Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/module.c
rmylavarapu 01eb416745 gpu: nvgpu: gsp sched: enable gsp sw init for safety build
Changes
1. Remove dGPU flag dependency on calling gsp sw init on tot.
2. Created Enable flag for gsp scheduler to enable them on ga10b
platforms.
3. Engine config flag is only enabled for dGPU enabled platforms, as gsp
is using engine functions it need to be enabled for all gsp sched
enabled builds.
4. Changes in gsp_sequence_init/de_init where on qnx we are seeing
issues.

NVGPU-9297

Change-Id: Ia4bce85ae8fd2794da1553e9ea418c76845a10ac
Signed-off-by: rmylavarapu <rmylavarapu@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2822537
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2022-12-12 06:06:09 -08:00

2105 lines
47 KiB
C

/*
* GK20A Graphics
*
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/reboot.h>
#include <linux/notifier.h>
#include <nvgpu/vpr.h>
#if NVGPU_VPR_RESIZE_SUPPORTED
#include <linux/platform/tegra/common.h>
#endif
#include <linux/pci.h>
#include <linux/of_gpio.h>
#include <uapi/linux/nvgpu.h>
#ifdef CONFIG_NVGPU_TEGRA_FUSE
#include <dt-bindings/soc/gm20b-fuse.h>
#include <dt-bindings/soc/gp10b-fuse.h>
#include <dt-bindings/soc/gv11b-fuse.h>
#include <dt-bindings/soc/ga10b-fuse.h>
#include <soc/tegra/fuse.h>
#endif /* CONFIG_NVGPU_TEGRA_FUSE */
#include <nvgpu/dma.h>
#include <nvgpu/kmem.h>
#include <nvgpu/nvgpu_common.h>
#include <nvgpu/soc.h>
#include <nvgpu/fbp.h>
#include <nvgpu/enabled.h>
#include <nvgpu/errata.h>
#include <nvgpu/debug.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/sim.h>
#include <nvgpu/clk_arb.h>
#include <nvgpu/timers.h>
#include <nvgpu/engines.h>
#include <nvgpu/channel.h>
#include <nvgpu/gr/gr.h>
#include <nvgpu/gr/gr_instances.h>
#include <nvgpu/gr/gr_utils.h>
#include <nvgpu/pmu/pmu_pstate.h>
#include <nvgpu/cyclestats_snapshot.h>
#include <nvgpu/nvgpu_init.h>
#include <nvgpu/mc.h>
#include <nvgpu/cic_mon.h>
#include <nvgpu/cic_rm.h>
#include <nvgpu/fb.h>
#include <nvgpu/nvs.h>
#include "common/gr/gr_priv.h"
#include "platform_gk20a.h"
#include "sysfs.h"
#include "vgpu/vgpu_linux.h"
#include "scale.h"
#include "pci.h"
#include "module.h"
#include "module_usermode.h"
#include "ioctl.h"
#include "ioctl_ctrl.h"
#include "os_linux.h"
#include "os_ops.h"
#include "fecs_trace_linux.h"
#include "driver_common.h"
#include "channel.h"
#include "debug_ce.h"
#include "debug_pmgr.h"
#include "dmabuf_priv.h"
#ifdef CONFIG_NVGPU_GSP_SCHEDULER
#include "nvgpu/gsp.h"
#include "nvgpu/gsp_sched.h"
#endif
#ifdef CONFIG_NVGPU_GSP_STRESS_TEST
#include "nvgpu/gsp/gsp_test.h"
#endif
#ifdef CONFIG_NVGPU_SUPPORT_CDE
#include "cde.h"
#endif
#if defined(CONFIG_NVGPU_HAL_NON_FUSA) && defined(CONFIG_NVGPU_NEXT)
#include <nvgpu_next_chips.h>
#endif
#define GK20A_WAIT_FOR_IDLE_MS 2000
#define CREATE_TRACE_POINTS
#include <nvgpu/trace.h>
static int nvgpu_wait_for_idle(struct gk20a *g)
{
int wait_length = 150; /* 3 second overall max wait. */
int target_usage_count = 0;
bool done = false;
if (g == NULL) {
return -ENODEV;
}
do {
if (nvgpu_atomic_read(&g->usage_count) == target_usage_count) {
done = true;
} else if (wait_length-- < 0) {
done = true;
} else {
nvgpu_msleep(20);
}
} while (!done);
if (wait_length < 0) {
nvgpu_warn(g, "Timed out waiting for idle (%d)!\n",
nvgpu_atomic_read(&g->usage_count));
return -ETIMEDOUT;
}
return 0;
}
static int nvgpu_kernel_shutdown_notification(struct notifier_block *nb,
unsigned long event, void *unused)
{
struct nvgpu_os_linux *l = container_of(nb, struct nvgpu_os_linux,
nvgpu_reboot_nb);
struct gk20a *g = &l->g;
struct nvgpu_gr *gr = nvgpu_gr_get_cur_instance_ptr(g);
nvgpu_set_enabled(g, NVGPU_KERNEL_IS_DYING, true);
/*
* In rmmod path, when the kernel or GPU driver is
* dying signal the gr wait queue so that the wait
* queue wakes up and further processing happens.
* This is needed to prevent other threads, like
* pmu_pg_task, to go into un-interruptible state.
*/
if (gr != NULL) {
nvgpu_cond_signal(&gr->init_wq);
}
return NOTIFY_DONE;
}
struct device_node *nvgpu_get_node(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return bus->bridge->parent->of_node;
}
return dev->of_node;
}
void gk20a_busy_noresume(struct gk20a *g)
{
pm_runtime_get_noresume(dev_from_gk20a(g));
}
int gk20a_busy(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
int ret = 0;
struct device *dev;
if (!g)
return -ENODEV;
atomic_inc(&g->usage_count.atomic_var);
down_read(&l->busy_lock);
if (!nvgpu_can_busy(g)) {
ret = -ENODEV;
atomic_dec(&g->usage_count.atomic_var);
goto fail;
}
dev = dev_from_gk20a(g);
if (pm_runtime_enabled(dev)) {
/* Increment usage count and attempt to resume device */
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
/* Mark suspended so runtime pm will retry later */
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
atomic_dec(&g->usage_count.atomic_var);
goto fail;
}
} else {
ret = gk20a_gpu_is_virtual(dev) ?
vgpu_pm_finalize_poweron(dev) :
gk20a_pm_finalize_poweron(dev);
if (ret) {
atomic_dec(&g->usage_count.atomic_var);
goto fail;
}
}
fail:
up_read(&l->busy_lock);
return ret < 0 ? ret : 0;
}
void gk20a_idle_nosuspend(struct gk20a *g)
{
pm_runtime_put_noidle(dev_from_gk20a(g));
}
void gk20a_idle(struct gk20a *g)
{
struct device *dev;
atomic_dec(&g->usage_count.atomic_var);
dev = dev_from_gk20a(g);
if (!(dev && nvgpu_can_busy(g)))
return;
if (pm_runtime_enabled(dev)) {
pm_runtime_mark_last_busy(dev);
pm_runtime_put_sync_autosuspend(dev);
}
}
/*
* Undoes gk20a_lockout_registers().
*/
static int gk20a_restore_registers(struct gk20a *g)
{
g->regs = g->regs_saved;
g->bar1 = g->bar1_saved;
nvgpu_restore_usermode_registers(g);
return 0;
}
int nvgpu_finalize_poweron_linux(struct nvgpu_os_linux *l)
{
struct gk20a *g = &l->g;
int err;
if (l->init_done)
return 0;
err = nvgpu_channel_init_support_linux(l);
if (err) {
nvgpu_err(g, "failed to init linux channel support");
return err;
}
#ifdef CONFIG_NVGPU_FECS_TRACE
err = gk20a_ctxsw_trace_init(g);
if (err != 0)
nvgpu_warn(g, "could not initialize ctxsw tracing");
#endif
if (l->ops.clk.init_debugfs) {
err = l->ops.clk.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux clk debugfs");
return err;
}
}
if (l->ops.therm.init_debugfs) {
err = l->ops.therm.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux therm debugfs");
return err;
}
}
if (l->ops.fecs_trace.init_debugfs) {
err = l->ops.fecs_trace.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux fecs trace debugfs");
return err;
}
}
if (l->ops.volt.init_debugfs) {
err = l->ops.volt.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux volt debugfs");
return err;
}
}
if (l->ops.s_param.init_debugfs) {
err = l->ops.s_param.init_debugfs(g);
if (err) {
nvgpu_err(g, "failed to init linux s_param trace debugfs");
return err;
}
}
err = nvgpu_pmgr_init_debugfs_linux(l);
if (err) {
nvgpu_err(g, "failed to init linux pmgr debugfs");
return err;
}
#if defined(CONFIG_NVGPU_DGPU) && defined(CONFIG_DEBUG_FS)
if (!g->is_virtual)
nvgpu_ce_debugfs_init(g);
#endif
l->init_done = true;
return 0;
}
void gk20a_init_linux_characteristics(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
nvgpu_set_enabled(g, NVGPU_SUPPORT_PARTIAL_MAPPINGS, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_DETERMINISTIC_OPTS, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_USERSPACE_MANAGED_AS, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_REMAP, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_BUFFER_METADATA, true);
nvgpu_set_enabled(g, NVGPU_SUPPORT_MULTI_PROCESS_TSG_SHARING, true);
if (!IS_ENABLED(CONFIG_NVGPU_SYNCFD_NONE)) {
nvgpu_set_enabled(g, NVGPU_SUPPORT_SYNC_FENCE_FDS, true);
}
if (!gk20a_gpu_is_virtual(dev)) {
nvgpu_set_enabled(g, NVGPU_SUPPORT_MAPPING_MODIFY, true);
}
}
#ifdef CONFIG_NVGPU_DGPU
static void therm_alert_work_queue(struct work_struct *work)
{
struct dgpu_thermal_alert *thermal_alert =
container_of(work, struct dgpu_thermal_alert, work);
struct nvgpu_os_linux *l =
container_of(thermal_alert, struct nvgpu_os_linux,
thermal_alert);
struct gk20a *g = &l->g;
nvgpu_clk_arb_send_thermal_alarm(g);
nvgpu_msleep(l->thermal_alert.event_delay * 1000U);
enable_irq(l->thermal_alert.therm_alert_irq);
}
static irqreturn_t therm_irq(int irq, void *dev_id)
{
struct nvgpu_os_linux *l = (struct nvgpu_os_linux *)dev_id;
disable_irq_nosync(irq);
queue_work(l->thermal_alert.workqueue, &l->thermal_alert.work);
return IRQ_HANDLED;
}
static int nvgpu_request_therm_irq(struct nvgpu_os_linux *l)
{
struct device_node *np;
int ret = 0, gpio, index = 0;
u32 irq_flags = IRQ_TYPE_NONE;
u32 event_delay = 10U;
if (l->thermal_alert.workqueue != NULL) {
return ret;
}
np = of_find_node_by_name(NULL, "nvgpu");
if (!np) {
return -ENOENT;
}
gpio = of_get_named_gpio(np, "nvgpu-therm-gpios", index);
if (gpio < 0) {
nvgpu_err(&l->g, "failed to get GPIO %d ", gpio);
return gpio;
}
l->thermal_alert.therm_alert_irq = gpio_to_irq(gpio);
if (of_property_read_u32(np, "alert-interrupt-level", &irq_flags))
nvgpu_info(&l->g, "Missing interrupt-level "
"prop using %d", irq_flags);
if (of_property_read_u32(np, "alert-event-interval", &event_delay))
nvgpu_info(&l->g, "Missing event-interval "
"prop using %d seconds ", event_delay);
l->thermal_alert.event_delay = event_delay;
if (!l->thermal_alert.workqueue) {
l->thermal_alert.workqueue = alloc_workqueue("%s",
WQ_HIGHPRI, 1, "dgpu_thermal_alert");
INIT_WORK(&l->thermal_alert.work, therm_alert_work_queue);
}
ret = devm_request_irq(l->dev, l->thermal_alert.therm_alert_irq ,
therm_irq, irq_flags, "dgpu_therm", l);
if (ret != 0) {
nvgpu_err(&l->g, "IRQ request failed");
}
return ret;
}
#endif
int gk20a_pm_finalize_poweron(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err = 0;
nvgpu_log_fn(g, " ");
nvgpu_mutex_acquire(&g->power_lock);
if (nvgpu_is_powered_on(g))
goto done;
nvgpu_set_power_state(g, NVGPU_STATE_POWERING_ON);
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_finalize_poweron(dev_name(dev));
#endif
/* Increment platform power refcount */
if (platform->busy) {
err = platform->busy(dev);
if (err < 0) {
nvgpu_err(g, "failed to poweron platform dependency");
goto done;
}
}
#ifdef CONFIG_NVGPU_ENABLE_MISC_EC
g->enable_polling = false;
#endif
err = gk20a_restore_registers(g);
if (err)
goto done;
nvgpu_restore_usermode_for_poweron(g);
err = nvgpu_early_poweron(g);
if (err != 0) {
nvgpu_err(g, "nvgpu_early_poweron failed[%d]", err);
goto done;
}
if (!l->dev_nodes_created) {
err = gk20a_user_nodes_init(dev);
if (err) {
goto done;
}
l->dev_nodes_created = true;
}
if (g->sim) {
if (g->sim->sim_init_late)
err = g->sim->sim_init_late(g);
if (err)
goto done;
}
#ifdef CONFIG_NVGPU_DGPU
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_DGPU_PCIE_SCRIPT_EXECUTE) &&
nvgpu_platform_is_silicon(g)) {
if (g->ops.clk.change_host_clk_source != NULL) {
g->ops.clk.change_host_clk_source(g);
}
g->ops.xve.devinit_deferred_settings(g);
}
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_DGPU_THERMAL_ALERT) &&
nvgpu_platform_is_silicon(g)) {
err = nvgpu_request_therm_irq(l);
if (err && (err != -ENOENT)) {
nvgpu_err(g, "thermal interrupt request failed %d",
err);
goto done;
}
if (err == -ENOENT) {
nvgpu_info(g, "nvgpu-therm-gpio DT entry is missing. "
"Thermal Alert feature will not be enabled");
}
}
#endif
err = nvgpu_enable_irqs(g);
if (err) {
nvgpu_err(g, "failed to enable irqs %d", err);
goto done;
}
err = nvgpu_finalize_poweron(g);
if (err)
goto done;
/* Initialize linux specific flags */
gk20a_init_linux_characteristics(g);
err = nvgpu_init_os_linux_ops(l);
if (err)
goto done;
nvgpu_init_usermode_support(g);
err = nvgpu_finalize_poweron_linux(l);
if (err)
goto done;
#ifdef CONFIG_NVGPU_DGPU
nvgpu_init_mm_ce_context(g);
nvgpu_vidmem_thread_unpause(&g->mm);
#endif
/* Initialise scaling: it will initialize scaling drive only once */
if (IS_ENABLED(CONFIG_GK20A_DEVFREQ) &&
nvgpu_platform_is_silicon(g)) {
gk20a_scale_init(dev);
if (platform->initscale)
platform->initscale(dev);
}
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_finalize_poweron_done(dev_name(dev));
#endif
gk20a_scale_resume(dev_from_gk20a(g));
#ifdef CONFIG_NVGPU_SUPPORT_CDE
if (platform->has_cde)
gk20a_init_cde_support(l);
#endif
err = gk20a_sched_ctrl_init(g);
if (err) {
nvgpu_err(g, "failed to init sched control");
goto done;
}
g->sw_ready = true;
nvgpu_set_power_state(g, NVGPU_STATE_POWERED_ON);
done:
if (err != 0) {
nvgpu_disable_irqs(g);
nvgpu_remove_sim_support_linux(g);
if (l->dev_nodes_created) {
gk20a_user_nodes_deinit(dev);
}
nvgpu_set_power_state(g, NVGPU_STATE_POWERED_OFF);
}
nvgpu_mutex_release(&g->power_lock);
return err;
}
/*
* Locks out the driver from accessing GPU registers. This prevents access to
* thse registers after the GPU has been clock or power gated. This should help
* find annoying bugs where register reads and writes are silently dropped
* after the GPU has been turned off. On older chips these reads and writes can
* also lock the entire CPU up.
*/
static int gk20a_lockout_registers(struct gk20a *g)
{
g->regs = 0U;
g->bar1 = 0U;
nvgpu_lockout_usermode_registers(g);
return 0;
}
int nvgpu_enable_irqs(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
u32 i;
for (i = 0U; i < l->interrupts.stall_size; i++) {
enable_irq(l->interrupts.stall_lines[i]);
}
if (l->interrupts.nonstall_size > 0) {
enable_irq(l->interrupts.nonstall_line);
}
return 0;
}
void nvgpu_disable_irqs(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
u32 i;
for (i = 0U; i < l->interrupts.stall_size; i++) {
disable_irq(l->interrupts.stall_lines[i]);
}
if (l->interrupts.nonstall_size > 0) {
disable_irq(l->interrupts.nonstall_line);
}
}
static int gk20a_pm_prepare_poweroff(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
#endif
struct gk20a_platform *platform = gk20a_get_platform(dev);
int ret = 0;
nvgpu_log_fn(g, " ");
nvgpu_mutex_acquire(&g->power_lock);
if (nvgpu_is_powered_off(g))
goto done;
nvgpu_disable_irqs(g);
gk20a_scale_suspend(dev);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
gk20a_cde_suspend(l);
#endif
ret = nvgpu_prepare_poweroff(g);
if (ret)
goto error;
/* Decrement platform power refcount */
if (platform->idle)
platform->idle(dev);
/* Stop CPU from accessing the GPU registers. */
gk20a_lockout_registers(g);
nvgpu_hide_usermode_for_poweroff(g);
nvgpu_set_power_state(g, NVGPU_STATE_POWERED_OFF);
nvgpu_mutex_release(&g->power_lock);
return 0;
error:
/* Re-enable IRQs on error. This doesn't fail on Linux. */
(void) nvgpu_enable_irqs(g);
gk20a_scale_resume(dev);
done:
nvgpu_mutex_release(&g->power_lock);
return ret;
}
static struct of_device_id tegra_gk20a_of_match[] = {
#ifdef CONFIG_TEGRA_GK20A
{ .compatible = "nvidia,tegra210-gm20b",
.data = &gm20b_tegra_platform },
{ .compatible = "nvidia,gv11b",
.data = &gv11b_tegra_platform },
#ifdef CONFIG_NVGPU_GR_VIRTUALIZATION
{ .compatible = "nvidia,gv11b-vgpu",
.data = &gv11b_vgpu_tegra_platform},
#endif
#if defined(CONFIG_NVGPU_HAL_NON_FUSA) && defined(CONFIG_NVGPU_NON_FUSA)
{ .compatible = "nvidia,ga10b",
.data = &ga10b_tegra_platform},
#ifdef CONFIG_NVGPU_GR_VIRTUALIZATION
{ .compatible = "nvidia,ga10b-vgpu",
.data = &ga10b_vgpu_tegra_platform},
#endif
#endif
#endif
#ifdef CONFIG_NVGPU_NEXT
#if defined(CONFIG_NVGPU_HAL_NON_FUSA) && defined(CONFIG_NVGPU_NON_FUSA)
NVGPU_NEXT_COMPATIBLE_CHIPS
#endif
#endif
{ },
};
MODULE_DEVICE_TABLE(of, tegra_gk20a_of_match);
#ifdef CONFIG_PM
/* Caller of this API can assume the following return values
* 1) -EBUSY indicates failure of the API, no locks are held. (Failure)
* 2) 1 indicates pm_runtime_status_suspended without any locks held
* and g->probe_done = false. (Success)
* 3) 0 indicates function successfully idles the driver and prevents
* further jobs. Following steps are executed,
* a) Hold back Deterministic Submits
* b) Down-Write Busy lock
* c) Acquire platform->railgate lock.
*/
int gk20a_block_new_jobs_and_idle(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = dev_get_drvdata(dev);
struct nvgpu_timeout timeout;
int ref_cnt;
int target_ref_cnt = 0;
if (!g->probe_done) {
/*
* Note that autosuspend delay is 0 at this point hence the device
* will suspend immediately. Deterministic channels, gk20a_busy and
* unrailgate don't intervene during probe so no need to hold the
* locks below.
*/
pm_runtime_put_sync_autosuspend(dev);
if (pm_runtime_status_suspended(dev)) {
return 1;
} else {
nvgpu_err(g, "failed to idle");
return -EBUSY;
}
}
/*
* Hold back deterministic submits and changes to deterministic
* channels - this must be outside the power busy locks.
*/
nvgpu_channel_deterministic_idle(g);
/* acquire busy lock to block other busy() calls */
down_write(&l->busy_lock);
/* acquire railgate lock to prevent unrailgate in midst of do_idle() */
nvgpu_mutex_acquire(&platform->railgate_lock);
/* check if it is already railgated ? */
if (platform->is_railgated(dev))
return 0;
/*
* release railgate_lock, prevent suspend by incrementing usage counter,
* re-acquire railgate_lock
*/
nvgpu_mutex_release(&platform->railgate_lock);
pm_runtime_get_sync(dev);
/*
* One refcount taken in this API
* If User disables rail gating, we take one more
* extra refcount
*/
if (nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE))
target_ref_cnt = 1;
else
target_ref_cnt = 2;
nvgpu_mutex_acquire(&platform->railgate_lock);
nvgpu_timeout_init_cpu_timer(g, &timeout, GK20A_WAIT_FOR_IDLE_MS);
/* check and wait until GPU is idle (with a timeout) */
do {
nvgpu_usleep_range(1000, 1100);
ref_cnt = atomic_read(&dev->power.usage_count);
} while (ref_cnt != target_ref_cnt && !nvgpu_timeout_expired(&timeout));
if (ref_cnt != target_ref_cnt) {
nvgpu_err(g, "failed to idle - refcount %d != target_ref_cnt",
ref_cnt);
pm_runtime_put_noidle(dev);
nvgpu_mutex_release(&platform->railgate_lock);
up_write(&l->busy_lock);
nvgpu_channel_deterministic_unidle(g);
return -EBUSY;
}
return 0;
}
int gk20a_block_new_jobs_and_poweroff(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = dev_get_drvdata(dev);
int ret;
ret = gk20a_block_new_jobs_and_idle(g);
if (ret == -EBUSY) {
return ret;
}
if (ret == 1) {
return 0;
}
/* check if it is already railgated ? */
if (platform->is_railgated(dev)) {
nvgpu_mutex_release(&platform->railgate_lock);
return 0;
}
nvgpu_mutex_release(&platform->railgate_lock);
/* For joint_xpu_rail platforms, This will decrement the
* extra refcount taken by us.
*/
if (!nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE)) {
pm_runtime_dont_use_autosuspend(dev);
}
pm_runtime_put_sync_suspend(dev);
nvgpu_log_info(g, "power usage_count = %d", atomic_read(&dev->power.usage_count));
return 0;
}
static void gk20a_unblock_jobs(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct device *dev = dev_from_gk20a(g);
/* For joint_xpu_rail, its unsafe to keep the rail gated. */
if (!nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE)) {
pm_runtime_set_autosuspend_delay(dev, -1);
pm_runtime_use_autosuspend(dev);
}
/* release the lock and open up all other busy() calls */
up_write(&l->busy_lock);
nvgpu_channel_deterministic_unidle(g);
}
/**
* gk20a_do_idle() - force the GPU to idle and railgate
*
* In success, this call MUST be balanced by caller with gk20a_do_unidle()
*
* Acquires two locks : &l->busy_lock and &platform->railgate_lock
* In success, we hold these locks and return
* In failure, we release these locks and return
*/
int gk20a_do_idle(void *_g)
{
struct gk20a *g = (struct gk20a *)_g;
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = dev_get_drvdata(dev);
int ret;
ret = gk20a_block_new_jobs_and_idle(g);
if (ret == -EBUSY) {
return ret;
}
if (ret == 1) {
return 0;
}
/* check if it is already railgated ? */
if (platform->is_railgated(dev)) {
return 0;
}
/*
* If railgating is enabled, autosuspend delay will be > 0. Set it to
* 0 to suspend immediately. If railgating is disabled setting it to
* 0 will reduce the usage count. pm_runtime_put_sync_autosuspend
* will then suspend immediately.
*/
pm_runtime_set_autosuspend_delay(dev, 0);
pm_runtime_put_sync_autosuspend(dev);
if (pm_runtime_status_suspended(dev)) {
return 0;
} else {
nvgpu_err(g, "failed to idle in timeout");
/*
* gk20a_do_unidle will release the locks and reset the
* autosuspend delay.
*/
(void) gk20a_do_unidle(g);
return -EBUSY;
}
return 0;
}
/**
* gk20a_do_unidle() - unblock all the tasks blocked by gk20a_do_idle()
*/
int gk20a_do_unidle(void *_g)
{
struct gk20a *g = (struct gk20a *)_g;
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = dev_get_drvdata(dev);
if (!g->probe_done) {
pm_runtime_get_sync(dev);
if (pm_runtime_active(dev)) {
return 0;
} else {
nvgpu_err(g, "failed to unidle");
return -EBUSY;
}
}
/*
* Release the railgate_lock here as setting autosuspend_delay to -1
* resumes the device that needs this lock.
*/
nvgpu_mutex_release(&platform->railgate_lock);
if (g->railgate_delay && nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE))
pm_runtime_set_autosuspend_delay(dev, g->railgate_delay);
else
pm_runtime_set_autosuspend_delay(dev, -1);
/* release the lock and open up all other busy() calls */
up_write(&l->busy_lock);
nvgpu_channel_deterministic_unidle(g);
return 0;
}
#endif
void __iomem *nvgpu_devm_ioremap_resource(struct platform_device *dev, int i,
struct resource **out)
{
struct resource *r = platform_get_resource(dev, IORESOURCE_MEM, i);
if (!r)
return NULL;
if (out)
*out = r;
return devm_ioremap_resource(&dev->dev, r);
}
void __iomem *nvgpu_devm_ioremap(struct device *dev, resource_size_t offset,
resource_size_t size)
{
return devm_ioremap(dev, offset, size);
}
u64 nvgpu_resource_addr(struct platform_device *dev, int i)
{
struct resource *r = platform_get_resource(dev, IORESOURCE_MEM, i);
if (!r)
return 0;
return r->start;
}
static irqreturn_t gk20a_intr_isr_stall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
u32 err = nvgpu_cic_mon_intr_stall_isr(g);
return err == NVGPU_CIC_INTR_HANDLE ? IRQ_WAKE_THREAD : IRQ_NONE;
}
static irqreturn_t gk20a_intr_thread_isr_stall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
nvgpu_cic_mon_intr_stall_handle(g);
return IRQ_HANDLED;
}
static irqreturn_t gk20a_intr_isr_nonstall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
u32 err = nvgpu_cic_mon_intr_nonstall_isr(g);
return err == NVGPU_CIC_INTR_HANDLE ? IRQ_WAKE_THREAD : IRQ_NONE;
}
static irqreturn_t gk20a_intr_thread_isr_nonstall(int irq, void *dev_id)
{
struct gk20a *g = dev_id;
nvgpu_cic_mon_intr_nonstall_handle(g);
return IRQ_HANDLED;
}
void gk20a_remove_support(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct sim_nvgpu_linux *sim_linux;
#if NVGPU_VPR_RESIZE_SUPPORTED
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_VPR)) {
tegra_unregister_idle_unidle(gk20a_do_idle);
}
#endif
#ifdef CONFIG_NVGPU_DEBUGGER
nvgpu_kfree(g, g->dbg_regops_tmp_buf);
#endif
nvgpu_channel_remove_support_linux(l);
if (g->sec2.remove_support != NULL) {
g->sec2.remove_support(&g->sec2);
}
nvgpu_gr_remove_support(g);
#ifdef CONFIG_NVGPU_DGPU
if (g->mm.remove_ce_support)
g->mm.remove_ce_support(&g->mm);
#endif
nvgpu_nvs_remove_support(g);
if (g->fifo.remove_support)
g->fifo.remove_support(&g->fifo);
#if defined(CONFIG_NVGPU_NON_FUSA)
if (nvgpu_fb_vab_teardown_hal(g) != 0) {
nvgpu_err(g, "failed to teardown VAB");
}
#endif
if (g->ops.mm.mmu_fault.info_mem_destroy != NULL) {
g->ops.mm.mmu_fault.info_mem_destroy(g);
}
nvgpu_pmu_remove_support(g, g->pmu);
if (g->mm.remove_support)
g->mm.remove_support(&g->mm);
if (g->sim) {
sim_linux = container_of(g->sim, struct sim_nvgpu_linux, sim);
if (g->sim->remove_support)
g->sim->remove_support(g);
if (sim_linux->remove_support_linux)
sim_linux->remove_support_linux(g);
}
#if defined(CONFIG_NVGPU_CYCLESTATS)
nvgpu_free_cyclestats_snapshot_data(g);
#endif
#ifdef CONFIG_NVGPU_GSP_SCHEDULER
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_GSP_SCHED)) {
nvgpu_gsp_sched_sw_deinit(g);
}
#endif
#ifndef CONFIG_NVGPU_DGPU
#ifdef CONFIG_NVGPU_GSP_STRESS_TEST
nvgpu_gsp_test_sw_deinit(g);
#endif
#endif
nvgpu_fbp_remove_support(g);
#ifdef CONFIG_NVGPU_TSG_SHARING
nvgpu_mutex_destroy(&g->ctrl_dev_id_lock);
#endif
nvgpu_remove_usermode_support(g);
nvgpu_free_enabled_flags(g);
nvgpu_free_errata_flags(g);
gk20a_lockout_registers(g);
}
static int gk20a_init_support(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
void __iomem *addr;
int err = -ENOMEM;
#if NVGPU_VPR_RESIZE_SUPPORTED
tegra_register_idle_unidle(gk20a_do_idle, gk20a_do_unidle, g);
#endif
addr = nvgpu_devm_ioremap_resource(pdev,
GK20A_BAR0_IORESOURCE_MEM,
&l->reg_mem);
if (IS_ERR(addr)) {
nvgpu_err(g, "failed to remap gk20a registers");
err = PTR_ERR(addr);
goto fail;
}
g->regs = (uintptr_t)addr;
g->regs_size = resource_size(l->reg_mem);
g->regs_bus_addr = nvgpu_resource_addr(pdev,
GK20A_BAR0_IORESOURCE_MEM);
if (!g->regs_bus_addr) {
nvgpu_err(g, "failed to read register bus offset");
err = -ENODEV;
goto fail;
}
addr = nvgpu_devm_ioremap_resource(pdev,
GK20A_BAR1_IORESOURCE_MEM,
&l->bar1_mem);
if (IS_ERR(addr)) {
nvgpu_err(g, "failed to remap gk20a bar1");
err = PTR_ERR(addr);
goto fail;
}
g->bar1 = (uintptr_t)addr;
err = nvgpu_init_sim_support_linux(g, pdev);
if (err)
goto fail;
err = nvgpu_init_sim_support(g);
if (err)
goto fail_sim;
nvgpu_init_usermode_support(g);
return 0;
fail_sim:
nvgpu_remove_sim_support_linux(g);
fail:
if (g->regs)
g->regs = 0U;
if (g->bar1)
g->bar1 = 0U;
return err;
}
static int gk20a_pm_railgate(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
int ret = 0;
struct gk20a *g = get_gk20a(dev);
/* return early if platform didn't implement railgate */
if (!platform->railgate)
return 0;
/* if platform is already railgated, then just return */
if (platform->is_railgated && platform->is_railgated(dev))
return ret;
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_gate_start = jiffies;
if (g->pstats.railgating_cycle_count >= 1)
g->pstats.total_rail_ungate_time_ms =
g->pstats.total_rail_ungate_time_ms +
jiffies_to_msecs(g->pstats.last_rail_gate_start -
g->pstats.last_rail_ungate_complete);
#endif
nvgpu_mutex_acquire(&g->static_pg_lock);
ret = platform->railgate(dev);
if (ret) {
nvgpu_err(g, "failed to railgate platform, err=%d", ret);
nvgpu_mutex_release(&g->static_pg_lock);
return ret;
}
nvgpu_mutex_release(&g->static_pg_lock);
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_gate_complete = jiffies;
#endif
return ret;
}
static int gk20a_pm_unrailgate(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
int ret = 0;
#ifdef CONFIG_DEBUG_FS
struct gk20a *g = get_gk20a(dev);
#endif
/* return early if platform didn't implement unrailgate */
if (!platform->unrailgate)
return 0;
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_ungate_start = jiffies;
if (g->pstats.railgating_cycle_count >= 1)
g->pstats.total_rail_gate_time_ms =
g->pstats.total_rail_gate_time_ms +
jiffies_to_msecs(g->pstats.last_rail_ungate_start -
g->pstats.last_rail_gate_complete);
g->pstats.railgating_cycle_count++;
#endif
#ifdef CONFIG_NVGPU_TRACE
trace_gk20a_pm_unrailgate(dev_name(dev));
#endif
nvgpu_mutex_acquire(&platform->railgate_lock);
ret = platform->unrailgate(dev);
nvgpu_mutex_release(&platform->railgate_lock);
#ifdef CONFIG_DEBUG_FS
g->pstats.last_rail_ungate_complete = jiffies;
#endif
return ret;
}
/*
* Remove association of the driver with OS interrupt handler
*/
void nvgpu_free_irq(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
u32 i;
for (i = 0U; i < l->interrupts.stall_size; i++) {
devm_free_irq(dev, l->interrupts.stall_lines[i], g);
}
if (l->interrupts.nonstall_size > 0) {
devm_free_irq(dev, l->interrupts.nonstall_line, g);
}
}
/*
* Idle the GPU in preparation of shutdown/remove.
* gk20a_driver_start_unload() does not idle the GPU, but instead changes the SW
* state to prevent further activity on the driver SW side.
* On driver removal quiesce() should be called after start_unload()
*/
int nvgpu_quiesce(struct gk20a *g)
{
int err;
struct device *dev = dev_from_gk20a(g);
if (nvgpu_is_powered_on(g)) {
err = nvgpu_wait_for_idle(g);
if (err) {
nvgpu_err(g, "failed to idle GPU, err=%d", err);
return err;
}
err = nvgpu_engine_disable_activity_all(g, true);
if (err) {
nvgpu_err(g,
"failed to disable engine activity, err=%d",
err);
return err;
}
err = nvgpu_engine_wait_for_idle(g);
if (err) {
nvgpu_err(g, "failed to idle engines, err=%d",
err);
return err;
}
}
if (gk20a_gpu_is_virtual(dev))
err = vgpu_pm_prepare_poweroff(dev);
else
err = gk20a_pm_prepare_poweroff(dev);
if (err)
nvgpu_err(g, "failed to prepare for poweroff, err=%d",
err);
return err;
}
static void gk20a_pm_shutdown(struct platform_device *pdev)
{
struct gk20a_platform *platform = platform_get_drvdata(pdev);
struct gk20a *g = platform->g;
int err;
nvgpu_info(g, "shutting down");
/* vgpu has nothing to clean up currently */
if (gk20a_gpu_is_virtual(&pdev->dev))
return;
if (nvgpu_is_powered_off(g))
goto finish;
gk20a_driver_start_unload(g);
/* If GPU is already railgated,
* just prevent more requests, and return */
if (platform->is_railgated && platform->is_railgated(&pdev->dev)) {
__pm_runtime_disable(&pdev->dev, false);
nvgpu_info(g, "already railgated, shut down complete");
return;
}
/* Prevent more requests by disabling Runtime PM */
__pm_runtime_disable(&pdev->dev, false);
err = nvgpu_quiesce(g);
if (err)
goto finish;
err = gk20a_pm_railgate(&pdev->dev);
if (err)
nvgpu_err(g, "failed to railgate, err=%d", err);
finish:
nvgpu_info(g, "shut down complete");
}
#ifdef CONFIG_PM
static int gk20a_pm_runtime_resume(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
int err = 0;
err = gk20a_pm_unrailgate(dev);
if (err)
goto fail;
if (!g->probe_done) {
return 0;
}
if (gk20a_gpu_is_virtual(dev))
err = vgpu_pm_finalize_poweron(dev);
else
err = gk20a_pm_finalize_poweron(dev);
if (err)
goto fail_poweron;
return 0;
fail_poweron:
gk20a_pm_railgate(dev);
fail:
return err;
}
static int gk20a_pm_runtime_suspend(struct device *dev)
{
int err = 0;
struct gk20a *g = get_gk20a(dev);
if (!g)
return 0;
if (!g->probe_done) {
err = gk20a_pm_railgate(dev);
if (err)
pm_runtime_mark_last_busy(dev);
return err;
}
if (gk20a_gpu_is_virtual(dev))
err = vgpu_pm_prepare_poweroff(dev);
else
err = gk20a_pm_prepare_poweroff(dev);
if (err) {
nvgpu_err(g, "failed to power off, err=%d", err);
goto fail;
}
err = gk20a_pm_railgate(dev);
if (err)
goto fail;
return 0;
fail:
gk20a_pm_finalize_poweron(dev);
pm_runtime_mark_last_busy(dev);
return err;
}
static int gk20a_pm_suspend(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
struct gk20a *g = get_gk20a(dev);
int ret = 0;
int usage_count;
struct nvgpu_timeout timeout;
if (nvgpu_is_powered_off(g)) {
if (platform->suspend)
ret = platform->suspend(dev);
if (ret)
return ret;
if (!pm_runtime_enabled(dev))
ret = gk20a_pm_railgate(dev);
return ret;
}
nvgpu_timeout_init_cpu_timer(g, &timeout, GK20A_WAIT_FOR_IDLE_MS);
/*
* Hold back deterministic submits and changes to deterministic
* channels - this must be outside the power busy locks.
*/
nvgpu_channel_deterministic_idle(g);
#ifdef CONFIG_NVS_PRESENT
/* Release the busy() lock taken here if control-fifo is enabled */
nvgpu_nvs_ctrl_fifo_idle(g);
#endif
/* check and wait until GPU is idle (with a timeout) */
do {
nvgpu_usleep_range(1000, 1100);
usage_count = nvgpu_atomic_read(&g->usage_count);
} while (usage_count != 0 && !nvgpu_timeout_expired(&timeout));
if (usage_count != 0) {
nvgpu_err(g, "failed to idle - usage_count %d", usage_count);
ret = -EINVAL;
goto fail_idle;
}
/* For cases where we don't have railgate enabled,
* we acquire an extra refcount in PM framework.
*
* Release it here to unblock device suspend.
* The below method releases the extra refcount taken
* above and disables auto suspend.
*/
if (!nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE))
pm_runtime_dont_use_autosuspend(dev);
ret = gk20a_pm_runtime_suspend(dev);
if (ret)
goto fail_idle;
if (platform->suspend)
ret = platform->suspend(dev);
if (ret)
goto fail_suspend;
g->suspended = true;
return 0;
fail_suspend:
gk20a_pm_runtime_resume(dev);
fail_idle:
#ifdef CONFIG_NVS_PRESENT
/* Re-Acquire the busy() lock taken here if control-fifo is enabled */
nvgpu_nvs_ctrl_fifo_unidle(g);
#endif
nvgpu_channel_deterministic_unidle(g);
return ret;
}
static int gk20a_pm_resume(struct device *dev)
{
struct gk20a_platform *platform = dev_get_drvdata(dev);
struct gk20a *g = get_gk20a(dev);
int ret = 0;
if (!g->suspended) {
if (platform->resume)
ret = platform->resume(dev);
if (ret)
return ret;
if (!pm_runtime_enabled(dev))
ret = gk20a_pm_unrailgate(dev);
return ret;
}
if (platform->resume)
ret = platform->resume(dev);
if (ret)
return ret;
ret = gk20a_pm_runtime_resume(dev);
if (ret)
return ret;
/* For cases where we don't have railgate enabled,
* acquire extra reference in PM framework to prevent
* runtime suspend/resume.
*/
if (!nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE)) {
pm_runtime_set_autosuspend_delay(dev, -1);
pm_runtime_use_autosuspend(dev);
}
g->suspended = false;
#ifdef CONFIG_NVS_PRESENT
/* Re-Acquire the busy() lock taken here if control-fifo is enabled */
nvgpu_nvs_ctrl_fifo_unidle(g);
#endif
nvgpu_channel_deterministic_unidle(g);
return ret;
}
static const struct dev_pm_ops gk20a_pm_ops = {
.runtime_resume = gk20a_pm_runtime_resume,
.runtime_suspend = gk20a_pm_runtime_suspend,
.resume = gk20a_pm_resume,
.suspend = gk20a_pm_suspend,
};
#endif
static int gk20a_pm_init(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
int err = 0;
nvgpu_log_fn(g, " ");
/*
* runtime PM is enabled here. Irrespective of the device power state,
* it is resumed and suspended as part of nvgpu_probe due to dependency
* on clocks setup. From there onwards runtime PM is truly enabled.
*/
pm_runtime_enable(dev);
return err;
}
static int gk20a_pm_late_init(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
int err = 0;
nvgpu_log_fn(g, " ");
pm_runtime_disable(dev);
/*
* For railgate disable case, set autosuspend delay to negative which
* will avoid runtime pm suspend.
*/
if (g->railgate_delay && nvgpu_is_enabled(g, NVGPU_CAN_RAILGATE))
pm_runtime_set_autosuspend_delay(dev,
g->railgate_delay);
else
pm_runtime_set_autosuspend_delay(dev, -1);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
return err;
}
static int gk20a_pm_deinit(struct device *dev)
{
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev);
return 0;
}
void nvgpu_start_gpu_idle(struct gk20a *g)
{
struct nvgpu_gr *gr = nvgpu_gr_get_cur_instance_ptr(g);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
down_write(&l->busy_lock);
nvgpu_set_enabled(g, NVGPU_DRIVER_IS_DYING, true);
/*
* In rmmod path, when the kernel or GPU driver is
* dying signal the gr wait queue so that the wait
* queue wakes up and further processing happens.
* This is needed to prevent other threads, like
* pmu_pg_task, to go into un-interruptible state.
*/
if (gr != NULL) {
nvgpu_cond_signal(&gr->init_wq);
}
/*
* GR SW ready needs to be invalidated at this time with the busy lock
* held to prevent a racing condition on the gr/mm code
*/
nvgpu_gr_sw_ready(g, false);
g->sw_ready = false;
up_write(&l->busy_lock);
}
int nvgpu_wait_for_gpu_idle(struct gk20a *g)
{
int ret = 0;
ret = nvgpu_wait_for_idle(g);
if (ret) {
nvgpu_err(g, "failed in wait for idle");
goto out;
}
nvgpu_cic_rm_wait_for_deferred_interrupts(g);
out:
return ret;
}
/*
* Start the process for unloading the driver. Set NVGPU_DRIVER_IS_DYING.
*/
void gk20a_driver_start_unload(struct gk20a *g)
{
nvgpu_log(g, gpu_dbg_shutdown, "Driver is now going down!\n");
nvgpu_start_gpu_idle(g);
if (g->is_virtual)
return;
nvgpu_wait_for_idle(g);
nvgpu_cic_rm_wait_for_deferred_interrupts(g);
}
static inline void set_gk20a(struct platform_device *pdev, struct gk20a *gk20a)
{
gk20a_get_platform(&pdev->dev)->g = gk20a;
}
static int nvgpu_read_fuse_overrides(struct gk20a *g)
{
#ifdef CONFIG_NVGPU_TEGRA_FUSE
struct device_node *np = nvgpu_get_node(g);
struct gk20a_platform *platform = dev_get_drvdata(dev_from_gk20a(g));
u32 *fuses;
int count, i;
int ret = 0;
if (!np) /* may be pcie device */
return 0;
count = of_property_count_elems_of_size(np, "fuse-overrides", 8);
if (count <= 0)
return count;
fuses = nvgpu_kmalloc(g, sizeof(u32) * count * 2);
if (!fuses)
return -ENOMEM;
of_property_read_u32_array(np, "fuse-overrides", fuses, count * 2);
for (i = 0; i < count; i++) {
u32 fuse, value;
fuse = fuses[2 * i];
value = fuses[2 * i + 1];
switch (fuse) {
case GM20B_FUSE_OPT_TPC_DISABLE:
g->tpc_fs_mask_user = ~value;
break;
case GP10B_FUSE_OPT_ECC_EN:
g->fecs_feature_override_ecc_val = value;
break;
#ifdef CONFIG_NVGPU_STATIC_POWERGATE
case GV11B_FUSE_OPT_TPC_DISABLE:
if (platform->set_tpc_pg_mask != NULL) {
ret = platform->set_tpc_pg_mask(dev_from_gk20a(g),
value);
if (ret != 0) {
return -EINVAL;
}
}
break;
case GA10B_FUSE_OPT_TPC_DISABLE:
if (platform->set_tpc_pg_mask != NULL) {
ret = platform->set_tpc_pg_mask(dev_from_gk20a(g),
value);
if (ret != 0) {
return -EINVAL;
}
}
break;
case GA10B_FUSE_OPT_GPC_DISABLE:
if (platform->set_gpc_pg_mask != NULL) {
ret = platform->set_gpc_pg_mask(dev_from_gk20a(g),
value);
if (ret != 0) {
return -EINVAL;
}
}
break;
case GA10B_FUSE_OPT_FBP_DISABLE:
if (platform->set_fbp_pg_mask != NULL) {
ret = platform->set_fbp_pg_mask(dev_from_gk20a(g),
value);
if (ret != 0) {
return -EINVAL;
}
}
break;
#endif
default:
nvgpu_err(g, "ignore unknown fuse override %08x", fuse);
break;
}
}
nvgpu_kfree(g, fuses);
#endif
return 0;
}
static int gk20a_probe(struct platform_device *dev)
{
struct nvgpu_os_linux *l = NULL;
struct gk20a *gk20a;
int err;
struct gk20a_platform *platform = NULL;
struct device_node *np;
u32 i, intr_size, irq_idx;
if (dev->dev.of_node) {
const struct of_device_id *match;
match = of_match_device(tegra_gk20a_of_match, &dev->dev);
if (match)
platform = (struct gk20a_platform *)match->data;
} else
platform = (struct gk20a_platform *)dev->dev.platform_data;
if (!platform) {
dev_err(&dev->dev, "no platform data\n");
return -ENODATA;
}
platform_set_drvdata(dev, platform);
if (gk20a_gpu_is_virtual(&dev->dev))
return vgpu_probe(dev);
l = kzalloc(sizeof(*l), GFP_KERNEL);
if (!l) {
dev_err(&dev->dev, "couldn't allocate gk20a support");
return -ENOMEM;
}
gk20a = &l->g;
nvgpu_log_fn(gk20a, " ");
nvgpu_init_gk20a(gk20a);
set_gk20a(dev, gk20a);
gk20a->probe_done = false;
l->dev = &dev->dev;
gk20a->log_mask = NVGPU_DEFAULT_DBG_MASK;
nvgpu_kmem_init(gk20a);
err = nvgpu_init_errata_flags(gk20a);
if (err)
goto return_err_platform;
err = nvgpu_init_enabled_flags(gk20a);
if (err)
goto return_err_errata;
np = nvgpu_get_node(gk20a);
if (of_dma_is_coherent(np)) {
nvgpu_set_enabled(gk20a, NVGPU_USE_COHERENT_SYSMEM, true);
nvgpu_set_enabled(gk20a, NVGPU_SUPPORT_IO_COHERENCE, true);
}
if (nvgpu_platform_is_simulation(gk20a))
nvgpu_set_enabled(gk20a, NVGPU_IS_FMODEL, true);
err = nvgpu_cic_mon_setup(gk20a);
if (err != 0) {
nvgpu_err(gk20a, "CIC-MON setup failed");
goto return_err_cic_mon;
}
intr_size = platform_irq_count(dev);
if (intr_size > 0U && intr_size <= NVGPU_MAX_INTERRUPTS) {
irq_idx = 0U;
/* Single interrupt line could be a stall line*/
l->interrupts.nonstall_size = intr_size == 1U ? 0U : 1U;
l->interrupts.stall_size = intr_size - l->interrupts.nonstall_size;
for (i = 0U; i < l->interrupts.stall_size; i++) {
l->interrupts.stall_lines[i] = platform_get_irq(dev, i);
if ((int)l->interrupts.stall_lines[i] < 0) {
err = -ENXIO;
goto return_err;
}
}
if (l->interrupts.nonstall_size > 0U) {
l->interrupts.nonstall_line = platform_get_irq(dev, i);
if ((int)l->interrupts.nonstall_line < 0) {
err = -ENXIO;
goto return_err;
}
}
} else {
dev_err(&dev->dev, "Invalid intr lines\n");
err = -ENXIO;
goto return_err;
}
for (i = 0U; i < l->interrupts.stall_size; i++) {
err = devm_request_threaded_irq(&dev->dev,
l->interrupts.stall_lines[i],
gk20a_intr_isr_stall,
gk20a_intr_thread_isr_stall,
0, "gk20a_stall", gk20a);
if (err) {
dev_err(&dev->dev,
"failed to request stall intr irq @ %d\n",
l->interrupts.stall_lines[i]);
goto return_err;
}
}
if (l->interrupts.nonstall_size > 0) {
err = devm_request_threaded_irq(&dev->dev,
l->interrupts.nonstall_line,
gk20a_intr_isr_nonstall,
gk20a_intr_thread_isr_nonstall,
0, "gk20a_nonstall", gk20a);
if (err) {
dev_err(&dev->dev,
"failed to request non-stall intr irq @ %d\n",
l->interrupts.nonstall_line);
goto return_err;
}
}
nvgpu_disable_irqs(gk20a);
err = gk20a_init_support(dev);
if (err)
goto return_err;
err = nvgpu_read_fuse_overrides(gk20a);
#ifdef CONFIG_RESET_CONTROLLER
platform->reset_control = devm_reset_control_get(&dev->dev, NULL);
if (IS_ERR(platform->reset_control))
platform->reset_control = NULL;
#endif
err = gk20a_pm_init(&dev->dev);
if (err) {
dev_err(&dev->dev, "pm init failed");
goto return_err;
}
err = nvgpu_probe(gk20a, "gpu.0");
if (err)
goto return_err;
err = gk20a_pm_late_init(&dev->dev);
if (err) {
dev_err(&dev->dev, "pm late_init failed");
goto return_err;
}
l->nvgpu_reboot_nb.notifier_call =
nvgpu_kernel_shutdown_notification;
err = register_reboot_notifier(&l->nvgpu_reboot_nb);
if (err)
goto return_err;
nvgpu_mutex_init(&l->dmabuf_priv_list_lock);
nvgpu_init_list_node(&l->dmabuf_priv_list);
gk20a->probe_done = true;
return 0;
return_err:
nvgpu_cic_mon_remove(gk20a);
return_err_cic_mon:
nvgpu_free_enabled_flags(gk20a);
return_err_errata:
nvgpu_free_errata_flags(gk20a);
return_err_platform:
/*
* Last since the above allocs may use data structures in here.
*/
nvgpu_kmem_fini(gk20a, NVGPU_KMEM_FINI_FORCE_CLEANUP);
kfree(l);
return err;
}
int gk20a_driver_force_power_off(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err = 0;
if (!capable(CAP_SYS_NICE)) {
nvgpu_err(g, "User doesn't have the permission for this operation");
return -EPERM;
}
#ifdef CONFIG_NVGPU_DGPU
if (g->pci_class) {
nvgpu_err(g, "Poweroff is not supported for device yet.");
return -EINVAL;
}
#endif
err = gk20a_block_new_jobs_and_poweroff(g);
if (err != 0)
goto done;
nvgpu_gr_remove_support(g);
/*
* This is a WAR.
* For T210, powernode must not allow device nodes to be powered off
* even during a force poweroff. Once the WAR for T210 is removed,
* this will hold true for all chips.
*/
if (platform->platform_chip_id != TEGRA_210)
gk20a_user_nodes_deinit(dev);
gk20a_unblock_jobs(g);
done:
if (err != 0) {
nvgpu_err(g, "failed to poweroff");
}
return err;
}
int nvgpu_remove(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
#endif
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err;
nvgpu_log_fn(g, " ");
nvgpu_start_gpu_idle(g);
err = nvgpu_quiesce(g);
WARN(err, "gpu failed to idle during driver removal");
if (nvgpu_mem_is_valid(&g->syncpt_mem))
nvgpu_dma_free(g, &g->syncpt_mem);
#ifdef CONFIG_NVGPU_SUPPORT_CDE
if (platform->has_cde)
gk20a_cde_destroy(l);
#endif
#ifdef CONFIG_NVGPU_FECS_TRACE
gk20a_ctxsw_trace_cleanup(g);
#endif
gk20a_sched_ctrl_cleanup(g);
if (IS_ENABLED(CONFIG_GK20A_DEVFREQ))
gk20a_scale_exit(dev);
nvgpu_clk_arb_cleanup_arbiter(g);
gk20a_user_nodes_deinit(dev_from_gk20a(g));
gk20a_power_node_deinit(dev_from_gk20a(g));
nvgpu_remove_sysfs(dev);
if (platform->secure_buffer.destroy)
platform->secure_buffer.destroy(g,
&platform->secure_buffer);
if (platform->remove)
platform->remove(dev);
nvgpu_mutex_destroy(&g->clk_arb_enable_lock);
nvgpu_log_fn(g, "removed");
return err;
}
static int __exit gk20a_remove(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
if (gk20a_gpu_is_virtual(dev))
return vgpu_remove(pdev);
err = nvgpu_remove(dev);
gk20a_dma_buf_priv_list_clear(l);
nvgpu_mutex_destroy(&l->dmabuf_priv_list_lock);
unregister_reboot_notifier(&l->nvgpu_reboot_nb);
set_gk20a(pdev, NULL);
nvgpu_put(g);
gk20a_pm_deinit(dev);
return err;
}
static struct platform_driver gk20a_driver = {
.probe = gk20a_probe,
.remove = __exit_p(gk20a_remove),
.shutdown = gk20a_pm_shutdown,
.driver = {
.owner = THIS_MODULE,
.name = "gk20a",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
#ifdef CONFIG_OF
.of_match_table = tegra_gk20a_of_match,
#endif
#ifdef CONFIG_PM
.pm = &gk20a_pm_ops,
#endif
.suppress_bind_attrs = true,
}
};
static int __init gk20a_init(void)
{
int ret;
ret = nvgpu_pci_init();
if (ret)
return ret;
return platform_driver_register(&gk20a_driver);
}
static void __exit gk20a_exit(void)
{
nvgpu_pci_exit();
platform_driver_unregister(&gk20a_driver);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 16, 0)
MODULE_IMPORT_NS(DMA_BUF);
#endif
#ifdef CONFIG_GK20A_DEVFREQ
MODULE_SOFTDEP("pre: governor_pod_scaling_v2");
#endif
MODULE_LICENSE("GPL v2");
module_init(gk20a_init);
module_exit(gk20a_exit);