mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 01:50:07 +03:00
Basic units like fifo, rc are having dependency on gr_falcon. Avoided outside gr units dependency on gr_falcon by moving following functions to gr: int nvgpu_gr_falcon_disable_ctxsw(struct gk20a *g, struct nvgpu_gr_falcon *falcon); -> int nvgpu_gr_disable_ctxsw(struct gk20a *g); int nvgpu_gr_falcon_enable_ctxsw(struct gk20a *g, struct nvgpu_gr_falcon *falcon); -> int nvgpu_gr_enable_ctxsw(struct gk20a *g); int nvgpu_gr_falcon_halt_pipe(struct gk20a *g); -> int nvgpu_gr_halt_pipe(struct gk20a *g); HALs also moved accordingly and updated code to reflect this. Also moved following data back to gr from gr_falcon: struct nvgpu_mutex ctxsw_disable_mutex; int ctxsw_disable_count; JIRA NVGPU-3168 Change-Id: I2bdd4a646b6f87df4c835638fc83c061acf4051e Signed-off-by: Seshendra Gadagottu <sgadagottu@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/2100009 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2532 lines
71 KiB
C
2532 lines
71 KiB
C
/*
|
|
* GK20A Graphics
|
|
*
|
|
* Copyright (c) 2011-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/timers.h>
|
|
#include <nvgpu/nvgpu_common.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/firmware.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/debug.h>
|
|
#include <nvgpu/barrier.h>
|
|
#include <nvgpu/mm.h>
|
|
#include <nvgpu/debugger.h>
|
|
#include <nvgpu/netlist.h>
|
|
#include <nvgpu/error_notifier.h>
|
|
#include <nvgpu/ecc.h>
|
|
#include <nvgpu/io.h>
|
|
#include <nvgpu/utils.h>
|
|
#include <nvgpu/fifo.h>
|
|
#include <nvgpu/gk20a.h>
|
|
#include <nvgpu/channel.h>
|
|
#include <nvgpu/string.h>
|
|
#include <nvgpu/regops.h>
|
|
#include <nvgpu/gr/global_ctx.h>
|
|
#include <nvgpu/gr/subctx.h>
|
|
#include <nvgpu/gr/ctx.h>
|
|
#include <nvgpu/gr/gr.h>
|
|
#include <nvgpu/gr/gr_intr.h>
|
|
#include <nvgpu/gr/gr_falcon.h>
|
|
#include <nvgpu/gr/obj_ctx.h>
|
|
#include <nvgpu/gr/config.h>
|
|
#include <nvgpu/gr/fecs_trace.h>
|
|
#include <nvgpu/gr/hwpm_map.h>
|
|
#include <nvgpu/engines.h>
|
|
#include <nvgpu/engine_status.h>
|
|
#include <nvgpu/nvgpu_err.h>
|
|
#include <nvgpu/power_features/cg.h>
|
|
#include <nvgpu/power_features/pg.h>
|
|
#include <nvgpu/preempt.h>
|
|
|
|
#include "gr_gk20a.h"
|
|
#include "gr_pri_gk20a.h"
|
|
|
|
#include "common/gr/gr_priv.h"
|
|
|
|
#include <nvgpu/hw/gk20a/hw_fifo_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_gr_gk20a.h>
|
|
|
|
static void nvgpu_report_gr_sm_exception(struct gk20a *g, u32 gpc, u32 tpc,
|
|
u32 sm, u32 hww_warp_esr_status, u64 hww_warp_esr_pc)
|
|
{
|
|
int ret;
|
|
struct gr_sm_mcerr_info err_info;
|
|
struct channel_gk20a *ch;
|
|
struct gr_err_info info;
|
|
u32 tsgid, chid, curr_ctx, inst = 0;
|
|
|
|
if (g->ops.gr.err_ops.report_gr_err == NULL) {
|
|
return;
|
|
}
|
|
|
|
tsgid = NVGPU_INVALID_TSG_ID;
|
|
curr_ctx = g->ops.gr.falcon.get_current_ctx(g);
|
|
ch = nvgpu_gr_intr_get_channel_from_ctx(g, curr_ctx, &tsgid);
|
|
chid = ch != NULL ? ch->chid : FIFO_INVAL_CHANNEL_ID;
|
|
if (ch != NULL) {
|
|
gk20a_channel_put(ch);
|
|
}
|
|
|
|
(void) memset(&err_info, 0, sizeof(err_info));
|
|
(void) memset(&info, 0, sizeof(info));
|
|
err_info.curr_ctx = curr_ctx;
|
|
err_info.chid = chid;
|
|
err_info.tsgid = tsgid;
|
|
err_info.hww_warp_esr_pc = hww_warp_esr_pc;
|
|
err_info.hww_warp_esr_status = hww_warp_esr_status;
|
|
err_info.gpc = gpc;
|
|
err_info.tpc = tpc;
|
|
err_info.sm = sm;
|
|
info.sm_mcerr_info = &err_info;
|
|
ret = g->ops.gr.err_ops.report_gr_err(g,
|
|
NVGPU_ERR_MODULE_SM, inst, GPU_SM_MACHINE_CHECK_ERROR,
|
|
&info);
|
|
if (ret != 0) {
|
|
nvgpu_err(g, "failed to report SM_EXCEPTION "
|
|
"gpc=%u, tpc=%u, sm=%u, esr_status=%x",
|
|
gpc, tpc, sm, hww_warp_esr_status);
|
|
}
|
|
}
|
|
|
|
static void gr_report_ctxsw_error(struct gk20a *g, u32 err_type, u32 chid,
|
|
u32 mailbox_value)
|
|
{
|
|
int ret = 0;
|
|
struct ctxsw_err_info err_info;
|
|
|
|
err_info.curr_ctx = g->ops.gr.falcon.get_current_ctx(g);
|
|
err_info.ctxsw_status0 = g->ops.gr.falcon.read_fecs_ctxsw_status0(g);
|
|
err_info.ctxsw_status1 = g->ops.gr.falcon.read_fecs_ctxsw_status1(g);
|
|
err_info.mailbox_value = mailbox_value;
|
|
err_info.chid = chid;
|
|
|
|
if (g->ops.gr.err_ops.report_ctxsw_err != NULL) {
|
|
ret = g->ops.gr.err_ops.report_ctxsw_err(g,
|
|
NVGPU_ERR_MODULE_FECS,
|
|
err_type, (void *)&err_info);
|
|
if (ret != 0) {
|
|
nvgpu_err(g, "Failed to report FECS CTXSW error: %d",
|
|
err_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
int gr_gk20a_update_smpc_ctxsw_mode(struct gk20a *g,
|
|
struct channel_gk20a *c,
|
|
bool enable_smpc_ctxsw)
|
|
{
|
|
struct tsg_gk20a *tsg;
|
|
int ret;
|
|
|
|
nvgpu_log_fn(g, " ");
|
|
|
|
tsg = tsg_gk20a_from_ch(c);
|
|
if (tsg == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = gk20a_disable_channel_tsg(g, c);
|
|
if (ret != 0) {
|
|
nvgpu_err(g, "failed to disable channel/TSG");
|
|
goto out;
|
|
}
|
|
ret = nvgpu_preempt_channel(g, c);
|
|
if (ret != 0) {
|
|
gk20a_enable_channel_tsg(g, c);
|
|
nvgpu_err(g, "failed to preempt channel/TSG");
|
|
goto out;
|
|
}
|
|
|
|
ret = nvgpu_gr_ctx_set_smpc_mode(g, tsg->gr_ctx, enable_smpc_ctxsw);
|
|
|
|
out:
|
|
gk20a_enable_channel_tsg(g, c);
|
|
return ret;
|
|
}
|
|
|
|
int gr_gk20a_update_hwpm_ctxsw_mode(struct gk20a *g,
|
|
struct channel_gk20a *c,
|
|
u64 gpu_va,
|
|
u32 mode)
|
|
{
|
|
struct tsg_gk20a *tsg;
|
|
struct nvgpu_gr_ctx *gr_ctx;
|
|
bool skip_update = false;
|
|
int ret;
|
|
|
|
nvgpu_log_fn(g, " ");
|
|
|
|
tsg = tsg_gk20a_from_ch(c);
|
|
if (tsg == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
gr_ctx = tsg->gr_ctx;
|
|
|
|
if (mode != NVGPU_GR_CTX_HWPM_CTXSW_MODE_NO_CTXSW) {
|
|
nvgpu_gr_ctx_set_size(g->gr->gr_ctx_desc,
|
|
NVGPU_GR_CTX_PM_CTX,
|
|
nvgpu_gr_hwpm_map_get_size(g->gr->hwpm_map));
|
|
|
|
ret = nvgpu_gr_ctx_alloc_pm_ctx(g, gr_ctx,
|
|
g->gr->gr_ctx_desc, c->vm,
|
|
gpu_va);
|
|
if (ret != 0) {
|
|
nvgpu_err(g,
|
|
"failed to allocate pm ctxt buffer");
|
|
return ret;
|
|
}
|
|
|
|
if ((mode == NVGPU_GR_CTX_HWPM_CTXSW_MODE_STREAM_OUT_CTXSW) &&
|
|
(g->ops.gr.init_hwpm_pmm_register != NULL)) {
|
|
g->ops.gr.init_hwpm_pmm_register(g);
|
|
}
|
|
}
|
|
|
|
ret = nvgpu_gr_ctx_prepare_hwpm_mode(g, gr_ctx, mode, &skip_update);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
if (skip_update) {
|
|
return 0;
|
|
}
|
|
|
|
ret = gk20a_disable_channel_tsg(g, c);
|
|
if (ret != 0) {
|
|
nvgpu_err(g, "failed to disable channel/TSG");
|
|
return ret;
|
|
}
|
|
|
|
ret = nvgpu_preempt_channel(g, c);
|
|
if (ret != 0) {
|
|
gk20a_enable_channel_tsg(g, c);
|
|
nvgpu_err(g, "failed to preempt channel/TSG");
|
|
return ret;
|
|
}
|
|
|
|
if (c->subctx != NULL) {
|
|
struct channel_gk20a *ch;
|
|
|
|
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
|
|
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
|
|
ret = nvgpu_gr_ctx_set_hwpm_mode(g, gr_ctx, false);
|
|
if (ret == 0) {
|
|
nvgpu_gr_subctx_set_hwpm_mode(g, ch->subctx,
|
|
gr_ctx);
|
|
}
|
|
}
|
|
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
|
|
} else {
|
|
ret = nvgpu_gr_ctx_set_hwpm_mode(g, gr_ctx, true);
|
|
}
|
|
|
|
/* enable channel */
|
|
gk20a_enable_channel_tsg(g, c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int gk20a_gr_handle_fecs_error(struct gk20a *g, struct channel_gk20a *ch,
|
|
struct nvgpu_gr_isr_data *isr_data)
|
|
{
|
|
u32 gr_fecs_intr, mailbox_value;
|
|
int ret = 0;
|
|
struct nvgpu_fecs_host_intr_status fecs_host_intr;
|
|
u32 chid = isr_data->ch != NULL ?
|
|
isr_data->ch->chid : FIFO_INVAL_CHANNEL_ID;
|
|
u32 mailbox_id = NVGPU_GR_FALCON_FECS_CTXSW_MAILBOX6;
|
|
|
|
gr_fecs_intr = g->ops.gr.falcon.fecs_host_intr_status(g,
|
|
&fecs_host_intr);
|
|
if (gr_fecs_intr == 0U) {
|
|
return 0;
|
|
}
|
|
|
|
if (fecs_host_intr.unimp_fw_method_active) {
|
|
mailbox_value = g->ops.gr.falcon.read_fecs_ctxsw_mailbox(g,
|
|
mailbox_id);
|
|
nvgpu_gr_intr_set_error_notifier(g, isr_data,
|
|
NVGPU_ERR_NOTIFIER_FECS_ERR_UNIMP_FIRMWARE_METHOD);
|
|
nvgpu_err(g,
|
|
"firmware method error 0x%08x for offset 0x%04x",
|
|
mailbox_value,
|
|
isr_data->data_lo);
|
|
ret = -1;
|
|
} else if (fecs_host_intr.watchdog_active) {
|
|
gr_report_ctxsw_error(g, GPU_FECS_CTXSW_WATCHDOG_TIMEOUT,
|
|
chid, 0);
|
|
/* currently, recovery is not initiated */
|
|
nvgpu_err(g, "fecs watchdog triggered for channel %u, "
|
|
"cannot ctxsw anymore !!", chid);
|
|
g->ops.gr.falcon.dump_stats(g);
|
|
} else if (fecs_host_intr.ctxsw_intr0 != 0U) {
|
|
mailbox_value = g->ops.gr.falcon.read_fecs_ctxsw_mailbox(g,
|
|
mailbox_id);
|
|
#ifdef CONFIG_GK20A_CTXSW_TRACE
|
|
if (mailbox_value ==
|
|
g->ops.gr.fecs_trace.get_buffer_full_mailbox_val()) {
|
|
nvgpu_info(g, "ctxsw intr0 set by ucode, "
|
|
"timestamp buffer full");
|
|
nvgpu_gr_fecs_trace_reset_buffer(g);
|
|
} else
|
|
#endif
|
|
/*
|
|
* The mailbox values may vary across chips hence keeping it
|
|
* as a HAL.
|
|
*/
|
|
if ((g->ops.gr.get_ctxsw_checksum_mismatch_mailbox_val != NULL)
|
|
&& (mailbox_value ==
|
|
g->ops.gr.get_ctxsw_checksum_mismatch_mailbox_val())) {
|
|
|
|
gr_report_ctxsw_error(g, GPU_FECS_CTXSW_CRC_MISMATCH,
|
|
chid, mailbox_value);
|
|
nvgpu_err(g, "ctxsw intr0 set by ucode, "
|
|
"ctxsw checksum mismatch");
|
|
ret = -1;
|
|
} else {
|
|
/*
|
|
* Other errors are also treated as fatal and channel
|
|
* recovery is initiated and error is reported to
|
|
* 3LSS.
|
|
*/
|
|
gr_report_ctxsw_error(g, GPU_FECS_FAULT_DURING_CTXSW,
|
|
chid, mailbox_value);
|
|
nvgpu_err(g,
|
|
"ctxsw intr0 set by ucode, error_code: 0x%08x",
|
|
mailbox_value);
|
|
ret = -1;
|
|
}
|
|
} else if (fecs_host_intr.fault_during_ctxsw_active) {
|
|
gr_report_ctxsw_error(g, GPU_FECS_FAULT_DURING_CTXSW,
|
|
chid, 0);
|
|
nvgpu_err(g, "fecs fault during ctxsw for channel %u", chid);
|
|
ret = -1;
|
|
} else {
|
|
nvgpu_err(g,
|
|
"unhandled fecs error interrupt 0x%08x for channel %u",
|
|
gr_fecs_intr, chid);
|
|
g->ops.gr.falcon.dump_stats(g);
|
|
}
|
|
|
|
g->ops.gr.falcon.fecs_host_clear_intr(g, gr_fecs_intr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int gk20a_gr_lock_down_sm(struct gk20a *g,
|
|
u32 gpc, u32 tpc, u32 sm, u32 global_esr_mask,
|
|
bool check_errors)
|
|
{
|
|
u32 offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
u32 dbgr_control0;
|
|
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"GPC%d TPC%d SM%d: assert stop trigger", gpc, tpc, sm);
|
|
|
|
/* assert stop trigger */
|
|
dbgr_control0 =
|
|
gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_control0_r() + offset);
|
|
dbgr_control0 |= gr_gpc0_tpc0_sm_dbgr_control0_stop_trigger_enable_f();
|
|
gk20a_writel(g,
|
|
gr_gpc0_tpc0_sm_dbgr_control0_r() + offset, dbgr_control0);
|
|
|
|
return g->ops.gr.wait_for_sm_lock_down(g, gpc, tpc, sm, global_esr_mask,
|
|
check_errors);
|
|
}
|
|
|
|
bool gk20a_gr_sm_debugger_attached(struct gk20a *g)
|
|
{
|
|
u32 dbgr_control0 = gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_control0_r());
|
|
|
|
/* check if an sm debugger is attached.
|
|
* assumption: all SMs will have debug mode enabled/disabled
|
|
* uniformly. */
|
|
if (gr_gpc0_tpc0_sm_dbgr_control0_debugger_mode_v(dbgr_control0) ==
|
|
gr_gpc0_tpc0_sm_dbgr_control0_debugger_mode_on_v()) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int gr_gk20a_handle_sm_exception(struct gk20a *g, u32 gpc, u32 tpc, u32 sm,
|
|
bool *post_event, struct channel_gk20a *fault_ch,
|
|
u32 *hww_global_esr)
|
|
{
|
|
int ret = 0;
|
|
bool do_warp_sync = false, early_exit = false, ignore_debugger = false;
|
|
bool disable_sm_exceptions = true;
|
|
u32 offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
bool sm_debugger_attached;
|
|
u32 global_esr, warp_esr, global_mask;
|
|
u64 hww_warp_esr_pc = 0;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, " ");
|
|
|
|
sm_debugger_attached = g->ops.gr.sm_debugger_attached(g);
|
|
|
|
global_esr = g->ops.gr.get_sm_hww_global_esr(g, gpc, tpc, sm);
|
|
*hww_global_esr = global_esr;
|
|
warp_esr = g->ops.gr.get_sm_hww_warp_esr(g, gpc, tpc, sm);
|
|
global_mask = g->ops.gr.get_sm_no_lock_down_hww_global_esr_mask(g);
|
|
|
|
if (!sm_debugger_attached) {
|
|
nvgpu_err(g, "sm hww global 0x%08x warp 0x%08x",
|
|
global_esr, warp_esr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"sm hww global 0x%08x warp 0x%08x", global_esr, warp_esr);
|
|
|
|
/*
|
|
* Check and report any fatal wrap errors.
|
|
*/
|
|
if ((global_esr & ~global_mask) != 0U) {
|
|
if (g->ops.gr.get_sm_hww_warp_esr_pc != NULL) {
|
|
hww_warp_esr_pc = g->ops.gr.get_sm_hww_warp_esr_pc(g,
|
|
offset);
|
|
}
|
|
nvgpu_report_gr_sm_exception(g, gpc, tpc, sm, warp_esr,
|
|
hww_warp_esr_pc);
|
|
}
|
|
nvgpu_pg_elpg_protected_call(g,
|
|
g->ops.gr.record_sm_error_state(g, gpc, tpc, sm, fault_ch));
|
|
|
|
if (g->ops.gr.pre_process_sm_exception != NULL) {
|
|
ret = g->ops.gr.pre_process_sm_exception(g, gpc, tpc, sm,
|
|
global_esr, warp_esr,
|
|
sm_debugger_attached,
|
|
fault_ch,
|
|
&early_exit,
|
|
&ignore_debugger);
|
|
if (ret != 0) {
|
|
nvgpu_err(g, "could not pre-process sm error!");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (early_exit) {
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"returning early");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Disable forwarding of tpc exceptions,
|
|
* the debugger will reenable exceptions after servicing them.
|
|
*
|
|
* Do not disable exceptions if the only SM exception is BPT_INT
|
|
*/
|
|
if ((g->ops.gr.esr_bpt_pending_events(global_esr,
|
|
NVGPU_EVENT_ID_BPT_INT)) && (warp_esr == 0U)) {
|
|
disable_sm_exceptions = false;
|
|
}
|
|
|
|
if (!ignore_debugger && disable_sm_exceptions) {
|
|
g->ops.gr.intr.tpc_exception_sm_disable(g, offset);
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"SM Exceptions disabled");
|
|
}
|
|
|
|
/* if a debugger is present and an error has occurred, do a warp sync */
|
|
if (!ignore_debugger &&
|
|
((warp_esr != 0U) || ((global_esr & ~global_mask) != 0U))) {
|
|
nvgpu_log(g, gpu_dbg_intr, "warp sync needed");
|
|
do_warp_sync = true;
|
|
}
|
|
|
|
if (do_warp_sync) {
|
|
ret = g->ops.gr.lock_down_sm(g, gpc, tpc, sm,
|
|
global_mask, true);
|
|
if (ret != 0) {
|
|
nvgpu_err(g, "sm did not lock down!");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (ignore_debugger) {
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"ignore_debugger set, skipping event posting");
|
|
} else {
|
|
*post_event = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void gk20a_gr_get_esr_sm_sel(struct gk20a *g, u32 gpc, u32 tpc,
|
|
u32 *esr_sm_sel)
|
|
{
|
|
*esr_sm_sel = 1;
|
|
}
|
|
|
|
static int gr_gk20a_find_priv_offset_in_buffer(struct gk20a *g,
|
|
u32 addr,
|
|
bool is_quad, u32 quad,
|
|
u32 *context_buffer,
|
|
u32 context_buffer_size,
|
|
u32 *priv_offset);
|
|
|
|
/* This function will decode a priv address and return the partition type and numbers. */
|
|
int gr_gk20a_decode_priv_addr(struct gk20a *g, u32 addr,
|
|
enum ctxsw_addr_type *addr_type,
|
|
u32 *gpc_num, u32 *tpc_num, u32 *ppc_num, u32 *be_num,
|
|
u32 *broadcast_flags)
|
|
{
|
|
u32 gpc_addr;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
/* setup defaults */
|
|
*addr_type = CTXSW_ADDR_TYPE_SYS;
|
|
*broadcast_flags = PRI_BROADCAST_FLAGS_NONE;
|
|
*gpc_num = 0;
|
|
*tpc_num = 0;
|
|
*ppc_num = 0;
|
|
*be_num = 0;
|
|
|
|
if (pri_is_gpc_addr(g, addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_GPC;
|
|
gpc_addr = pri_gpccs_addr_mask(addr);
|
|
if (pri_is_gpc_addr_shared(g, addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_GPC;
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_GPC;
|
|
} else {
|
|
*gpc_num = pri_get_gpc_num(g, addr);
|
|
}
|
|
|
|
if (pri_is_ppc_addr(g, gpc_addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_PPC;
|
|
if (pri_is_ppc_addr_shared(g, gpc_addr)) {
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_PPC;
|
|
return 0;
|
|
}
|
|
}
|
|
if (g->ops.gr.is_tpc_addr(g, gpc_addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_TPC;
|
|
if (pri_is_tpc_addr_shared(g, gpc_addr)) {
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_TPC;
|
|
return 0;
|
|
}
|
|
*tpc_num = g->ops.gr.get_tpc_num(g, gpc_addr);
|
|
}
|
|
return 0;
|
|
} else if (pri_is_be_addr(g, addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_BE;
|
|
if (pri_is_be_addr_shared(g, addr)) {
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_BE;
|
|
return 0;
|
|
}
|
|
*be_num = pri_get_be_num(g, addr);
|
|
return 0;
|
|
} else if (g->ops.ltc.pri_is_ltc_addr(g, addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_LTCS;
|
|
if (g->ops.ltc.is_ltcs_ltss_addr(g, addr)) {
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_LTCS;
|
|
} else if (g->ops.ltc.is_ltcn_ltss_addr(g, addr)) {
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_LTSS;
|
|
}
|
|
return 0;
|
|
} else if (pri_is_fbpa_addr(g, addr)) {
|
|
*addr_type = CTXSW_ADDR_TYPE_FBPA;
|
|
if (pri_is_fbpa_addr_shared(g, addr)) {
|
|
*broadcast_flags |= PRI_BROADCAST_FLAGS_FBPA;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
} else if ((g->ops.gr.is_egpc_addr != NULL) &&
|
|
g->ops.gr.is_egpc_addr(g, addr)) {
|
|
return g->ops.gr.decode_egpc_addr(g,
|
|
addr, addr_type, gpc_num,
|
|
tpc_num, broadcast_flags);
|
|
} else {
|
|
*addr_type = CTXSW_ADDR_TYPE_SYS;
|
|
return 0;
|
|
}
|
|
/* PPC!?!?!?! */
|
|
|
|
/*NOTREACHED*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
void gr_gk20a_split_fbpa_broadcast_addr(struct gk20a *g, u32 addr,
|
|
u32 num_fbpas,
|
|
u32 *priv_addr_table, u32 *t)
|
|
{
|
|
u32 fbpa_id;
|
|
|
|
for (fbpa_id = 0; fbpa_id < num_fbpas; fbpa_id++) {
|
|
priv_addr_table[(*t)++] = pri_fbpa_addr(g,
|
|
pri_fbpa_addr_mask(g, addr), fbpa_id);
|
|
}
|
|
}
|
|
|
|
int gr_gk20a_split_ppc_broadcast_addr(struct gk20a *g, u32 addr,
|
|
u32 gpc_num,
|
|
u32 *priv_addr_table, u32 *t)
|
|
{
|
|
u32 ppc_num;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
for (ppc_num = 0;
|
|
ppc_num < nvgpu_gr_config_get_gpc_ppc_count(g->gr->config, gpc_num);
|
|
ppc_num++) {
|
|
priv_addr_table[(*t)++] = pri_ppc_addr(g, pri_ppccs_addr_mask(addr),
|
|
gpc_num, ppc_num);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The context buffer is indexed using BE broadcast addresses and GPC/TPC
|
|
* unicast addresses. This function will convert a BE unicast address to a BE
|
|
* broadcast address and split a GPC/TPC broadcast address into a table of
|
|
* GPC/TPC addresses. The addresses generated by this function can be
|
|
* successfully processed by gr_gk20a_find_priv_offset_in_buffer
|
|
*/
|
|
int gr_gk20a_create_priv_addr_table(struct gk20a *g,
|
|
u32 addr,
|
|
u32 *priv_addr_table,
|
|
u32 *num_registers)
|
|
{
|
|
enum ctxsw_addr_type addr_type;
|
|
u32 gpc_num, tpc_num, ppc_num, be_num;
|
|
u32 priv_addr, gpc_addr;
|
|
u32 broadcast_flags;
|
|
u32 t;
|
|
int err;
|
|
struct nvgpu_gr_config *gr_config = g->gr->config;
|
|
|
|
t = 0;
|
|
*num_registers = 0;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
err = g->ops.gr.decode_priv_addr(g, addr, &addr_type,
|
|
&gpc_num, &tpc_num, &ppc_num, &be_num,
|
|
&broadcast_flags);
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg, "addr_type = %d", addr_type);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
if ((addr_type == CTXSW_ADDR_TYPE_SYS) ||
|
|
(addr_type == CTXSW_ADDR_TYPE_BE)) {
|
|
/* The BE broadcast registers are included in the compressed PRI
|
|
* table. Convert a BE unicast address to a broadcast address
|
|
* so that we can look up the offset. */
|
|
if ((addr_type == CTXSW_ADDR_TYPE_BE) &&
|
|
((broadcast_flags & PRI_BROADCAST_FLAGS_BE) == 0U)) {
|
|
priv_addr_table[t++] = pri_be_shared_addr(g, addr);
|
|
} else {
|
|
priv_addr_table[t++] = addr;
|
|
}
|
|
|
|
*num_registers = t;
|
|
return 0;
|
|
}
|
|
|
|
/* The GPC/TPC unicast registers are included in the compressed PRI
|
|
* tables. Convert a GPC/TPC broadcast address to unicast addresses so
|
|
* that we can look up the offsets. */
|
|
if ((broadcast_flags & PRI_BROADCAST_FLAGS_GPC) != 0U) {
|
|
for (gpc_num = 0;
|
|
gpc_num < nvgpu_gr_config_get_gpc_count(gr_config);
|
|
gpc_num++) {
|
|
|
|
if ((broadcast_flags & PRI_BROADCAST_FLAGS_TPC) != 0U) {
|
|
for (tpc_num = 0;
|
|
tpc_num < nvgpu_gr_config_get_gpc_tpc_count(gr_config, gpc_num);
|
|
tpc_num++) {
|
|
priv_addr_table[t++] =
|
|
pri_tpc_addr(g, pri_tpccs_addr_mask(addr),
|
|
gpc_num, tpc_num);
|
|
}
|
|
|
|
} else if ((broadcast_flags & PRI_BROADCAST_FLAGS_PPC) != 0U) {
|
|
err = gr_gk20a_split_ppc_broadcast_addr(g, addr, gpc_num,
|
|
priv_addr_table, &t);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
} else {
|
|
priv_addr = pri_gpc_addr(g,
|
|
pri_gpccs_addr_mask(addr),
|
|
gpc_num);
|
|
|
|
gpc_addr = pri_gpccs_addr_mask(priv_addr);
|
|
tpc_num = g->ops.gr.get_tpc_num(g, gpc_addr);
|
|
if (tpc_num >= nvgpu_gr_config_get_gpc_tpc_count(gr_config, gpc_num)) {
|
|
continue;
|
|
}
|
|
|
|
priv_addr_table[t++] = priv_addr;
|
|
}
|
|
}
|
|
} else if (((addr_type == CTXSW_ADDR_TYPE_EGPC) ||
|
|
(addr_type == CTXSW_ADDR_TYPE_ETPC)) &&
|
|
(g->ops.gr.egpc_etpc_priv_addr_table != NULL)) {
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg, "addr_type : EGPC/ETPC");
|
|
g->ops.gr.egpc_etpc_priv_addr_table(g, addr, gpc_num, tpc_num,
|
|
broadcast_flags, priv_addr_table, &t);
|
|
} else if ((broadcast_flags & PRI_BROADCAST_FLAGS_LTSS) != 0U) {
|
|
g->ops.ltc.split_lts_broadcast_addr(g, addr,
|
|
priv_addr_table, &t);
|
|
} else if ((broadcast_flags & PRI_BROADCAST_FLAGS_LTCS) != 0U) {
|
|
g->ops.ltc.split_ltc_broadcast_addr(g, addr,
|
|
priv_addr_table, &t);
|
|
} else if ((broadcast_flags & PRI_BROADCAST_FLAGS_FBPA) != 0U) {
|
|
g->ops.gr.split_fbpa_broadcast_addr(g, addr,
|
|
nvgpu_get_litter_value(g, GPU_LIT_NUM_FBPAS),
|
|
priv_addr_table, &t);
|
|
} else if ((broadcast_flags & PRI_BROADCAST_FLAGS_GPC) == 0U) {
|
|
if ((broadcast_flags & PRI_BROADCAST_FLAGS_TPC) != 0U) {
|
|
for (tpc_num = 0;
|
|
tpc_num < nvgpu_gr_config_get_gpc_tpc_count(gr_config, gpc_num);
|
|
tpc_num++) {
|
|
priv_addr_table[t++] =
|
|
pri_tpc_addr(g, pri_tpccs_addr_mask(addr),
|
|
gpc_num, tpc_num);
|
|
}
|
|
} else if ((broadcast_flags & PRI_BROADCAST_FLAGS_PPC) != 0U) {
|
|
err = gr_gk20a_split_ppc_broadcast_addr(g,
|
|
addr, gpc_num, priv_addr_table, &t);
|
|
} else {
|
|
priv_addr_table[t++] = addr;
|
|
}
|
|
}
|
|
|
|
*num_registers = t;
|
|
return 0;
|
|
}
|
|
|
|
int gr_gk20a_get_ctx_buffer_offsets(struct gk20a *g,
|
|
u32 addr,
|
|
u32 max_offsets,
|
|
u32 *offsets, u32 *offset_addrs,
|
|
u32 *num_offsets,
|
|
bool is_quad, u32 quad)
|
|
{
|
|
u32 i;
|
|
u32 priv_offset = 0;
|
|
u32 *priv_registers;
|
|
u32 num_registers = 0;
|
|
int err = 0;
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
|
|
u32 potential_offsets = nvgpu_gr_config_get_max_gpc_count(gr->config) *
|
|
nvgpu_gr_config_get_max_tpc_per_gpc_count(gr->config) *
|
|
sm_per_tpc;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
/* implementation is crossed-up if either of these happen */
|
|
if (max_offsets > potential_offsets) {
|
|
nvgpu_log_fn(g, "max_offsets > potential_offsets");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!g->gr->ctx_vars.golden_image_initialized) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv_registers = nvgpu_kzalloc(g, sizeof(u32) * potential_offsets);
|
|
if (priv_registers == NULL) {
|
|
nvgpu_log_fn(g, "failed alloc for potential_offsets=%d", potential_offsets);
|
|
err = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
(void) memset(offsets, 0, sizeof(u32) * max_offsets);
|
|
(void) memset(offset_addrs, 0, sizeof(u32) * max_offsets);
|
|
*num_offsets = 0;
|
|
|
|
g->ops.gr.create_priv_addr_table(g, addr, &priv_registers[0],
|
|
&num_registers);
|
|
|
|
if ((max_offsets > 1U) && (num_registers > max_offsets)) {
|
|
nvgpu_log_fn(g, "max_offsets = %d, num_registers = %d",
|
|
max_offsets, num_registers);
|
|
err = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
if ((max_offsets == 1U) && (num_registers > 1U)) {
|
|
num_registers = 1;
|
|
}
|
|
|
|
if (!g->gr->ctx_vars.golden_image_initialized) {
|
|
nvgpu_log_fn(g, "no context switch header info to work with");
|
|
err = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
for (i = 0; i < num_registers; i++) {
|
|
err = gr_gk20a_find_priv_offset_in_buffer(g,
|
|
priv_registers[i],
|
|
is_quad, quad,
|
|
nvgpu_gr_obj_ctx_get_local_golden_image_ptr(
|
|
g->gr->golden_image),
|
|
nvgpu_gr_obj_ctx_get_golden_image_size(
|
|
g->gr->golden_image),
|
|
&priv_offset);
|
|
if (err != 0) {
|
|
nvgpu_log_fn(g, "Could not determine priv_offset for addr:0x%x",
|
|
addr); /*, grPriRegStr(addr)));*/
|
|
goto cleanup;
|
|
}
|
|
|
|
offsets[i] = priv_offset;
|
|
offset_addrs[i] = priv_registers[i];
|
|
}
|
|
|
|
*num_offsets = num_registers;
|
|
cleanup:
|
|
if (!IS_ERR_OR_NULL(priv_registers)) {
|
|
nvgpu_kfree(g, priv_registers);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int gr_gk20a_get_pm_ctx_buffer_offsets(struct gk20a *g,
|
|
u32 addr,
|
|
u32 max_offsets,
|
|
u32 *offsets, u32 *offset_addrs,
|
|
u32 *num_offsets)
|
|
{
|
|
u32 i;
|
|
u32 priv_offset = 0;
|
|
u32 *priv_registers;
|
|
u32 num_registers = 0;
|
|
int err = 0;
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
|
|
u32 potential_offsets = nvgpu_gr_config_get_max_gpc_count(gr->config) *
|
|
nvgpu_gr_config_get_max_tpc_per_gpc_count(gr->config) *
|
|
sm_per_tpc;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
/* implementation is crossed-up if either of these happen */
|
|
if (max_offsets > potential_offsets) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!g->gr->ctx_vars.golden_image_initialized) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv_registers = nvgpu_kzalloc(g, sizeof(u32) * potential_offsets);
|
|
if (priv_registers == NULL) {
|
|
nvgpu_log_fn(g, "failed alloc for potential_offsets=%d", potential_offsets);
|
|
return -ENOMEM;
|
|
}
|
|
(void) memset(offsets, 0, sizeof(u32) * max_offsets);
|
|
(void) memset(offset_addrs, 0, sizeof(u32) * max_offsets);
|
|
*num_offsets = 0;
|
|
|
|
g->ops.gr.create_priv_addr_table(g, addr, priv_registers,
|
|
&num_registers);
|
|
|
|
if ((max_offsets > 1U) && (num_registers > max_offsets)) {
|
|
err = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
if ((max_offsets == 1U) && (num_registers > 1U)) {
|
|
num_registers = 1;
|
|
}
|
|
|
|
if (!g->gr->ctx_vars.golden_image_initialized) {
|
|
nvgpu_log_fn(g, "no context switch header info to work with");
|
|
err = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
for (i = 0; i < num_registers; i++) {
|
|
err = nvgpu_gr_hwmp_map_find_priv_offset(g, g->gr->hwpm_map,
|
|
priv_registers[i],
|
|
&priv_offset, gr->config);
|
|
if (err != 0) {
|
|
nvgpu_log_fn(g, "Could not determine priv_offset for addr:0x%x",
|
|
addr); /*, grPriRegStr(addr)));*/
|
|
goto cleanup;
|
|
}
|
|
|
|
offsets[i] = priv_offset;
|
|
offset_addrs[i] = priv_registers[i];
|
|
}
|
|
|
|
*num_offsets = num_registers;
|
|
cleanup:
|
|
nvgpu_kfree(g, priv_registers);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Setup some register tables. This looks hacky; our
|
|
* register/offset functions are just that, functions.
|
|
* So they can't be used as initializers... TBD: fix to
|
|
* generate consts at least on an as-needed basis.
|
|
*/
|
|
static const u32 _num_ovr_perf_regs = 17;
|
|
static u32 _ovr_perf_regs[17] = { 0, };
|
|
/* Following are the blocks of registers that the ucode
|
|
stores in the extended region.*/
|
|
|
|
void gk20a_gr_init_ovr_sm_dsm_perf(void)
|
|
{
|
|
if (_ovr_perf_regs[0] != 0U) {
|
|
return;
|
|
}
|
|
|
|
_ovr_perf_regs[0] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter_control_sel0_r();
|
|
_ovr_perf_regs[1] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter_control_sel1_r();
|
|
_ovr_perf_regs[2] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter_control0_r();
|
|
_ovr_perf_regs[3] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter_control5_r();
|
|
_ovr_perf_regs[4] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter_status1_r();
|
|
_ovr_perf_regs[5] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter0_control_r();
|
|
_ovr_perf_regs[6] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter1_control_r();
|
|
_ovr_perf_regs[7] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter2_control_r();
|
|
_ovr_perf_regs[8] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter3_control_r();
|
|
_ovr_perf_regs[9] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter4_control_r();
|
|
_ovr_perf_regs[10] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter5_control_r();
|
|
_ovr_perf_regs[11] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter6_control_r();
|
|
_ovr_perf_regs[12] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter7_control_r();
|
|
_ovr_perf_regs[13] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter4_r();
|
|
_ovr_perf_regs[14] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter5_r();
|
|
_ovr_perf_regs[15] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter6_r();
|
|
_ovr_perf_regs[16] = gr_pri_gpc0_tpc0_sm_dsm_perf_counter7_r();
|
|
|
|
}
|
|
|
|
/* TBD: would like to handle this elsewhere, at a higher level.
|
|
* these are currently constructed in a "test-then-write" style
|
|
* which makes it impossible to know externally whether a ctx
|
|
* write will actually occur. so later we should put a lazy,
|
|
* map-and-hold system in the patch write state */
|
|
static int gr_gk20a_ctx_patch_smpc(struct gk20a *g,
|
|
struct channel_gk20a *ch,
|
|
u32 addr, u32 data,
|
|
struct nvgpu_gr_ctx *gr_ctx)
|
|
{
|
|
u32 num_gpc = nvgpu_gr_config_get_gpc_count(g->gr->config);
|
|
u32 num_tpc;
|
|
u32 tpc, gpc, reg;
|
|
u32 chk_addr;
|
|
u32 num_ovr_perf_regs = 0;
|
|
u32 *ovr_perf_regs = NULL;
|
|
u32 gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_GPC_STRIDE);
|
|
u32 tpc_in_gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_STRIDE);
|
|
|
|
g->ops.gr.init_ovr_sm_dsm_perf();
|
|
g->ops.gr.init_sm_dsm_reg_info();
|
|
g->ops.gr.get_ovr_perf_regs(g, &num_ovr_perf_regs, &ovr_perf_regs);
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
for (reg = 0; reg < num_ovr_perf_regs; reg++) {
|
|
for (gpc = 0; gpc < num_gpc; gpc++) {
|
|
num_tpc = nvgpu_gr_config_get_gpc_tpc_count(g->gr->config, gpc);
|
|
for (tpc = 0; tpc < num_tpc; tpc++) {
|
|
chk_addr = ((gpc_stride * gpc) +
|
|
(tpc_in_gpc_stride * tpc) +
|
|
ovr_perf_regs[reg]);
|
|
if (chk_addr != addr) {
|
|
continue;
|
|
}
|
|
/* reset the patch count from previous
|
|
runs,if ucode has already processed
|
|
it */
|
|
nvgpu_gr_ctx_reset_patch_count(g, gr_ctx);
|
|
|
|
nvgpu_gr_ctx_patch_write(g, gr_ctx,
|
|
addr, data, true);
|
|
|
|
if (ch->subctx != NULL) {
|
|
nvgpu_gr_ctx_set_patch_ctx(g, gr_ctx,
|
|
false);
|
|
nvgpu_gr_subctx_set_patch_ctx(g,
|
|
ch->subctx, gr_ctx);
|
|
} else {
|
|
nvgpu_gr_ctx_set_patch_ctx(g, gr_ctx,
|
|
true);
|
|
}
|
|
|
|
/* we're not caching these on cpu side,
|
|
but later watch for it */
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ILLEGAL_ID ~U32(0U)
|
|
|
|
void gk20a_gr_get_ovr_perf_regs(struct gk20a *g, u32 *num_ovr_perf_regs,
|
|
u32 **ovr_perf_regs)
|
|
{
|
|
*num_ovr_perf_regs = _num_ovr_perf_regs;
|
|
*ovr_perf_regs = _ovr_perf_regs;
|
|
}
|
|
|
|
static int gr_gk20a_find_priv_offset_in_ext_buffer(struct gk20a *g,
|
|
u32 addr,
|
|
bool is_quad, u32 quad,
|
|
u32 *context_buffer,
|
|
u32 context_buffer_size,
|
|
u32 *priv_offset)
|
|
{
|
|
u32 i;
|
|
u32 gpc_num, tpc_num;
|
|
u32 num_gpcs;
|
|
u32 chk_addr;
|
|
u32 ext_priv_offset, ext_priv_size;
|
|
u8 *context;
|
|
u32 offset_to_segment, offset_to_segment_end;
|
|
u32 sm_dsm_perf_reg_id = ILLEGAL_ID;
|
|
u32 sm_dsm_perf_ctrl_reg_id = ILLEGAL_ID;
|
|
u32 num_ext_gpccs_ext_buffer_segments;
|
|
u32 inter_seg_offset;
|
|
u32 max_tpc_count;
|
|
u32 *sm_dsm_perf_ctrl_regs = NULL;
|
|
u32 num_sm_dsm_perf_ctrl_regs = 0;
|
|
u32 *sm_dsm_perf_regs = NULL;
|
|
u32 num_sm_dsm_perf_regs = 0;
|
|
u32 buffer_segments_size = 0;
|
|
u32 marker_size = 0;
|
|
u32 control_register_stride = 0;
|
|
u32 perf_register_stride = 0;
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 gpc_base = nvgpu_get_litter_value(g, GPU_LIT_GPC_BASE);
|
|
u32 gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_GPC_STRIDE);
|
|
u32 tpc_in_gpc_base = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_BASE);
|
|
u32 tpc_in_gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_STRIDE);
|
|
u32 tpc_gpc_mask = (tpc_in_gpc_stride - 1U);
|
|
|
|
/* Only have TPC registers in extended region, so if not a TPC reg,
|
|
then return error so caller can look elsewhere. */
|
|
if (pri_is_gpc_addr(g, addr)) {
|
|
u32 gpc_addr = 0;
|
|
gpc_num = pri_get_gpc_num(g, addr);
|
|
gpc_addr = pri_gpccs_addr_mask(addr);
|
|
if (g->ops.gr.is_tpc_addr(g, gpc_addr)) {
|
|
tpc_num = g->ops.gr.get_tpc_num(g, gpc_addr);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
nvgpu_log_info(g, " gpc = %d tpc = %d",
|
|
gpc_num, tpc_num);
|
|
} else if ((g->ops.gr.is_etpc_addr != NULL) &&
|
|
g->ops.gr.is_etpc_addr(g, addr)) {
|
|
g->ops.gr.get_egpc_etpc_num(g, addr, &gpc_num, &tpc_num);
|
|
gpc_base = g->ops.gr.get_egpc_base(g);
|
|
} else {
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"does not exist in extended region");
|
|
return -EINVAL;
|
|
}
|
|
|
|
buffer_segments_size = g->ops.gr.ctxsw_prog.hw_get_extended_buffer_segments_size_in_bytes();
|
|
/* note below is in words/num_registers */
|
|
marker_size = g->ops.gr.ctxsw_prog.hw_extended_marker_size_in_bytes() >> 2;
|
|
|
|
context = (u8 *)context_buffer;
|
|
/* sanity check main header */
|
|
if (!g->ops.gr.ctxsw_prog.check_main_image_header_magic(context)) {
|
|
nvgpu_err(g,
|
|
"Invalid main header: magic value");
|
|
return -EINVAL;
|
|
}
|
|
num_gpcs = g->ops.gr.ctxsw_prog.get_num_gpcs(context);
|
|
if (gpc_num >= num_gpcs) {
|
|
nvgpu_err(g,
|
|
"GPC 0x%08x is greater than total count 0x%08x!",
|
|
gpc_num, num_gpcs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
g->ops.gr.ctxsw_prog.get_extended_buffer_size_offset(context,
|
|
&ext_priv_size, &ext_priv_offset);
|
|
if (0U == ext_priv_size) {
|
|
nvgpu_log_info(g, " No extended memory in context buffer");
|
|
return -EINVAL;
|
|
}
|
|
|
|
offset_to_segment = ext_priv_offset * 256U;
|
|
offset_to_segment_end = offset_to_segment +
|
|
(ext_priv_size * buffer_segments_size);
|
|
|
|
/* check local header magic */
|
|
context += g->ops.gr.ctxsw_prog.hw_get_fecs_header_size();
|
|
if (!g->ops.gr.ctxsw_prog.check_local_header_magic(context)) {
|
|
nvgpu_err(g,
|
|
"Invalid local header: magic value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* See if the incoming register address is in the first table of
|
|
* registers. We check this by decoding only the TPC addr portion.
|
|
* If we get a hit on the TPC bit, we then double check the address
|
|
* by computing it from the base gpc/tpc strides. Then make sure
|
|
* it is a real match.
|
|
*/
|
|
g->ops.gr.get_sm_dsm_perf_regs(g, &num_sm_dsm_perf_regs,
|
|
&sm_dsm_perf_regs,
|
|
&perf_register_stride);
|
|
|
|
g->ops.gr.init_sm_dsm_reg_info();
|
|
|
|
for (i = 0; i < num_sm_dsm_perf_regs; i++) {
|
|
if ((addr & tpc_gpc_mask) == (sm_dsm_perf_regs[i] & tpc_gpc_mask)) {
|
|
sm_dsm_perf_reg_id = i;
|
|
|
|
nvgpu_log_info(g, "register match: 0x%08x",
|
|
sm_dsm_perf_regs[i]);
|
|
|
|
chk_addr = (gpc_base + gpc_stride * gpc_num) +
|
|
tpc_in_gpc_base +
|
|
(tpc_in_gpc_stride * tpc_num) +
|
|
(sm_dsm_perf_regs[sm_dsm_perf_reg_id] & tpc_gpc_mask);
|
|
|
|
if (chk_addr != addr) {
|
|
nvgpu_err(g,
|
|
"Oops addr miss-match! : 0x%08x != 0x%08x",
|
|
addr, chk_addr);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Didn't find reg in supported group 1.
|
|
* so try the second group now */
|
|
g->ops.gr.get_sm_dsm_perf_ctrl_regs(g, &num_sm_dsm_perf_ctrl_regs,
|
|
&sm_dsm_perf_ctrl_regs,
|
|
&control_register_stride);
|
|
|
|
if (ILLEGAL_ID == sm_dsm_perf_reg_id) {
|
|
for (i = 0; i < num_sm_dsm_perf_ctrl_regs; i++) {
|
|
if ((addr & tpc_gpc_mask) ==
|
|
(sm_dsm_perf_ctrl_regs[i] & tpc_gpc_mask)) {
|
|
sm_dsm_perf_ctrl_reg_id = i;
|
|
|
|
nvgpu_log_info(g, "register match: 0x%08x",
|
|
sm_dsm_perf_ctrl_regs[i]);
|
|
|
|
chk_addr = (gpc_base + gpc_stride * gpc_num) +
|
|
tpc_in_gpc_base +
|
|
tpc_in_gpc_stride * tpc_num +
|
|
(sm_dsm_perf_ctrl_regs[sm_dsm_perf_ctrl_reg_id] &
|
|
tpc_gpc_mask);
|
|
|
|
if (chk_addr != addr) {
|
|
nvgpu_err(g,
|
|
"Oops addr miss-match! : 0x%08x != 0x%08x",
|
|
addr, chk_addr);
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((ILLEGAL_ID == sm_dsm_perf_ctrl_reg_id) &&
|
|
(ILLEGAL_ID == sm_dsm_perf_reg_id)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Skip the FECS extended header, nothing there for us now. */
|
|
offset_to_segment += buffer_segments_size;
|
|
|
|
/* skip through the GPCCS extended headers until we get to the data for
|
|
* our GPC. The size of each gpc extended segment is enough to hold the
|
|
* max tpc count for the gpcs,in 256b chunks.
|
|
*/
|
|
|
|
max_tpc_count = nvgpu_gr_config_get_max_tpc_per_gpc_count(gr->config);
|
|
|
|
num_ext_gpccs_ext_buffer_segments = (u32)((max_tpc_count + 1U) / 2U);
|
|
|
|
offset_to_segment += (num_ext_gpccs_ext_buffer_segments *
|
|
buffer_segments_size * gpc_num);
|
|
|
|
/* skip the head marker to start with */
|
|
inter_seg_offset = marker_size;
|
|
|
|
if (ILLEGAL_ID != sm_dsm_perf_ctrl_reg_id) {
|
|
/* skip over control regs of TPC's before the one we want.
|
|
* then skip to the register in this tpc */
|
|
inter_seg_offset = inter_seg_offset +
|
|
(tpc_num * control_register_stride) +
|
|
sm_dsm_perf_ctrl_reg_id;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* set the offset to the segment offset plus the inter segment offset to
|
|
* our register */
|
|
offset_to_segment += (inter_seg_offset * 4U);
|
|
|
|
/* last sanity check: did we somehow compute an offset outside the
|
|
* extended buffer? */
|
|
if (offset_to_segment > offset_to_segment_end) {
|
|
nvgpu_err(g,
|
|
"Overflow ctxsw buffer! 0x%08x > 0x%08x",
|
|
offset_to_segment, offset_to_segment_end);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*priv_offset = offset_to_segment;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
gr_gk20a_process_context_buffer_priv_segment(struct gk20a *g,
|
|
enum ctxsw_addr_type addr_type,
|
|
u32 pri_addr,
|
|
u32 gpc_num, u32 num_tpcs,
|
|
u32 num_ppcs, u32 ppc_mask,
|
|
u32 *priv_offset)
|
|
{
|
|
u32 i;
|
|
u32 address, base_address;
|
|
u32 sys_offset, gpc_offset, tpc_offset, ppc_offset;
|
|
u32 ppc_num, tpc_num, tpc_addr, gpc_addr, ppc_addr;
|
|
struct netlist_aiv_list *list;
|
|
struct netlist_aiv *reg;
|
|
u32 gpc_base = nvgpu_get_litter_value(g, GPU_LIT_GPC_BASE);
|
|
u32 gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_GPC_STRIDE);
|
|
u32 ppc_in_gpc_base = nvgpu_get_litter_value(g, GPU_LIT_PPC_IN_GPC_BASE);
|
|
u32 ppc_in_gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_PPC_IN_GPC_STRIDE);
|
|
u32 tpc_in_gpc_base = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_BASE);
|
|
u32 tpc_in_gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_STRIDE);
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "pri_addr=0x%x", pri_addr);
|
|
|
|
if (!g->netlist_valid) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Process the SYS/BE segment. */
|
|
if ((addr_type == CTXSW_ADDR_TYPE_SYS) ||
|
|
(addr_type == CTXSW_ADDR_TYPE_BE)) {
|
|
list = nvgpu_netlist_get_sys_ctxsw_regs(g);
|
|
for (i = 0; i < list->count; i++) {
|
|
reg = &list->l[i];
|
|
address = reg->addr;
|
|
sys_offset = reg->index;
|
|
|
|
if (pri_addr == address) {
|
|
*priv_offset = sys_offset;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Process the TPC segment. */
|
|
if (addr_type == CTXSW_ADDR_TYPE_TPC) {
|
|
for (tpc_num = 0; tpc_num < num_tpcs; tpc_num++) {
|
|
list = nvgpu_netlist_get_tpc_ctxsw_regs(g);
|
|
for (i = 0; i < list->count; i++) {
|
|
reg = &list->l[i];
|
|
address = reg->addr;
|
|
tpc_addr = pri_tpccs_addr_mask(address);
|
|
base_address = gpc_base +
|
|
(gpc_num * gpc_stride) +
|
|
tpc_in_gpc_base +
|
|
(tpc_num * tpc_in_gpc_stride);
|
|
address = base_address + tpc_addr;
|
|
/*
|
|
* The data for the TPCs is interleaved in the context buffer.
|
|
* Example with num_tpcs = 2
|
|
* 0 1 2 3 4 5 6 7 8 9 10 11 ...
|
|
* 0-0 1-0 0-1 1-1 0-2 1-2 0-3 1-3 0-4 1-4 0-5 1-5 ...
|
|
*/
|
|
tpc_offset = (reg->index * num_tpcs) + (tpc_num * 4U);
|
|
|
|
if (pri_addr == address) {
|
|
*priv_offset = tpc_offset;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
} else if ((addr_type == CTXSW_ADDR_TYPE_EGPC) ||
|
|
(addr_type == CTXSW_ADDR_TYPE_ETPC)) {
|
|
if (g->ops.gr.get_egpc_base == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (tpc_num = 0; tpc_num < num_tpcs; tpc_num++) {
|
|
list = nvgpu_netlist_get_etpc_ctxsw_regs(g);
|
|
for (i = 0; i < list->count; i++) {
|
|
reg = &list->l[i];
|
|
address = reg->addr;
|
|
tpc_addr = pri_tpccs_addr_mask(address);
|
|
base_address = g->ops.gr.get_egpc_base(g) +
|
|
(gpc_num * gpc_stride) +
|
|
tpc_in_gpc_base +
|
|
(tpc_num * tpc_in_gpc_stride);
|
|
address = base_address + tpc_addr;
|
|
/*
|
|
* The data for the TPCs is interleaved in the context buffer.
|
|
* Example with num_tpcs = 2
|
|
* 0 1 2 3 4 5 6 7 8 9 10 11 ...
|
|
* 0-0 1-0 0-1 1-1 0-2 1-2 0-3 1-3 0-4 1-4 0-5 1-5 ...
|
|
*/
|
|
tpc_offset = (reg->index * num_tpcs) + (tpc_num * 4U);
|
|
|
|
if (pri_addr == address) {
|
|
*priv_offset = tpc_offset;
|
|
nvgpu_log(g,
|
|
gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"egpc/etpc priv_offset=0x%#08x",
|
|
*priv_offset);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Process the PPC segment. */
|
|
if (addr_type == CTXSW_ADDR_TYPE_PPC) {
|
|
for (ppc_num = 0; ppc_num < num_ppcs; ppc_num++) {
|
|
list = nvgpu_netlist_get_ppc_ctxsw_regs(g);
|
|
for (i = 0; i < list->count; i++) {
|
|
reg = &list->l[i];
|
|
address = reg->addr;
|
|
ppc_addr = pri_ppccs_addr_mask(address);
|
|
base_address = gpc_base +
|
|
(gpc_num * gpc_stride) +
|
|
ppc_in_gpc_base +
|
|
(ppc_num * ppc_in_gpc_stride);
|
|
address = base_address + ppc_addr;
|
|
/*
|
|
* The data for the PPCs is interleaved in the context buffer.
|
|
* Example with numPpcs = 2
|
|
* 0 1 2 3 4 5 6 7 8 9 10 11 ...
|
|
* 0-0 1-0 0-1 1-1 0-2 1-2 0-3 1-3 0-4 1-4 0-5 1-5 ...
|
|
*/
|
|
ppc_offset = (reg->index * num_ppcs) + (ppc_num * 4U);
|
|
|
|
if (pri_addr == address) {
|
|
*priv_offset = ppc_offset;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Process the GPC segment. */
|
|
if (addr_type == CTXSW_ADDR_TYPE_GPC) {
|
|
list = nvgpu_netlist_get_gpc_ctxsw_regs(g);
|
|
for (i = 0; i < list->count; i++) {
|
|
reg = &list->l[i];
|
|
|
|
address = reg->addr;
|
|
gpc_addr = pri_gpccs_addr_mask(address);
|
|
gpc_offset = reg->index;
|
|
|
|
base_address = gpc_base + (gpc_num * gpc_stride);
|
|
address = base_address + gpc_addr;
|
|
|
|
if (pri_addr == address) {
|
|
*priv_offset = gpc_offset;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gr_gk20a_determine_ppc_configuration(struct gk20a *g,
|
|
u8 *context,
|
|
u32 *num_ppcs, u32 *ppc_mask,
|
|
u32 *reg_ppc_count)
|
|
{
|
|
u32 num_pes_per_gpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_PES_PER_GPC);
|
|
|
|
/*
|
|
* if there is only 1 PES_PER_GPC, then we put the PES registers
|
|
* in the GPC reglist, so we can't error out if ppc.count == 0
|
|
*/
|
|
if ((!g->netlist_valid) ||
|
|
((nvgpu_netlist_get_ppc_ctxsw_regs(g)->count == 0U) &&
|
|
(num_pes_per_gpc > 1U))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
g->ops.gr.ctxsw_prog.get_ppc_info(context, num_ppcs, ppc_mask);
|
|
*reg_ppc_count = nvgpu_netlist_get_ppc_ctxsw_regs(g)->count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gr_gk20a_get_offset_in_gpccs_segment(struct gk20a *g,
|
|
enum ctxsw_addr_type addr_type,
|
|
u32 num_tpcs,
|
|
u32 num_ppcs,
|
|
u32 reg_list_ppc_count,
|
|
u32 *__offset_in_segment)
|
|
{
|
|
u32 offset_in_segment = 0;
|
|
u32 tpc_count = nvgpu_netlist_get_tpc_ctxsw_regs(g)->count;
|
|
u32 etpc_count = nvgpu_netlist_get_etpc_ctxsw_regs(g)->count;
|
|
|
|
if (addr_type == CTXSW_ADDR_TYPE_TPC) {
|
|
/*
|
|
* reg = nvgpu_netlist_get_tpc_ctxsw_regs(g)->l;
|
|
* offset_in_segment = 0;
|
|
*/
|
|
} else if ((addr_type == CTXSW_ADDR_TYPE_EGPC) ||
|
|
(addr_type == CTXSW_ADDR_TYPE_ETPC)) {
|
|
offset_in_segment = ((tpc_count * num_tpcs) << 2);
|
|
|
|
nvgpu_log(g, gpu_dbg_info | gpu_dbg_gpu_dbg,
|
|
"egpc etpc offset_in_segment 0x%#08x",
|
|
offset_in_segment);
|
|
} else if (addr_type == CTXSW_ADDR_TYPE_PPC) {
|
|
/*
|
|
* The ucode stores TPC data before PPC data.
|
|
* Advance offset past TPC data to PPC data.
|
|
*/
|
|
offset_in_segment =
|
|
(((tpc_count + etpc_count) * num_tpcs) << 2);
|
|
} else if (addr_type == CTXSW_ADDR_TYPE_GPC) {
|
|
/*
|
|
* The ucode stores TPC/PPC data before GPC data.
|
|
* Advance offset past TPC/PPC data to GPC data.
|
|
*
|
|
* Note 1 PES_PER_GPC case
|
|
*/
|
|
u32 num_pes_per_gpc = nvgpu_get_litter_value(g,
|
|
GPU_LIT_NUM_PES_PER_GPC);
|
|
if (num_pes_per_gpc > 1U) {
|
|
offset_in_segment =
|
|
((((tpc_count + etpc_count) * num_tpcs) << 2) +
|
|
((reg_list_ppc_count * num_ppcs) << 2));
|
|
} else {
|
|
offset_in_segment =
|
|
(((tpc_count + etpc_count) * num_tpcs) << 2);
|
|
}
|
|
} else {
|
|
nvgpu_log_fn(g, "Unknown address type.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*__offset_in_segment = offset_in_segment;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function will return the 32 bit offset for a priv register if it is
|
|
* present in the context buffer. The context buffer is in CPU memory.
|
|
*/
|
|
static int gr_gk20a_find_priv_offset_in_buffer(struct gk20a *g,
|
|
u32 addr,
|
|
bool is_quad, u32 quad,
|
|
u32 *context_buffer,
|
|
u32 context_buffer_size,
|
|
u32 *priv_offset)
|
|
{
|
|
u32 i;
|
|
int err;
|
|
enum ctxsw_addr_type addr_type;
|
|
u32 broadcast_flags;
|
|
u32 gpc_num, tpc_num, ppc_num, be_num;
|
|
u32 num_gpcs, num_tpcs, num_ppcs;
|
|
u32 offset;
|
|
u32 sys_priv_offset, gpc_priv_offset;
|
|
u32 ppc_mask, reg_list_ppc_count;
|
|
u8 *context;
|
|
u32 offset_to_segment, offset_in_segment = 0;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "addr=0x%x", addr);
|
|
|
|
err = g->ops.gr.decode_priv_addr(g, addr, &addr_type,
|
|
&gpc_num, &tpc_num, &ppc_num, &be_num,
|
|
&broadcast_flags);
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"addr_type = %d, broadcast_flags: %08x",
|
|
addr_type, broadcast_flags);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
context = (u8 *)context_buffer;
|
|
if (!g->ops.gr.ctxsw_prog.check_main_image_header_magic(context)) {
|
|
nvgpu_err(g,
|
|
"Invalid main header: magic value");
|
|
return -EINVAL;
|
|
}
|
|
num_gpcs = g->ops.gr.ctxsw_prog.get_num_gpcs(context);
|
|
|
|
/* Parse the FECS local header. */
|
|
context += g->ops.gr.ctxsw_prog.hw_get_fecs_header_size();
|
|
if (!g->ops.gr.ctxsw_prog.check_local_header_magic(context)) {
|
|
nvgpu_err(g,
|
|
"Invalid FECS local header: magic value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
sys_priv_offset =
|
|
g->ops.gr.ctxsw_prog.get_local_priv_register_ctl_offset(context);
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "sys_priv_offset=0x%x", sys_priv_offset);
|
|
|
|
/* If found in Ext buffer, ok.
|
|
* If it failed and we expected to find it there (quad offset)
|
|
* then return the error. Otherwise continue on.
|
|
*/
|
|
err = gr_gk20a_find_priv_offset_in_ext_buffer(g,
|
|
addr, is_quad, quad, context_buffer,
|
|
context_buffer_size, priv_offset);
|
|
if ((err == 0) || ((err != 0) && is_quad)) {
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"err = %d, is_quad = %s",
|
|
err, is_quad ? "true" : "false");
|
|
return err;
|
|
}
|
|
|
|
if ((addr_type == CTXSW_ADDR_TYPE_SYS) ||
|
|
(addr_type == CTXSW_ADDR_TYPE_BE)) {
|
|
/* Find the offset in the FECS segment. */
|
|
offset_to_segment = sys_priv_offset * 256U;
|
|
|
|
err = gr_gk20a_process_context_buffer_priv_segment(g,
|
|
addr_type, addr,
|
|
0, 0, 0, 0,
|
|
&offset);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
*priv_offset = (offset_to_segment + offset);
|
|
return 0;
|
|
}
|
|
|
|
if ((gpc_num + 1U) > num_gpcs) {
|
|
nvgpu_err(g,
|
|
"GPC %d not in this context buffer.",
|
|
gpc_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Parse the GPCCS local header(s).*/
|
|
for (i = 0; i < num_gpcs; i++) {
|
|
context += g->ops.gr.ctxsw_prog.hw_get_gpccs_header_size();
|
|
if (!g->ops.gr.ctxsw_prog.check_local_header_magic(context)) {
|
|
nvgpu_err(g,
|
|
"Invalid GPCCS local header: magic value");
|
|
return -EINVAL;
|
|
|
|
}
|
|
gpc_priv_offset = g->ops.gr.ctxsw_prog.get_local_priv_register_ctl_offset(context);
|
|
|
|
err = gr_gk20a_determine_ppc_configuration(g, context,
|
|
&num_ppcs, &ppc_mask,
|
|
®_list_ppc_count);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "determine ppc configuration failed");
|
|
return err;
|
|
}
|
|
|
|
|
|
num_tpcs = g->ops.gr.ctxsw_prog.get_num_tpcs(context);
|
|
|
|
if ((i == gpc_num) && ((tpc_num + 1U) > num_tpcs)) {
|
|
nvgpu_err(g,
|
|
"GPC %d TPC %d not in this context buffer.",
|
|
gpc_num, tpc_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Find the offset in the GPCCS segment.*/
|
|
if (i == gpc_num) {
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"gpc_priv_offset 0x%#08x",
|
|
gpc_priv_offset);
|
|
offset_to_segment = gpc_priv_offset * 256U;
|
|
|
|
err = g->ops.gr.get_offset_in_gpccs_segment(g,
|
|
addr_type,
|
|
num_tpcs, num_ppcs, reg_list_ppc_count,
|
|
&offset_in_segment);
|
|
if (err != 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
offset_to_segment += offset_in_segment;
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"offset_to_segment 0x%#08x",
|
|
offset_to_segment);
|
|
|
|
err = gr_gk20a_process_context_buffer_priv_segment(g,
|
|
addr_type, addr,
|
|
i, num_tpcs,
|
|
num_ppcs, ppc_mask,
|
|
&offset);
|
|
if (err != 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
*priv_offset = offset_to_segment + offset;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
bool gk20a_is_channel_ctx_resident(struct channel_gk20a *ch)
|
|
{
|
|
u32 curr_gr_ctx;
|
|
u32 curr_gr_tsgid;
|
|
struct gk20a *g = ch->g;
|
|
struct channel_gk20a *curr_ch;
|
|
bool ret = false;
|
|
struct tsg_gk20a *tsg;
|
|
|
|
curr_gr_ctx = g->ops.gr.falcon.get_current_ctx(g);
|
|
|
|
/* when contexts are unloaded from GR, the valid bit is reset
|
|
* but the instance pointer information remains intact. So the
|
|
* valid bit must be checked to be absolutely certain that a
|
|
* valid context is currently resident.
|
|
*/
|
|
if (gr_fecs_current_ctx_valid_v(curr_gr_ctx) == 0U) {
|
|
return false;
|
|
}
|
|
|
|
curr_ch = nvgpu_gr_intr_get_channel_from_ctx(g, curr_gr_ctx,
|
|
&curr_gr_tsgid);
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"curr_gr_chid=%d curr_tsgid=%d, ch->tsgid=%d"
|
|
" ch->chid=%d",
|
|
(curr_ch != NULL) ? curr_ch->chid : U32_MAX,
|
|
curr_gr_tsgid,
|
|
ch->tsgid,
|
|
ch->chid);
|
|
|
|
if (curr_ch == NULL) {
|
|
return false;
|
|
}
|
|
|
|
if (ch->chid == curr_ch->chid) {
|
|
ret = true;
|
|
}
|
|
|
|
tsg = tsg_gk20a_from_ch(ch);
|
|
if ((tsg != NULL) && (tsg->tsgid == curr_gr_tsgid)) {
|
|
ret = true;
|
|
}
|
|
|
|
gk20a_channel_put(curr_ch);
|
|
return ret;
|
|
}
|
|
|
|
int __gr_gk20a_exec_ctx_ops(struct channel_gk20a *ch,
|
|
struct nvgpu_dbg_reg_op *ctx_ops, u32 num_ops,
|
|
u32 num_ctx_wr_ops, u32 num_ctx_rd_ops,
|
|
bool ch_is_curr_ctx)
|
|
{
|
|
struct gk20a *g = ch->g;
|
|
struct tsg_gk20a *tsg;
|
|
struct nvgpu_gr_ctx *gr_ctx;
|
|
bool gr_ctx_ready = false;
|
|
bool pm_ctx_ready = false;
|
|
struct nvgpu_mem *current_mem = NULL;
|
|
u32 i, j, offset, v;
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
|
|
u32 max_offsets = nvgpu_gr_config_get_max_gpc_count(gr->config) *
|
|
nvgpu_gr_config_get_max_tpc_per_gpc_count(gr->config) *
|
|
sm_per_tpc;
|
|
u32 *offsets = NULL;
|
|
u32 *offset_addrs = NULL;
|
|
u32 ctx_op_nr, num_ctx_ops[2] = {num_ctx_wr_ops, num_ctx_rd_ops};
|
|
int err = 0, pass;
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "wr_ops=%d rd_ops=%d",
|
|
num_ctx_wr_ops, num_ctx_rd_ops);
|
|
|
|
tsg = tsg_gk20a_from_ch(ch);
|
|
if (tsg == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
gr_ctx = tsg->gr_ctx;
|
|
|
|
if (ch_is_curr_ctx) {
|
|
for (pass = 0; pass < 2; pass++) {
|
|
ctx_op_nr = 0;
|
|
for (i = 0; (ctx_op_nr < num_ctx_ops[pass]) && (i < num_ops); ++i) {
|
|
/* only do ctx ops and only on the right pass */
|
|
if ((ctx_ops[i].type == REGOP(TYPE_GLOBAL)) ||
|
|
(((pass == 0) && reg_op_is_read(ctx_ops[i].op)) ||
|
|
((pass == 1) && !reg_op_is_read(ctx_ops[i].op)))) {
|
|
continue;
|
|
}
|
|
|
|
/* if this is a quad access, setup for special access*/
|
|
if ((ctx_ops[i].type == REGOP(TYPE_GR_CTX_QUAD))
|
|
&& (g->ops.gr.access_smpc_reg != NULL)) {
|
|
g->ops.gr.access_smpc_reg(g,
|
|
ctx_ops[i].quad,
|
|
ctx_ops[i].offset);
|
|
}
|
|
offset = ctx_ops[i].offset;
|
|
|
|
if (pass == 0) { /* write pass */
|
|
v = gk20a_readl(g, offset);
|
|
v &= ~ctx_ops[i].and_n_mask_lo;
|
|
v |= ctx_ops[i].value_lo;
|
|
gk20a_writel(g, offset, v);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"direct wr: offset=0x%x v=0x%x",
|
|
offset, v);
|
|
|
|
if (ctx_ops[i].op == REGOP(WRITE_64)) {
|
|
v = gk20a_readl(g, offset + 4U);
|
|
v &= ~ctx_ops[i].and_n_mask_hi;
|
|
v |= ctx_ops[i].value_hi;
|
|
gk20a_writel(g, offset + 4U, v);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"direct wr: offset=0x%x v=0x%x",
|
|
offset + 4U, v);
|
|
}
|
|
|
|
} else { /* read pass */
|
|
ctx_ops[i].value_lo =
|
|
gk20a_readl(g, offset);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"direct rd: offset=0x%x v=0x%x",
|
|
offset, ctx_ops[i].value_lo);
|
|
|
|
if (ctx_ops[i].op == REGOP(READ_64)) {
|
|
ctx_ops[i].value_hi =
|
|
gk20a_readl(g, offset + 4U);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"direct rd: offset=0x%x v=0x%x",
|
|
offset, ctx_ops[i].value_lo);
|
|
} else {
|
|
ctx_ops[i].value_hi = 0;
|
|
}
|
|
}
|
|
ctx_op_nr++;
|
|
}
|
|
}
|
|
goto cleanup;
|
|
}
|
|
|
|
/* they're the same size, so just use one alloc for both */
|
|
offsets = nvgpu_kzalloc(g, 2U * sizeof(u32) * max_offsets);
|
|
if (offsets == NULL) {
|
|
err = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
offset_addrs = offsets + max_offsets;
|
|
|
|
err = nvgpu_gr_ctx_patch_write_begin(g, gr_ctx, false);
|
|
if (err != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
err = g->ops.mm.cache.l2_flush(g, true);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "l2_flush failed");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* write to appropriate place in context image,
|
|
* first have to figure out where that really is */
|
|
|
|
/* first pass is writes, second reads */
|
|
for (pass = 0; pass < 2; pass++) {
|
|
ctx_op_nr = 0;
|
|
for (i = 0; (ctx_op_nr < num_ctx_ops[pass]) && (i < num_ops); ++i) {
|
|
u32 num_offsets;
|
|
|
|
/* only do ctx ops and only on the right pass */
|
|
if ((ctx_ops[i].type == REGOP(TYPE_GLOBAL)) ||
|
|
(((pass == 0) && reg_op_is_read(ctx_ops[i].op)) ||
|
|
((pass == 1) && !reg_op_is_read(ctx_ops[i].op)))) {
|
|
continue;
|
|
}
|
|
|
|
err = gr_gk20a_get_ctx_buffer_offsets(g,
|
|
ctx_ops[i].offset,
|
|
max_offsets,
|
|
offsets, offset_addrs,
|
|
&num_offsets,
|
|
ctx_ops[i].type == REGOP(TYPE_GR_CTX_QUAD),
|
|
ctx_ops[i].quad);
|
|
if (err == 0) {
|
|
if (!gr_ctx_ready) {
|
|
gr_ctx_ready = true;
|
|
}
|
|
current_mem = nvgpu_gr_ctx_get_ctx_mem(gr_ctx);
|
|
} else {
|
|
err = gr_gk20a_get_pm_ctx_buffer_offsets(g,
|
|
ctx_ops[i].offset,
|
|
max_offsets,
|
|
offsets, offset_addrs,
|
|
&num_offsets);
|
|
if (err != 0) {
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"ctx op invalid offset: offset=0x%x",
|
|
ctx_ops[i].offset);
|
|
ctx_ops[i].status =
|
|
REGOP(STATUS_INVALID_OFFSET);
|
|
continue;
|
|
}
|
|
if (!pm_ctx_ready) {
|
|
/* Make sure ctx buffer was initialized */
|
|
if (!nvgpu_mem_is_valid(nvgpu_gr_ctx_get_pm_ctx_mem(gr_ctx))) {
|
|
nvgpu_err(g,
|
|
"Invalid ctx buffer");
|
|
err = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
pm_ctx_ready = true;
|
|
}
|
|
current_mem = nvgpu_gr_ctx_get_pm_ctx_mem(gr_ctx);
|
|
}
|
|
|
|
/* if this is a quad access, setup for special access*/
|
|
if ((ctx_ops[i].type == REGOP(TYPE_GR_CTX_QUAD)) &&
|
|
(g->ops.gr.access_smpc_reg != NULL)) {
|
|
g->ops.gr.access_smpc_reg(g, ctx_ops[i].quad,
|
|
ctx_ops[i].offset);
|
|
}
|
|
|
|
for (j = 0; j < num_offsets; j++) {
|
|
/* sanity check gr ctxt offsets,
|
|
* don't write outside, worst case
|
|
*/
|
|
if ((current_mem == nvgpu_gr_ctx_get_ctx_mem(gr_ctx)) &&
|
|
(offsets[j] >=
|
|
nvgpu_gr_obj_ctx_get_golden_image_size(
|
|
g->gr->golden_image))) {
|
|
continue;
|
|
}
|
|
if (pass == 0) { /* write pass */
|
|
v = nvgpu_mem_rd(g, current_mem, offsets[j]);
|
|
v &= ~ctx_ops[i].and_n_mask_lo;
|
|
v |= ctx_ops[i].value_lo;
|
|
nvgpu_mem_wr(g, current_mem, offsets[j], v);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"context wr: offset=0x%x v=0x%x",
|
|
offsets[j], v);
|
|
|
|
if (ctx_ops[i].op == REGOP(WRITE_64)) {
|
|
v = nvgpu_mem_rd(g, current_mem, offsets[j] + 4U);
|
|
v &= ~ctx_ops[i].and_n_mask_hi;
|
|
v |= ctx_ops[i].value_hi;
|
|
nvgpu_mem_wr(g, current_mem, offsets[j] + 4U, v);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"context wr: offset=0x%x v=0x%x",
|
|
offsets[j] + 4U, v);
|
|
}
|
|
|
|
if (current_mem == nvgpu_gr_ctx_get_ctx_mem(gr_ctx)) {
|
|
/* check to see if we need to add a special WAR
|
|
for some of the SMPC perf regs */
|
|
gr_gk20a_ctx_patch_smpc(g, ch,
|
|
offset_addrs[j],
|
|
v, gr_ctx);
|
|
}
|
|
} else { /* read pass */
|
|
ctx_ops[i].value_lo =
|
|
nvgpu_mem_rd(g, current_mem, offsets[0]);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg, "context rd: offset=0x%x v=0x%x",
|
|
offsets[0], ctx_ops[i].value_lo);
|
|
|
|
if (ctx_ops[i].op == REGOP(READ_64)) {
|
|
ctx_ops[i].value_hi =
|
|
nvgpu_mem_rd(g, current_mem, offsets[0] + 4U);
|
|
|
|
nvgpu_log(g, gpu_dbg_gpu_dbg,
|
|
"context rd: offset=0x%x v=0x%x",
|
|
offsets[0] + 4U, ctx_ops[i].value_hi);
|
|
} else {
|
|
ctx_ops[i].value_hi = 0;
|
|
}
|
|
}
|
|
}
|
|
ctx_op_nr++;
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
if (offsets != NULL) {
|
|
nvgpu_kfree(g, offsets);
|
|
}
|
|
|
|
if (nvgpu_gr_ctx_get_patch_ctx_mem(gr_ctx)->cpu_va != NULL) {
|
|
nvgpu_gr_ctx_patch_write_end(g, gr_ctx, gr_ctx_ready);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int gr_gk20a_exec_ctx_ops(struct channel_gk20a *ch,
|
|
struct nvgpu_dbg_reg_op *ctx_ops, u32 num_ops,
|
|
u32 num_ctx_wr_ops, u32 num_ctx_rd_ops,
|
|
bool *is_curr_ctx)
|
|
{
|
|
struct gk20a *g = ch->g;
|
|
int err, tmp_err;
|
|
bool ch_is_curr_ctx;
|
|
|
|
/* disable channel switching.
|
|
* at that point the hardware state can be inspected to
|
|
* determine if the context we're interested in is current.
|
|
*/
|
|
err = g->ops.gr.disable_ctxsw(g);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "unable to stop gr ctxsw");
|
|
/* this should probably be ctx-fatal... */
|
|
return err;
|
|
}
|
|
|
|
ch_is_curr_ctx = gk20a_is_channel_ctx_resident(ch);
|
|
if (is_curr_ctx != NULL) {
|
|
*is_curr_ctx = ch_is_curr_ctx;
|
|
}
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "is curr ctx=%d",
|
|
ch_is_curr_ctx);
|
|
|
|
err = __gr_gk20a_exec_ctx_ops(ch, ctx_ops, num_ops, num_ctx_wr_ops,
|
|
num_ctx_rd_ops, ch_is_curr_ctx);
|
|
|
|
tmp_err = g->ops.gr.enable_ctxsw(g);
|
|
if (tmp_err != 0) {
|
|
nvgpu_err(g, "unable to restart ctxsw!");
|
|
err = tmp_err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int gk20a_gr_wait_for_sm_lock_down(struct gk20a *g, u32 gpc, u32 tpc, u32 sm,
|
|
u32 global_esr_mask, bool check_errors)
|
|
{
|
|
bool locked_down;
|
|
bool no_error_pending;
|
|
u32 delay = POLL_DELAY_MIN_US;
|
|
bool mmu_debug_mode_enabled = g->ops.fb.is_debug_mode_enabled(g);
|
|
u32 offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
u32 dbgr_status0 = 0, dbgr_control0 = 0;
|
|
u64 warps_valid = 0, warps_paused = 0, warps_trapped = 0;
|
|
struct nvgpu_timeout timeout;
|
|
u32 warp_esr;
|
|
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"GPC%d TPC%d SM%d: locking down SM", gpc, tpc, sm);
|
|
|
|
nvgpu_timeout_init(g, &timeout, nvgpu_get_poll_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
/* wait for the sm to lock down */
|
|
do {
|
|
u32 global_esr = g->ops.gr.get_sm_hww_global_esr(g,
|
|
gpc, tpc, sm);
|
|
dbgr_status0 = gk20a_readl(g,
|
|
gr_gpc0_tpc0_sm_dbgr_status0_r() + offset);
|
|
|
|
warp_esr = g->ops.gr.get_sm_hww_warp_esr(g, gpc, tpc, sm);
|
|
|
|
locked_down =
|
|
(gr_gpc0_tpc0_sm_dbgr_status0_locked_down_v(dbgr_status0) ==
|
|
gr_gpc0_tpc0_sm_dbgr_status0_locked_down_true_v());
|
|
no_error_pending =
|
|
check_errors &&
|
|
(gr_gpc0_tpc0_sm_hww_warp_esr_error_v(warp_esr) ==
|
|
gr_gpc0_tpc0_sm_hww_warp_esr_error_none_v()) &&
|
|
((global_esr & ~global_esr_mask) == 0U);
|
|
|
|
if (locked_down || no_error_pending) {
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"GPC%d TPC%d SM%d: locked down SM",
|
|
gpc, tpc, sm);
|
|
return 0;
|
|
}
|
|
|
|
/* if an mmu fault is pending and mmu debug mode is not
|
|
* enabled, the sm will never lock down. */
|
|
if (!mmu_debug_mode_enabled &&
|
|
(g->ops.mc.is_mmu_fault_pending(g))) {
|
|
nvgpu_err(g,
|
|
"GPC%d TPC%d: mmu fault pending,"
|
|
" SM%d will never lock down!", gpc, tpc, sm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
nvgpu_usleep_range(delay, delay * 2U);
|
|
delay = min_t(u32, delay << 1, POLL_DELAY_MAX_US);
|
|
} while (nvgpu_timeout_expired(&timeout) == 0);
|
|
|
|
dbgr_control0 = gk20a_readl(g,
|
|
gr_gpc0_tpc0_sm_dbgr_control0_r() + offset);
|
|
|
|
/* 64 bit read */
|
|
warps_valid = (u64)gk20a_readl(g, gr_gpc0_tpc0_sm_warp_valid_mask_1_r() + offset) << 32;
|
|
warps_valid |= gk20a_readl(g, gr_gpc0_tpc0_sm_warp_valid_mask_r() + offset);
|
|
|
|
/* 64 bit read */
|
|
warps_paused = (u64)gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_bpt_pause_mask_1_r() + offset) << 32;
|
|
warps_paused |= gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_bpt_pause_mask_r() + offset);
|
|
|
|
/* 64 bit read */
|
|
warps_trapped = (u64)gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_bpt_trap_mask_1_r() + offset) << 32;
|
|
warps_trapped |= gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_bpt_trap_mask_r() + offset);
|
|
|
|
nvgpu_err(g,
|
|
"GPC%d TPC%d: timed out while trying to lock down SM", gpc, tpc);
|
|
nvgpu_err(g,
|
|
"STATUS0(0x%x)=0x%x CONTROL0=0x%x VALID_MASK=0x%llx PAUSE_MASK=0x%llx TRAP_MASK=0x%llx",
|
|
gr_gpc0_tpc0_sm_dbgr_status0_r() + offset, dbgr_status0, dbgr_control0,
|
|
warps_valid, warps_paused, warps_trapped);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
void gk20a_gr_suspend_single_sm(struct gk20a *g,
|
|
u32 gpc, u32 tpc, u32 sm,
|
|
u32 global_esr_mask, bool check_errors)
|
|
{
|
|
int err;
|
|
u32 dbgr_control0;
|
|
u32 offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
|
|
/* if an SM debugger isn't attached, skip suspend */
|
|
if (!g->ops.gr.sm_debugger_attached(g)) {
|
|
nvgpu_err(g,
|
|
"SM debugger not attached, skipping suspend!");
|
|
return;
|
|
}
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg,
|
|
"suspending gpc:%d, tpc:%d, sm%d", gpc, tpc, sm);
|
|
|
|
/* assert stop trigger. */
|
|
dbgr_control0 = gk20a_readl(g,
|
|
gr_gpc0_tpc0_sm_dbgr_control0_r() + offset);
|
|
dbgr_control0 |= gr_gpcs_tpcs_sm_dbgr_control0_stop_trigger_enable_f();
|
|
gk20a_writel(g, gr_gpc0_tpc0_sm_dbgr_control0_r() + offset,
|
|
dbgr_control0);
|
|
|
|
err = g->ops.gr.wait_for_sm_lock_down(g, gpc, tpc, sm,
|
|
global_esr_mask, check_errors);
|
|
if (err != 0) {
|
|
nvgpu_err(g,
|
|
"SuspendSm failed");
|
|
return;
|
|
}
|
|
}
|
|
|
|
void gk20a_gr_suspend_all_sms(struct gk20a *g,
|
|
u32 global_esr_mask, bool check_errors)
|
|
{
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 gpc, tpc, sm;
|
|
int err;
|
|
u32 dbgr_control0;
|
|
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
|
|
|
|
/* if an SM debugger isn't attached, skip suspend */
|
|
if (!g->ops.gr.sm_debugger_attached(g)) {
|
|
nvgpu_err(g,
|
|
"SM debugger not attached, skipping suspend!");
|
|
return;
|
|
}
|
|
|
|
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_gpu_dbg, "suspending all sms");
|
|
/* assert stop trigger. uniformity assumption: all SMs will have
|
|
* the same state in dbg_control0.
|
|
*/
|
|
dbgr_control0 =
|
|
gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_control0_r());
|
|
dbgr_control0 |= gr_gpcs_tpcs_sm_dbgr_control0_stop_trigger_enable_f();
|
|
|
|
/* broadcast write */
|
|
gk20a_writel(g,
|
|
gr_gpcs_tpcs_sm_dbgr_control0_r(), dbgr_control0);
|
|
|
|
for (gpc = 0; gpc < nvgpu_gr_config_get_gpc_count(gr->config); gpc++) {
|
|
for (tpc = 0;
|
|
tpc < nvgpu_gr_config_get_gpc_tpc_count(gr->config, gpc);
|
|
tpc++) {
|
|
for (sm = 0; sm < sm_per_tpc; sm++) {
|
|
err = g->ops.gr.wait_for_sm_lock_down(g,
|
|
gpc, tpc, sm,
|
|
global_esr_mask, check_errors);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "SuspendAllSms failed");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void gk20a_gr_resume_single_sm(struct gk20a *g,
|
|
u32 gpc, u32 tpc, u32 sm)
|
|
{
|
|
u32 dbgr_control0;
|
|
u32 offset;
|
|
/*
|
|
* The following requires some clarification. Despite the fact that both
|
|
* RUN_TRIGGER and STOP_TRIGGER have the word "TRIGGER" in their
|
|
* names, only one is actually a trigger, and that is the STOP_TRIGGER.
|
|
* Merely writing a 1(_TASK) to the RUN_TRIGGER is not sufficient to
|
|
* resume the gpu - the _STOP_TRIGGER must explicitly be set to 0
|
|
* (_DISABLE) as well.
|
|
|
|
* Advice from the arch group: Disable the stop trigger first, as a
|
|
* separate operation, in order to ensure that the trigger has taken
|
|
* effect, before enabling the run trigger.
|
|
*/
|
|
|
|
offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
|
|
/*De-assert stop trigger */
|
|
dbgr_control0 =
|
|
gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_control0_r() + offset);
|
|
dbgr_control0 = set_field(dbgr_control0,
|
|
gr_gpcs_tpcs_sm_dbgr_control0_stop_trigger_m(),
|
|
gr_gpcs_tpcs_sm_dbgr_control0_stop_trigger_disable_f());
|
|
gk20a_writel(g,
|
|
gr_gpc0_tpc0_sm_dbgr_control0_r() + offset, dbgr_control0);
|
|
|
|
/* Run trigger */
|
|
dbgr_control0 |= gr_gpcs_tpcs_sm_dbgr_control0_run_trigger_task_f();
|
|
gk20a_writel(g,
|
|
gr_gpc0_tpc0_sm_dbgr_control0_r() + offset, dbgr_control0);
|
|
}
|
|
|
|
void gk20a_gr_resume_all_sms(struct gk20a *g)
|
|
{
|
|
u32 dbgr_control0;
|
|
/*
|
|
* The following requires some clarification. Despite the fact that both
|
|
* RUN_TRIGGER and STOP_TRIGGER have the word "TRIGGER" in their
|
|
* names, only one is actually a trigger, and that is the STOP_TRIGGER.
|
|
* Merely writing a 1(_TASK) to the RUN_TRIGGER is not sufficient to
|
|
* resume the gpu - the _STOP_TRIGGER must explicitly be set to 0
|
|
* (_DISABLE) as well.
|
|
|
|
* Advice from the arch group: Disable the stop trigger first, as a
|
|
* separate operation, in order to ensure that the trigger has taken
|
|
* effect, before enabling the run trigger.
|
|
*/
|
|
|
|
/*De-assert stop trigger */
|
|
dbgr_control0 =
|
|
gk20a_readl(g, gr_gpcs_tpcs_sm_dbgr_control0_r());
|
|
dbgr_control0 &= ~gr_gpcs_tpcs_sm_dbgr_control0_stop_trigger_enable_f();
|
|
gk20a_writel(g,
|
|
gr_gpcs_tpcs_sm_dbgr_control0_r(), dbgr_control0);
|
|
|
|
/* Run trigger */
|
|
dbgr_control0 |= gr_gpcs_tpcs_sm_dbgr_control0_run_trigger_task_f();
|
|
gk20a_writel(g,
|
|
gr_gpcs_tpcs_sm_dbgr_control0_r(), dbgr_control0);
|
|
}
|
|
|
|
int gr_gk20a_set_sm_debug_mode(struct gk20a *g,
|
|
struct channel_gk20a *ch, u64 sms, bool enable)
|
|
{
|
|
struct nvgpu_dbg_reg_op *ops;
|
|
unsigned int i = 0, sm_id;
|
|
int err;
|
|
u32 gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_GPC_STRIDE);
|
|
u32 tpc_in_gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_STRIDE);
|
|
u32 no_of_sm = nvgpu_gr_config_get_no_of_sm(g->gr->config);
|
|
|
|
ops = nvgpu_kcalloc(g, no_of_sm, sizeof(*ops));
|
|
if (ops == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (sm_id = 0; sm_id < no_of_sm; sm_id++) {
|
|
u32 gpc, tpc;
|
|
u32 tpc_offset, gpc_offset, reg_offset, reg_mask, reg_val;
|
|
struct sm_info *sm_info;
|
|
|
|
if ((sms & BIT64(sm_id)) == 0ULL) {
|
|
continue;
|
|
}
|
|
sm_info = nvgpu_gr_config_get_sm_info(g->gr->config, sm_id);
|
|
gpc = nvgpu_gr_config_get_sm_info_gpc_index(sm_info);
|
|
tpc = nvgpu_gr_config_get_sm_info_tpc_index(sm_info);
|
|
|
|
tpc_offset = tpc_in_gpc_stride * tpc;
|
|
gpc_offset = gpc_stride * gpc;
|
|
reg_offset = tpc_offset + gpc_offset;
|
|
|
|
ops[i].op = REGOP(WRITE_32);
|
|
ops[i].type = REGOP(TYPE_GR_CTX);
|
|
ops[i].offset = gr_gpc0_tpc0_sm_dbgr_control0_r() + reg_offset;
|
|
|
|
reg_mask = 0;
|
|
reg_val = 0;
|
|
if (enable) {
|
|
reg_mask |= gr_gpc0_tpc0_sm_dbgr_control0_debugger_mode_m();
|
|
reg_val |= gr_gpc0_tpc0_sm_dbgr_control0_debugger_mode_on_f();
|
|
reg_mask |= gr_gpc0_tpc0_sm_dbgr_control0_stop_on_any_warp_m();
|
|
reg_val |= gr_gpc0_tpc0_sm_dbgr_control0_stop_on_any_warp_disable_f();
|
|
reg_mask |= gr_gpc0_tpc0_sm_dbgr_control0_stop_on_any_sm_m();
|
|
reg_val |= gr_gpc0_tpc0_sm_dbgr_control0_stop_on_any_sm_disable_f();
|
|
} else {
|
|
reg_mask |= gr_gpc0_tpc0_sm_dbgr_control0_debugger_mode_m();
|
|
reg_val |= gr_gpc0_tpc0_sm_dbgr_control0_debugger_mode_off_f();
|
|
}
|
|
|
|
ops[i].and_n_mask_lo = reg_mask;
|
|
ops[i].value_lo = reg_val;
|
|
i++;
|
|
}
|
|
|
|
err = gr_gk20a_exec_ctx_ops(ch, ops, i, i, 0, NULL);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "Failed to access register");
|
|
}
|
|
nvgpu_kfree(g, ops);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* gr_gk20a_suspend_context()
|
|
* This API should be called with dbg_session lock held
|
|
* and ctxsw disabled
|
|
* Returns bool value indicating if context was resident
|
|
* or not
|
|
*/
|
|
bool gr_gk20a_suspend_context(struct channel_gk20a *ch)
|
|
{
|
|
struct gk20a *g = ch->g;
|
|
bool ctx_resident = false;
|
|
|
|
if (gk20a_is_channel_ctx_resident(ch)) {
|
|
g->ops.gr.suspend_all_sms(g, 0, false);
|
|
ctx_resident = true;
|
|
} else {
|
|
gk20a_disable_channel_tsg(g, ch);
|
|
}
|
|
|
|
return ctx_resident;
|
|
}
|
|
|
|
bool gr_gk20a_resume_context(struct channel_gk20a *ch)
|
|
{
|
|
struct gk20a *g = ch->g;
|
|
bool ctx_resident = false;
|
|
|
|
if (gk20a_is_channel_ctx_resident(ch)) {
|
|
g->ops.gr.resume_all_sms(g);
|
|
ctx_resident = true;
|
|
} else {
|
|
gk20a_enable_channel_tsg(g, ch);
|
|
}
|
|
|
|
return ctx_resident;
|
|
}
|
|
|
|
int gr_gk20a_suspend_contexts(struct gk20a *g,
|
|
struct dbg_session_gk20a *dbg_s,
|
|
int *ctx_resident_ch_fd)
|
|
{
|
|
int local_ctx_resident_ch_fd = -1;
|
|
bool ctx_resident;
|
|
struct channel_gk20a *ch;
|
|
struct dbg_session_channel_data *ch_data;
|
|
int err = 0;
|
|
|
|
nvgpu_mutex_acquire(&g->dbg_sessions_lock);
|
|
|
|
err = g->ops.gr.disable_ctxsw(g);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "unable to stop gr ctxsw");
|
|
goto clean_up;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&dbg_s->ch_list_lock);
|
|
|
|
nvgpu_list_for_each_entry(ch_data, &dbg_s->ch_list,
|
|
dbg_session_channel_data, ch_entry) {
|
|
ch = g->fifo.channel + ch_data->chid;
|
|
|
|
ctx_resident = gr_gk20a_suspend_context(ch);
|
|
if (ctx_resident) {
|
|
local_ctx_resident_ch_fd = ch_data->channel_fd;
|
|
}
|
|
}
|
|
|
|
nvgpu_mutex_release(&dbg_s->ch_list_lock);
|
|
|
|
err = g->ops.gr.enable_ctxsw(g);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "unable to restart ctxsw!");
|
|
}
|
|
|
|
*ctx_resident_ch_fd = local_ctx_resident_ch_fd;
|
|
|
|
clean_up:
|
|
nvgpu_mutex_release(&g->dbg_sessions_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
int gr_gk20a_resume_contexts(struct gk20a *g,
|
|
struct dbg_session_gk20a *dbg_s,
|
|
int *ctx_resident_ch_fd)
|
|
{
|
|
int local_ctx_resident_ch_fd = -1;
|
|
bool ctx_resident;
|
|
struct channel_gk20a *ch;
|
|
int err = 0;
|
|
struct dbg_session_channel_data *ch_data;
|
|
|
|
nvgpu_mutex_acquire(&g->dbg_sessions_lock);
|
|
|
|
err = g->ops.gr.disable_ctxsw(g);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "unable to stop gr ctxsw");
|
|
goto clean_up;
|
|
}
|
|
|
|
nvgpu_list_for_each_entry(ch_data, &dbg_s->ch_list,
|
|
dbg_session_channel_data, ch_entry) {
|
|
ch = g->fifo.channel + ch_data->chid;
|
|
|
|
ctx_resident = gr_gk20a_resume_context(ch);
|
|
if (ctx_resident) {
|
|
local_ctx_resident_ch_fd = ch_data->channel_fd;
|
|
}
|
|
}
|
|
|
|
err = g->ops.gr.enable_ctxsw(g);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "unable to restart ctxsw!");
|
|
}
|
|
|
|
*ctx_resident_ch_fd = local_ctx_resident_ch_fd;
|
|
|
|
clean_up:
|
|
nvgpu_mutex_release(&g->dbg_sessions_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
int gr_gk20a_trigger_suspend(struct gk20a *g)
|
|
{
|
|
int err = 0;
|
|
u32 dbgr_control0;
|
|
|
|
/* assert stop trigger. uniformity assumption: all SMs will have
|
|
* the same state in dbg_control0. */
|
|
dbgr_control0 =
|
|
gk20a_readl(g, gr_gpc0_tpc0_sm_dbgr_control0_r());
|
|
dbgr_control0 |= gr_gpcs_tpcs_sm_dbgr_control0_stop_trigger_enable_f();
|
|
|
|
/* broadcast write */
|
|
gk20a_writel(g,
|
|
gr_gpcs_tpcs_sm_dbgr_control0_r(), dbgr_control0);
|
|
|
|
return err;
|
|
}
|
|
|
|
int gr_gk20a_wait_for_pause(struct gk20a *g, struct nvgpu_warpstate *w_state)
|
|
{
|
|
int err = 0;
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 gpc, tpc, sm, sm_id;
|
|
u32 global_mask;
|
|
u32 no_of_sm = nvgpu_gr_config_get_no_of_sm(gr->config);
|
|
|
|
/* Wait for the SMs to reach full stop. This condition is:
|
|
* 1) All SMs with valid warps must be in the trap handler (SM_IN_TRAP_MODE)
|
|
* 2) All SMs in the trap handler must have equivalent VALID and PAUSED warp
|
|
* masks.
|
|
*/
|
|
global_mask = g->ops.gr.get_sm_no_lock_down_hww_global_esr_mask(g);
|
|
|
|
/* Lock down all SMs */
|
|
for (sm_id = 0; sm_id < no_of_sm; sm_id++) {
|
|
struct sm_info *sm_info =
|
|
nvgpu_gr_config_get_sm_info(g->gr->config, sm_id);
|
|
gpc = nvgpu_gr_config_get_sm_info_gpc_index(sm_info);
|
|
tpc = nvgpu_gr_config_get_sm_info_tpc_index(sm_info);
|
|
sm = nvgpu_gr_config_get_sm_info_sm_index(sm_info);
|
|
|
|
err = g->ops.gr.lock_down_sm(g, gpc, tpc, sm,
|
|
global_mask, false);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "sm did not lock down!");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* Read the warp status */
|
|
g->ops.gr.bpt_reg_info(g, w_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gr_gk20a_resume_from_pause(struct gk20a *g)
|
|
{
|
|
int err = 0;
|
|
|
|
/* Clear the pause mask to tell the GPU we want to resume everyone */
|
|
gk20a_writel(g,
|
|
gr_gpcs_tpcs_sm_dbgr_bpt_pause_mask_r(), 0);
|
|
|
|
/* explicitly re-enable forwarding of SM interrupts upon any resume */
|
|
g->ops.gr.intr.tpc_exception_sm_enable(g);
|
|
|
|
/* Now resume all sms, write a 0 to the stop trigger
|
|
* then a 1 to the run trigger */
|
|
g->ops.gr.resume_all_sms(g);
|
|
|
|
return err;
|
|
}
|
|
|
|
int gr_gk20a_clear_sm_errors(struct gk20a *g)
|
|
{
|
|
int ret = 0;
|
|
u32 gpc, tpc, sm;
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 global_esr;
|
|
u32 sm_per_tpc = nvgpu_get_litter_value(g, GPU_LIT_NUM_SM_PER_TPC);
|
|
|
|
for (gpc = 0; gpc < nvgpu_gr_config_get_gpc_count(gr->config); gpc++) {
|
|
|
|
/* check if any tpc has an exception */
|
|
for (tpc = 0;
|
|
tpc < nvgpu_gr_config_get_gpc_tpc_count(gr->config, gpc);
|
|
tpc++) {
|
|
|
|
for (sm = 0; sm < sm_per_tpc; sm++) {
|
|
global_esr = g->ops.gr.get_sm_hww_global_esr(g,
|
|
gpc, tpc, sm);
|
|
|
|
/* clearing hwws, also causes tpc and gpc
|
|
* exceptions to be cleared
|
|
*/
|
|
g->ops.gr.clear_sm_hww(g,
|
|
gpc, tpc, sm, global_esr);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
u32 gr_gk20a_tpc_enabled_exceptions(struct gk20a *g)
|
|
{
|
|
struct nvgpu_gr *gr = g->gr;
|
|
u32 sm_id, tpc_exception_en = 0;
|
|
u32 offset, regval, tpc_offset, gpc_offset;
|
|
u32 gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_GPC_STRIDE);
|
|
u32 tpc_in_gpc_stride = nvgpu_get_litter_value(g, GPU_LIT_TPC_IN_GPC_STRIDE);
|
|
u32 no_of_sm = nvgpu_gr_config_get_no_of_sm(gr->config);
|
|
|
|
for (sm_id = 0; sm_id < no_of_sm; sm_id++) {
|
|
struct sm_info *sm_info =
|
|
nvgpu_gr_config_get_sm_info(g->gr->config, sm_id);
|
|
tpc_offset = tpc_in_gpc_stride *
|
|
nvgpu_gr_config_get_sm_info_tpc_index(sm_info);
|
|
gpc_offset = gpc_stride *
|
|
nvgpu_gr_config_get_sm_info_gpc_index(sm_info);
|
|
offset = tpc_offset + gpc_offset;
|
|
|
|
regval = gk20a_readl(g, gr_gpc0_tpc0_tpccs_tpc_exception_en_r() +
|
|
offset);
|
|
/* Each bit represents corresponding enablement state, bit 0 corrsponds to SM0 */
|
|
tpc_exception_en |= gr_gpc0_tpc0_tpccs_tpc_exception_en_sm_v(regval) << sm_id;
|
|
}
|
|
|
|
return tpc_exception_en;
|
|
}
|
|
|
|
u32 gk20a_gr_get_sm_hww_warp_esr(struct gk20a *g, u32 gpc, u32 tpc, u32 sm)
|
|
{
|
|
u32 offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
u32 hww_warp_esr = gk20a_readl(g,
|
|
gr_gpc0_tpc0_sm_hww_warp_esr_r() + offset);
|
|
return hww_warp_esr;
|
|
}
|
|
|
|
u32 gk20a_gr_get_sm_hww_global_esr(struct gk20a *g, u32 gpc, u32 tpc, u32 sm)
|
|
{
|
|
u32 offset = nvgpu_gr_gpc_offset(g, gpc) + nvgpu_gr_tpc_offset(g, tpc);
|
|
|
|
u32 hww_global_esr = gk20a_readl(g,
|
|
gr_gpc0_tpc0_sm_hww_global_esr_r() + offset);
|
|
|
|
return hww_global_esr;
|
|
}
|
|
|
|
u32 gk20a_gr_get_sm_no_lock_down_hww_global_esr_mask(struct gk20a *g)
|
|
{
|
|
/*
|
|
* These three interrupts don't require locking down the SM. They can
|
|
* be handled by usermode clients as they aren't fatal. Additionally,
|
|
* usermode clients may wish to allow some warps to execute while others
|
|
* are at breakpoints, as opposed to fatal errors where all warps should
|
|
* halt.
|
|
*/
|
|
u32 global_esr_mask =
|
|
gr_gpc0_tpc0_sm_hww_global_esr_bpt_int_pending_f() |
|
|
gr_gpc0_tpc0_sm_hww_global_esr_bpt_pause_pending_f() |
|
|
gr_gpc0_tpc0_sm_hww_global_esr_single_step_complete_pending_f();
|
|
|
|
return global_esr_mask;
|
|
}
|