Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/sync_gk20a.c
Konsta Holtta 719923ad9f gpu: nvgpu: rename gpu ioctls and structs to nvgpu
To help remove the nvhost dependency from nvgpu, rename ioctl defines
and structures used by nvgpu such that nvhost is replaced by nvgpu.
Duplicate some structures as needed.

Update header guards and such accordingly.

Change-Id: Ifc3a867713072bae70256502735583ab38381877
Signed-off-by: Konsta Holtta <kholtta@nvidia.com>
Reviewed-on: http://git-master/r/542620
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
Tested-by: Terje Bergstrom <tbergstrom@nvidia.com>
2015-03-18 12:11:33 -07:00

398 lines
9.8 KiB
C

/*
* GK20A Sync Framework Integration
*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include "sync_gk20a.h"
#include <linux/kernel.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/nvhost_ioctl.h>
#include "../../../staging/android/sync.h"
#include "semaphore_gk20a.h"
static const struct sync_timeline_ops gk20a_sync_timeline_ops;
struct gk20a_sync_timeline {
struct sync_timeline obj;
u32 max;
u32 min;
};
/**
* The sync framework dups pts when merging fences. We share a single
* refcounted gk20a_sync_pt for each duped pt.
*/
struct gk20a_sync_pt {
struct kref refcount;
u32 thresh;
struct gk20a_semaphore *sema;
struct gk20a_sync_timeline *obj;
struct sync_fence *dep;
ktime_t dep_timestamp;
};
struct gk20a_sync_pt_inst {
struct sync_pt pt;
struct gk20a_sync_pt *shared;
};
/**
* Compares sync pt values a and b, both of which will trigger either before
* or after ref (i.e. a and b trigger before ref, or a and b trigger after
* ref). Supplying ref allows us to handle wrapping correctly.
*
* Returns -1 if a < b (a triggers before b)
* 0 if a = b (a and b trigger at the same time)
* 1 if a > b (b triggers before a)
*/
static int __gk20a_sync_pt_compare_ref(
u32 ref,
u32 a,
u32 b)
{
/*
* We normalize both a and b by subtracting ref from them.
* Denote the normalized values by a_n and b_n. Note that because
* of wrapping, a_n and/or b_n may be negative.
*
* The normalized values a_n and b_n satisfy:
* - a positive value triggers before a negative value
* - a smaller positive value triggers before a greater positive value
* - a smaller negative value (greater in absolute value) triggers
* before a greater negative value (smaller in absolute value).
*
* Thus we can just stick to unsigned arithmetic and compare
* (u32)a_n to (u32)b_n.
*
* Just to reiterate the possible cases:
*
* 1A) ...ref..a....b....
* 1B) ...ref..b....a....
* 2A) ...b....ref..a.... b_n < 0
* 2B) ...a....ref..b.... a_n > 0
* 3A) ...a....b....ref.. a_n < 0, b_n < 0
* 3A) ...b....a....ref.. a_n < 0, b_n < 0
*/
u32 a_n = a - ref;
u32 b_n = b - ref;
if (a_n < b_n)
return -1;
else if (a_n > b_n)
return 1;
else
return 0;
}
struct gk20a_sync_pt *to_gk20a_sync_pt(struct sync_pt *pt)
{
struct gk20a_sync_pt_inst *pti =
container_of(pt, struct gk20a_sync_pt_inst, pt);
return pti->shared;
}
struct gk20a_sync_timeline *to_gk20a_timeline(struct sync_timeline *obj)
{
if (WARN_ON(obj->ops != &gk20a_sync_timeline_ops))
return NULL;
return (struct gk20a_sync_timeline *)obj;
}
static void gk20a_sync_pt_free_shared(struct kref *ref)
{
struct gk20a_sync_pt *pt =
container_of(ref, struct gk20a_sync_pt, refcount);
if (pt->dep)
sync_fence_put(pt->dep);
if (pt->sema)
gk20a_semaphore_put(pt->sema);
kfree(pt);
}
static struct gk20a_sync_pt *gk20a_sync_pt_create_shared(
struct gk20a_sync_timeline *obj,
struct gk20a_semaphore *sema,
struct sync_fence *dependency)
{
struct gk20a_sync_pt *shared;
shared = kzalloc(sizeof(*shared), GFP_KERNEL);
if (!shared)
return NULL;
kref_init(&shared->refcount);
shared->obj = obj;
shared->sema = sema;
shared->thresh = ++obj->max; /* sync framework has a lock */
/* Store the dependency fence for this pt. */
if (dependency) {
if (dependency->status == 0) {
shared->dep = dependency;
} else {
shared->dep_timestamp = ktime_get();
sync_fence_put(dependency);
}
}
gk20a_semaphore_get(sema);
return shared;
}
static struct sync_pt *gk20a_sync_pt_create_inst(
struct gk20a_sync_timeline *obj,
struct gk20a_semaphore *sema,
struct sync_fence *dependency)
{
struct gk20a_sync_pt_inst *pti;
pti = (struct gk20a_sync_pt_inst *)
sync_pt_create(&obj->obj, sizeof(*pti));
if (!pti)
return NULL;
pti->shared = gk20a_sync_pt_create_shared(obj, sema, dependency);
if (!pti->shared) {
sync_pt_free(&pti->pt);
return NULL;
}
return &pti->pt;
}
static void gk20a_sync_pt_free_inst(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
if (pt)
kref_put(&pt->refcount, gk20a_sync_pt_free_shared);
}
static struct sync_pt *gk20a_sync_pt_dup_inst(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt_inst *pti;
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
pti = (struct gk20a_sync_pt_inst *)
sync_pt_create(&pt->obj->obj, sizeof(*pti));
if (!pti)
return NULL;
pti->shared = pt;
kref_get(&pt->refcount);
return &pti->pt;
}
static int gk20a_sync_pt_has_signaled(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
struct gk20a_sync_timeline *obj = pt->obj;
struct sync_pt *pos;
bool signaled;
if (!pt->sema)
return true;
/* Acquired == not realeased yet == active == not signaled. */
signaled = !gk20a_semaphore_is_acquired(pt->sema);
if (signaled) {
/* Update min if necessary. */
if (__gk20a_sync_pt_compare_ref(obj->max, pt->thresh,
obj->min) == 1)
obj->min = pt->thresh;
/* Release the dependency fence, but get its timestamp
* first.*/
if (pt->dep) {
s64 ns = 0;
struct list_head *dep_pts = &pt->dep->pt_list_head;
list_for_each_entry(pos, dep_pts, pt_list) {
ns = max(ns, ktime_to_ns(pos->timestamp));
}
pt->dep_timestamp = ns_to_ktime(ns);
sync_fence_put(pt->dep);
pt->dep = NULL;
}
/* Release the semaphore to the pool. */
gk20a_semaphore_put(pt->sema);
pt->sema = NULL;
}
return signaled;
}
static inline ktime_t gk20a_sync_pt_duration(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
if (!gk20a_sync_pt_has_signaled(sync_pt) || !pt->dep_timestamp.tv64)
return ns_to_ktime(0);
return ktime_sub(sync_pt->timestamp, pt->dep_timestamp);
}
static int gk20a_sync_pt_compare(struct sync_pt *a, struct sync_pt *b)
{
bool a_expired;
bool b_expired;
struct gk20a_sync_pt *pt_a = to_gk20a_sync_pt(a);
struct gk20a_sync_pt *pt_b = to_gk20a_sync_pt(b);
if (WARN_ON(pt_a->obj != pt_b->obj))
return 0;
/* Early out */
if (a == b)
return 0;
a_expired = gk20a_sync_pt_has_signaled(a);
b_expired = gk20a_sync_pt_has_signaled(b);
if (a_expired && !b_expired) {
/* Easy, a was earlier */
return -1;
} else if (!a_expired && b_expired) {
/* Easy, b was earlier */
return 1;
}
/* Both a and b are expired (trigger before min) or not
* expired (trigger after min), so we can use min
* as a reference value for __gk20a_sync_pt_compare_ref.
*/
return __gk20a_sync_pt_compare_ref(pt_a->obj->min,
pt_a->thresh, pt_b->thresh);
}
static u32 gk20a_sync_timeline_current(struct gk20a_sync_timeline *obj)
{
return obj->min;
}
static void gk20a_sync_timeline_value_str(struct sync_timeline *timeline,
char *str, int size)
{
struct gk20a_sync_timeline *obj =
(struct gk20a_sync_timeline *)timeline;
snprintf(str, size, "%d", gk20a_sync_timeline_current(obj));
}
static void gk20a_sync_pt_value_str(struct sync_pt *sync_pt, char *str,
int size)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
ktime_t dur = gk20a_sync_pt_duration(sync_pt);
if (pt->dep) {
snprintf(str, size, "(dep: [%p] %s) %d",
pt->dep, pt->dep->name, pt->thresh);
} else if (dur.tv64) {
struct timeval tv = ktime_to_timeval(dur);
snprintf(str, size, "(took %ld.%03ld ms) %d",
tv.tv_sec * 1000 + tv.tv_usec / 1000,
tv.tv_usec % 1000,
pt->thresh);
} else {
snprintf(str, size, "%d", pt->thresh);
}
}
static int gk20a_sync_fill_driver_data(struct sync_pt *sync_pt,
void *data, int size)
{
struct gk20a_sync_pt_info info;
if (size < sizeof(info))
return -ENOMEM;
info.hw_op_ns = ktime_to_ns(gk20a_sync_pt_duration(sync_pt));
memcpy(data, &info, sizeof(info));
return sizeof(info);
}
static const struct sync_timeline_ops gk20a_sync_timeline_ops = {
.driver_name = "gk20a_semaphore",
.dup = gk20a_sync_pt_dup_inst,
.has_signaled = gk20a_sync_pt_has_signaled,
.compare = gk20a_sync_pt_compare,
.free_pt = gk20a_sync_pt_free_inst,
.fill_driver_data = gk20a_sync_fill_driver_data,
.timeline_value_str = gk20a_sync_timeline_value_str,
.pt_value_str = gk20a_sync_pt_value_str,
};
/* Public API */
struct sync_fence *gk20a_sync_fence_fdget(int fd)
{
return sync_fence_fdget(fd);
}
void gk20a_sync_timeline_signal(struct sync_timeline *timeline)
{
sync_timeline_signal(timeline);
}
void gk20a_sync_timeline_destroy(struct sync_timeline *timeline)
{
sync_timeline_destroy(timeline);
}
struct sync_timeline *gk20a_sync_timeline_create(
const char *fmt, ...)
{
struct gk20a_sync_timeline *obj;
char name[30];
va_list args;
va_start(args, fmt);
vsnprintf(name, sizeof(name), fmt, args);
va_end(args);
obj = (struct gk20a_sync_timeline *)
sync_timeline_create(&gk20a_sync_timeline_ops,
sizeof(struct gk20a_sync_timeline),
name);
if (!obj)
return NULL;
obj->max = 0;
obj->min = 0;
return &obj->obj;
}
struct sync_fence *gk20a_sync_fence_create(struct sync_timeline *obj,
struct gk20a_semaphore *sema,
struct sync_fence *dependency,
const char *fmt, ...)
{
char name[30];
va_list args;
struct sync_pt *pt;
struct sync_fence *fence;
struct gk20a_sync_timeline *timeline = to_gk20a_timeline(obj);
pt = gk20a_sync_pt_create_inst(timeline, sema, dependency);
if (pt == NULL)
return NULL;
va_start(args, fmt);
vsnprintf(name, sizeof(name), fmt, args);
va_end(args);
fence = sync_fence_create(name, pt);
if (fence == NULL) {
sync_pt_free(pt);
return NULL;
}
return fence;
}