Spurious worker event!");
|
|
++*get;
|
|
break;
|
|
}
|
|
|
|
nvgpu_clk_arb_worker_process_item(work_item);
|
|
++*get;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process all work items found in the clk arbiter work queue.
|
|
*/
|
|
static int nvgpu_clk_arb_poll_worker(void *arg)
|
|
{
|
|
struct gk20a *g = (struct gk20a *)arg;
|
|
struct gk20a_worker *worker = &g->clk_arb_worker;
|
|
int get = 0;
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
while (!nvgpu_thread_should_stop(&worker->poll_task)) {
|
|
int ret;
|
|
|
|
ret = NVGPU_COND_WAIT_INTERRUPTIBLE(
|
|
&worker->wq,
|
|
nvgpu_clk_arb_worker_pending(g, get), 0);
|
|
|
|
if (ret == 0)
|
|
nvgpu_clk_arb_worker_process(g, &get);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __nvgpu_clk_arb_worker_start(struct gk20a *g)
|
|
{
|
|
char thread_name[64];
|
|
int err = 0;
|
|
|
|
if (nvgpu_thread_is_running(&g->clk_arb_worker.poll_task))
|
|
return err;
|
|
|
|
nvgpu_mutex_acquire(&g->clk_arb_worker.start_lock);
|
|
|
|
/*
|
|
* Mutexes have implicit barriers, so there is no risk of a thread
|
|
* having a stale copy of the poll_task variable as the call to
|
|
* thread_is_running is volatile
|
|
*/
|
|
|
|
if (nvgpu_thread_is_running(&g->clk_arb_worker.poll_task)) {
|
|
nvgpu_mutex_release(&g->clk_arb_worker.start_lock);
|
|
return err;
|
|
}
|
|
|
|
snprintf(thread_name, sizeof(thread_name),
|
|
"nvgpu_clk_arb_poll_%s", g->name);
|
|
|
|
err = nvgpu_thread_create(&g->clk_arb_worker.poll_task, g,
|
|
nvgpu_clk_arb_poll_worker, thread_name);
|
|
|
|
nvgpu_mutex_release(&g->clk_arb_worker.start_lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Append a work item to the worker's list.
|
|
*
|
|
* This adds work item to the end of the list and wakes the worker
|
|
* up immediately. If the work item already existed in the list, it's not added,
|
|
* because in that case it has been scheduled already but has not yet been
|
|
* processed.
|
|
*/
|
|
void nvgpu_clk_arb_worker_enqueue(struct gk20a *g,
|
|
struct nvgpu_clk_arb_work_item *work_item)
|
|
{
|
|
clk_arb_dbg(g, " ");
|
|
|
|
/*
|
|
* Warn if worker thread cannot run
|
|
*/
|
|
if (WARN_ON(__nvgpu_clk_arb_worker_start(g))) {
|
|
nvgpu_warn(g, "clk arb worker cannot run!");
|
|
return;
|
|
}
|
|
|
|
nvgpu_spinlock_acquire(&g->clk_arb_worker.items_lock);
|
|
if (!nvgpu_list_empty(&work_item->worker_item)) {
|
|
/*
|
|
* Already queued, so will get processed eventually.
|
|
* The worker is probably awake already.
|
|
*/
|
|
nvgpu_spinlock_release(&g->clk_arb_worker.items_lock);
|
|
return;
|
|
}
|
|
nvgpu_list_add_tail(&work_item->worker_item, &g->clk_arb_worker.items);
|
|
nvgpu_spinlock_release(&g->clk_arb_worker.items_lock);
|
|
|
|
nvgpu_clk_arb_worker_wakeup(g);
|
|
}
|
|
|
|
/**
|
|
* Initialize the clk arb worker's metadata and start the background thread.
|
|
*/
|
|
static int nvgpu_clk_arb_worker_init(struct gk20a *g)
|
|
{
|
|
int err;
|
|
|
|
nvgpu_atomic_set(&g->clk_arb_worker.put, 0);
|
|
nvgpu_cond_init(&g->clk_arb_worker.wq);
|
|
nvgpu_init_list_node(&g->clk_arb_worker.items);
|
|
nvgpu_spinlock_init(&g->clk_arb_worker.items_lock);
|
|
err = nvgpu_mutex_init(&g->clk_arb_worker.start_lock);
|
|
if (err)
|
|
goto error_check;
|
|
|
|
err = __nvgpu_clk_arb_worker_start(g);
|
|
error_check:
|
|
if (err) {
|
|
nvgpu_err(g, "failed to start clk arb poller thread");
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int nvgpu_clk_arb_init_arbiter(struct gk20a *g)
|
|
{
|
|
struct nvgpu_clk_arb *arb;
|
|
u16 default_mhz;
|
|
int err;
|
|
int index;
|
|
struct nvgpu_clk_vf_table *table;
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
if (!g->ops.clk_arb.get_arbiter_clk_domains)
|
|
return 0;
|
|
|
|
arb = nvgpu_kzalloc(g, sizeof(struct nvgpu_clk_arb));
|
|
if (!arb)
|
|
return -ENOMEM;
|
|
|
|
err = nvgpu_mutex_init(&arb->pstate_lock);
|
|
if (err)
|
|
goto mutex_fail;
|
|
nvgpu_spinlock_init(&arb->sessions_lock);
|
|
nvgpu_spinlock_init(&arb->users_lock);
|
|
nvgpu_spinlock_init(&arb->requests_lock);
|
|
|
|
arb->mclk_f_points = nvgpu_kcalloc(g, MAX_F_POINTS, sizeof(u16));
|
|
if (!arb->mclk_f_points) {
|
|
err = -ENOMEM;
|
|
goto init_fail;
|
|
}
|
|
|
|
arb->gpc2clk_f_points = nvgpu_kcalloc(g, MAX_F_POINTS, sizeof(u16));
|
|
if (!arb->gpc2clk_f_points) {
|
|
err = -ENOMEM;
|
|
goto init_fail;
|
|
}
|
|
|
|
for (index = 0; index < 2; index++) {
|
|
table = &arb->vf_table_pool[index];
|
|
table->gpc2clk_num_points = MAX_F_POINTS;
|
|
table->mclk_num_points = MAX_F_POINTS;
|
|
|
|
table->gpc2clk_points = nvgpu_kcalloc(g, MAX_F_POINTS,
|
|
sizeof(struct nvgpu_clk_vf_point));
|
|
if (!table->gpc2clk_points) {
|
|
err = -ENOMEM;
|
|
goto init_fail;
|
|
}
|
|
|
|
|
|
table->mclk_points = nvgpu_kcalloc(g, MAX_F_POINTS,
|
|
sizeof(struct nvgpu_clk_vf_point));
|
|
if (!table->mclk_points) {
|
|
err = -ENOMEM;
|
|
goto init_fail;
|
|
}
|
|
}
|
|
|
|
g->clk_arb = arb;
|
|
arb->g = g;
|
|
|
|
err = g->ops.clk_arb.get_arbiter_clk_default(g,
|
|
CTRL_CLK_DOMAIN_MCLK, &default_mhz);
|
|
if (err < 0) {
|
|
err = -EINVAL;
|
|
goto init_fail;
|
|
}
|
|
|
|
arb->mclk_default_mhz = default_mhz;
|
|
|
|
err = g->ops.clk_arb.get_arbiter_clk_default(g,
|
|
CTRL_CLK_DOMAIN_GPC2CLK, &default_mhz);
|
|
if (err < 0) {
|
|
err = -EINVAL;
|
|
goto init_fail;
|
|
}
|
|
|
|
arb->gpc2clk_default_mhz = default_mhz;
|
|
|
|
arb->actual = &arb->actual_pool[0];
|
|
|
|
nvgpu_atomic_set(&arb->req_nr, 0);
|
|
|
|
nvgpu_atomic64_set(&arb->alarm_mask, 0);
|
|
err = nvgpu_clk_notification_queue_alloc(g, &arb->notification_queue,
|
|
DEFAULT_EVENT_NUMBER);
|
|
if (err < 0)
|
|
goto init_fail;
|
|
|
|
nvgpu_init_list_node(&arb->users);
|
|
nvgpu_init_list_node(&arb->sessions);
|
|
nvgpu_init_list_node(&arb->requests);
|
|
|
|
nvgpu_cond_init(&arb->request_wq);
|
|
|
|
nvgpu_init_list_node(&arb->update_vf_table_work_item.worker_item);
|
|
nvgpu_init_list_node(&arb->update_arb_work_item.worker_item);
|
|
arb->update_vf_table_work_item.arb = arb;
|
|
arb->update_arb_work_item.arb = arb;
|
|
arb->update_vf_table_work_item.item_type = CLK_ARB_WORK_UPDATE_VF_TABLE;
|
|
arb->update_arb_work_item.item_type = CLK_ARB_WORK_UPDATE_ARB;
|
|
|
|
err = nvgpu_clk_arb_worker_init(g);
|
|
if (err < 0)
|
|
goto init_fail;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
arb->debug = &arb->debug_pool[0];
|
|
|
|
if (!arb->debugfs_set) {
|
|
if (nvgpu_clk_arb_debugfs_init(g))
|
|
arb->debugfs_set = true;
|
|
}
|
|
#endif
|
|
err = clk_vf_point_cache(g);
|
|
if (err < 0)
|
|
goto init_fail;
|
|
|
|
err = nvgpu_clk_arb_update_vf_table(arb);
|
|
if (err < 0)
|
|
goto init_fail;
|
|
do {
|
|
/* Check that first run is completed */
|
|
nvgpu_smp_mb();
|
|
NVGPU_COND_WAIT_INTERRUPTIBLE(&arb->request_wq,
|
|
nvgpu_atomic_read(&arb->req_nr), 0);
|
|
} while (!nvgpu_atomic_read(&arb->req_nr));
|
|
|
|
|
|
return arb->status;
|
|
|
|
init_fail:
|
|
nvgpu_kfree(g, arb->gpc2clk_f_points);
|
|
nvgpu_kfree(g, arb->mclk_f_points);
|
|
|
|
for (index = 0; index < 2; index++) {
|
|
nvgpu_kfree(g, arb->vf_table_pool[index].gpc2clk_points);
|
|
nvgpu_kfree(g, arb->vf_table_pool[index].mclk_points);
|
|
}
|
|
|
|
nvgpu_mutex_destroy(&arb->pstate_lock);
|
|
|
|
mutex_fail:
|
|
nvgpu_kfree(g, arb);
|
|
|
|
return err;
|
|
}
|
|
|
|
void nvgpu_clk_arb_send_thermal_alarm(struct gk20a *g)
|
|
{
|
|
nvgpu_clk_arb_schedule_alarm(g,
|
|
(0x1UL << NVGPU_EVENT_ALARM_THERMAL_ABOVE_THRESHOLD));
|
|
}
|
|
|
|
void nvgpu_clk_arb_schedule_alarm(struct gk20a *g, u32 alarm)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
|
|
nvgpu_clk_arb_set_global_alarm(g, alarm);
|
|
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
|
|
}
|
|
|
|
static void nvgpu_clk_arb_worker_deinit(struct gk20a *g)
|
|
{
|
|
nvgpu_mutex_acquire(&g->clk_arb_worker.start_lock);
|
|
nvgpu_thread_stop(&g->clk_arb_worker.poll_task);
|
|
nvgpu_mutex_release(&g->clk_arb_worker.start_lock);
|
|
}
|
|
|
|
void nvgpu_clk_arb_cleanup_arbiter(struct gk20a *g)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
int index;
|
|
|
|
if (arb) {
|
|
nvgpu_clk_arb_worker_deinit(g);
|
|
|
|
nvgpu_kfree(g, arb->gpc2clk_f_points);
|
|
nvgpu_kfree(g, arb->mclk_f_points);
|
|
|
|
for (index = 0; index < 2; index++) {
|
|
nvgpu_kfree(g,
|
|
arb->vf_table_pool[index].gpc2clk_points);
|
|
nvgpu_kfree(g, arb->vf_table_pool[index].mclk_points);
|
|
}
|
|
nvgpu_mutex_destroy(&g->clk_arb->pstate_lock);
|
|
nvgpu_kfree(g, g->clk_arb);
|
|
g->clk_arb = NULL;
|
|
}
|
|
}
|
|
|
|
int nvgpu_clk_arb_init_session(struct gk20a *g,
|
|
struct nvgpu_clk_session **_session)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
struct nvgpu_clk_session *session = *(_session);
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
if (!g->ops.clk_arb.get_arbiter_clk_domains)
|
|
return 0;
|
|
|
|
session = nvgpu_kzalloc(g, sizeof(struct nvgpu_clk_session));
|
|
if (!session)
|
|
return -ENOMEM;
|
|
session->g = g;
|
|
|
|
nvgpu_ref_init(&session->refcount);
|
|
|
|
session->zombie = false;
|
|
session->target_pool[0].pstate = CTRL_PERF_PSTATE_P8;
|
|
/* make sure that the initialization of the pool is visible
|
|
* before the update
|
|
*/
|
|
nvgpu_smp_wmb();
|
|
session->target = &session->target_pool[0];
|
|
|
|
nvgpu_init_list_node(&session->targets);
|
|
nvgpu_spinlock_init(&session->session_lock);
|
|
|
|
nvgpu_spinlock_acquire(&arb->sessions_lock);
|
|
nvgpu_list_add_tail(&session->link, &arb->sessions);
|
|
nvgpu_spinlock_release(&arb->sessions_lock);
|
|
|
|
*_session = session;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_clk_arb_free_fd(struct nvgpu_ref *refcount)
|
|
{
|
|
struct nvgpu_clk_dev *dev = container_of(refcount,
|
|
struct nvgpu_clk_dev, refcount);
|
|
struct nvgpu_clk_session *session = dev->session;
|
|
|
|
nvgpu_kfree(session->g, dev);
|
|
}
|
|
|
|
void nvgpu_clk_arb_free_session(struct nvgpu_ref *refcount)
|
|
{
|
|
struct nvgpu_clk_session *session = container_of(refcount,
|
|
struct nvgpu_clk_session, refcount);
|
|
struct nvgpu_clk_arb *arb = session->g->clk_arb;
|
|
struct gk20a *g = session->g;
|
|
struct nvgpu_clk_dev *dev, *tmp;
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
if (arb) {
|
|
nvgpu_spinlock_acquire(&arb->sessions_lock);
|
|
nvgpu_list_del(&session->link);
|
|
nvgpu_spinlock_release(&arb->sessions_lock);
|
|
}
|
|
|
|
nvgpu_spinlock_acquire(&session->session_lock);
|
|
nvgpu_list_for_each_entry_safe(dev, tmp, &session->targets,
|
|
nvgpu_clk_dev, node) {
|
|
nvgpu_ref_put(&dev->refcount, nvgpu_clk_arb_free_fd);
|
|
nvgpu_list_del(&dev->node);
|
|
}
|
|
nvgpu_spinlock_release(&session->session_lock);
|
|
|
|
nvgpu_kfree(g, session);
|
|
}
|
|
|
|
void nvgpu_clk_arb_release_session(struct gk20a *g,
|
|
struct nvgpu_clk_session *session)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
|
|
clk_arb_dbg(g, " ");
|
|
|
|
session->zombie = true;
|
|
nvgpu_ref_put(&session->refcount, nvgpu_clk_arb_free_session);
|
|
if (arb)
|
|
nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item);
|
|
}
|
|
|
|
void nvgpu_clk_arb_schedule_vf_table_update(struct gk20a *g)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
|
|
nvgpu_clk_arb_worker_enqueue(g, &arb->update_vf_table_work_item);
|
|
}
|
|
|
|
/* This function is inherently unsafe to call while arbiter is running
|
|
* arbiter must be blocked before calling this function
|
|
*/
|
|
int nvgpu_clk_arb_get_current_pstate(struct gk20a *g)
|
|
{
|
|
return NV_ACCESS_ONCE(g->clk_arb->actual->pstate);
|
|
}
|
|
|
|
void nvgpu_clk_arb_pstate_change_lock(struct gk20a *g, bool lock)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
|
|
if (lock)
|
|
nvgpu_mutex_acquire(&arb->pstate_lock);
|
|
else
|
|
nvgpu_mutex_release(&arb->pstate_lock);
|
|
}
|
|
|
|
bool nvgpu_clk_arb_is_valid_domain(struct gk20a *g, u32 api_domain)
|
|
{
|
|
u32 clk_domains = g->ops.clk_arb.get_arbiter_clk_domains(g);
|
|
|
|
switch (api_domain) {
|
|
case NVGPU_CLK_DOMAIN_MCLK:
|
|
return (clk_domains & CTRL_CLK_DOMAIN_MCLK) != 0;
|
|
|
|
case NVGPU_CLK_DOMAIN_GPCCLK:
|
|
return (clk_domains & CTRL_CLK_DOMAIN_GPC2CLK) != 0;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int nvgpu_clk_arb_get_arbiter_clk_range(struct gk20a *g, u32 api_domain,
|
|
u16 *min_mhz, u16 *max_mhz)
|
|
{
|
|
int ret;
|
|
|
|
switch (api_domain) {
|
|
case NVGPU_CLK_DOMAIN_MCLK:
|
|
ret = g->ops.clk_arb.get_arbiter_clk_range(g,
|
|
CTRL_CLK_DOMAIN_MCLK, min_mhz, max_mhz);
|
|
return ret;
|
|
|
|
case NVGPU_CLK_DOMAIN_GPCCLK:
|
|
ret = g->ops.clk_arb.get_arbiter_clk_range(g,
|
|
CTRL_CLK_DOMAIN_GPC2CLK, min_mhz, max_mhz);
|
|
if (!ret) {
|
|
*min_mhz /= 2;
|
|
*max_mhz /= 2;
|
|
}
|
|
return ret;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int nvgpu_clk_arb_get_arbiter_clk_f_points(struct gk20a *g,
|
|
u32 api_domain, u32 *max_points, u16 *fpoints)
|
|
{
|
|
int err;
|
|
u32 i;
|
|
|
|
switch (api_domain) {
|
|
case NVGPU_CLK_DOMAIN_GPCCLK:
|
|
err = clk_domain_get_f_points(g, CTRL_CLK_DOMAIN_GPC2CLK,
|
|
max_points, fpoints);
|
|
if (err || !fpoints)
|
|
return err;
|
|
for (i = 0; i < *max_points; i++)
|
|
fpoints[i] /= 2;
|
|
return 0;
|
|
case NVGPU_CLK_DOMAIN_MCLK:
|
|
return clk_domain_get_f_points(g, CTRL_CLK_DOMAIN_MCLK,
|
|
max_points, fpoints);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int nvgpu_clk_arb_get_session_target_mhz(struct nvgpu_clk_session *session,
|
|
u32 api_domain, u16 *freq_mhz)
|
|
{
|
|
int err = 0;
|
|
struct nvgpu_clk_arb_target *target = session->target;
|
|
|
|
switch (api_domain) {
|
|
case NVGPU_CLK_DOMAIN_MCLK:
|
|
*freq_mhz = target->mclk;
|
|
break;
|
|
|
|
case NVGPU_CLK_DOMAIN_GPCCLK:
|
|
*freq_mhz = target->gpc2clk / 2ULL;
|
|
break;
|
|
|
|
default:
|
|
*freq_mhz = 0;
|
|
err = -EINVAL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int nvgpu_clk_arb_get_arbiter_actual_mhz(struct gk20a *g,
|
|
u32 api_domain, u16 *freq_mhz)
|
|
{
|
|
struct nvgpu_clk_arb *arb = g->clk_arb;
|
|
int err = 0;
|
|
struct nvgpu_clk_arb_target *actual = arb->actual;
|
|
|
|
switch (api_domain) {
|
|
case NVGPU_CLK_DOMAIN_MCLK:
|
|
*freq_mhz = actual->mclk;
|
|
break;
|
|
|
|
case NVGPU_CLK_DOMAIN_GPCCLK:
|
|
*freq_mhz = actual->gpc2clk / 2ULL;
|
|
break;
|
|
|
|
default:
|
|
*freq_mhz = 0;
|
|
err = -EINVAL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int nvgpu_clk_arb_get_arbiter_effective_mhz(struct gk20a *g,
|
|
u32 api_domain, u16 *freq_mhz)
|
|
{
|
|
switch (api_domain) {
|
|
case NVGPU_CLK_DOMAIN_MCLK:
|
|
*freq_mhz = g->ops.clk.measure_freq(g, CTRL_CLK_DOMAIN_MCLK) /
|
|
1000000ULL;
|
|
return 0;
|
|
|
|
case NVGPU_CLK_DOMAIN_GPCCLK:
|
|
*freq_mhz = g->ops.clk.measure_freq(g,
|
|
CTRL_CLK_DOMAIN_GPC2CLK) / 2000000ULL;
|
|
return 0;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|