mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 01:50:07 +03:00
Update header path of gk20a.h in files present in common/ to <nvgpu/gk20a.h> Jira NVGPU-597 Change-Id: I3431dae93ada9bd561454c89a0b99c5292ab4a8d Signed-off-by: Debarshi Dutta <ddutta@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1832024 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
300 lines
8.1 KiB
C
300 lines
8.1 KiB
C
/*
|
|
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/vidmem.h>
|
|
#include <nvgpu/gk20a.h>
|
|
/*
|
|
* Make sure to use the right coherency aperture if you use this function! This
|
|
* will not add any checks. If you want to simply use the default coherency then
|
|
* use nvgpu_aperture_mask().
|
|
*/
|
|
u32 nvgpu_aperture_mask_coh(struct gk20a *g, enum nvgpu_aperture aperture,
|
|
u32 sysmem_mask, u32 sysmem_coh_mask,
|
|
u32 vidmem_mask)
|
|
{
|
|
/*
|
|
* Some iGPUs treat sysmem (i.e SoC DRAM) as vidmem. In these cases the
|
|
* "sysmem" aperture should really be translated to VIDMEM.
|
|
*/
|
|
if (!nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)) {
|
|
aperture = APERTURE_VIDMEM;
|
|
}
|
|
|
|
switch (aperture) {
|
|
case APERTURE_SYSMEM_COH:
|
|
return sysmem_coh_mask;
|
|
case APERTURE_SYSMEM:
|
|
return sysmem_mask;
|
|
case APERTURE_VIDMEM:
|
|
return vidmem_mask;
|
|
case APERTURE_INVALID:
|
|
WARN_ON("Bad aperture");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
|
|
u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask)
|
|
{
|
|
enum nvgpu_aperture ap = mem->aperture;
|
|
|
|
/*
|
|
* Handle the coherent aperture: ideally most of the driver is not
|
|
* aware of the difference between coherent and non-coherent sysmem so
|
|
* we add this translation step here.
|
|
*/
|
|
if (nvgpu_is_enabled(g, NVGPU_USE_COHERENT_SYSMEM) &&
|
|
ap == APERTURE_SYSMEM) {
|
|
ap = APERTURE_SYSMEM_COH;
|
|
}
|
|
|
|
return nvgpu_aperture_mask_coh(g, ap,
|
|
sysmem_mask,
|
|
sysmem_coh_mask,
|
|
vidmem_mask);
|
|
}
|
|
|
|
bool nvgpu_aperture_is_sysmem(enum nvgpu_aperture ap)
|
|
{
|
|
return ap == APERTURE_SYSMEM_COH || ap == APERTURE_SYSMEM;
|
|
}
|
|
|
|
bool nvgpu_mem_is_sysmem(struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_aperture_is_sysmem(mem->aperture);
|
|
}
|
|
|
|
struct nvgpu_sgl *nvgpu_sgt_get_next(struct nvgpu_sgt *sgt,
|
|
struct nvgpu_sgl *sgl)
|
|
{
|
|
return sgt->ops->sgl_next(sgl);
|
|
}
|
|
|
|
u64 nvgpu_sgt_get_phys(struct gk20a *g, struct nvgpu_sgt *sgt,
|
|
struct nvgpu_sgl *sgl)
|
|
{
|
|
return sgt->ops->sgl_phys(g, sgl);
|
|
}
|
|
|
|
u64 nvgpu_sgt_get_dma(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl)
|
|
{
|
|
return sgt->ops->sgl_dma(sgl);
|
|
}
|
|
|
|
u64 nvgpu_sgt_get_length(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl)
|
|
{
|
|
return sgt->ops->sgl_length(sgl);
|
|
}
|
|
|
|
u64 nvgpu_sgt_get_gpu_addr(struct gk20a *g, struct nvgpu_sgt *sgt,
|
|
struct nvgpu_sgl *sgl,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
return sgt->ops->sgl_gpu_addr(g, sgl, attrs);
|
|
}
|
|
|
|
bool nvgpu_sgt_iommuable(struct gk20a *g, struct nvgpu_sgt *sgt)
|
|
{
|
|
if (sgt->ops->sgt_iommuable) {
|
|
return sgt->ops->sgt_iommuable(g, sgt);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void nvgpu_sgt_free(struct gk20a *g, struct nvgpu_sgt *sgt)
|
|
{
|
|
if (sgt != NULL && sgt->ops->sgt_free != NULL) {
|
|
sgt->ops->sgt_free(g, sgt);
|
|
}
|
|
}
|
|
|
|
u64 nvgpu_mem_iommu_translate(struct gk20a *g, u64 phys)
|
|
{
|
|
/* ensure it is not vidmem allocation */
|
|
WARN_ON(nvgpu_addr_is_vidmem_page_alloc(phys));
|
|
|
|
if (nvgpu_iommuable(g) && g->ops.mm.get_iommu_bit != NULL) {
|
|
return phys | 1ULL << g->ops.mm.get_iommu_bit(g);
|
|
}
|
|
|
|
return phys;
|
|
}
|
|
|
|
/*
|
|
* Determine alignment for a passed buffer. Necessary since the buffer may
|
|
* appear big enough to map with large pages but the SGL may have chunks that
|
|
* are not aligned on a 64/128kB large page boundary. There's also the
|
|
* possibility chunks are odd sizes which will necessitate small page mappings
|
|
* to correctly glue them together into a contiguous virtual mapping.
|
|
*/
|
|
u64 nvgpu_sgt_alignment(struct gk20a *g, struct nvgpu_sgt *sgt)
|
|
{
|
|
u64 align = 0, chunk_align = 0;
|
|
struct nvgpu_sgl *sgl;
|
|
|
|
/*
|
|
* If this SGT is iommuable and we want to use the IOMMU address then
|
|
* the SGT's first entry has the IOMMU address. We will align on this
|
|
* and double check length of buffer later. Also, since there's an
|
|
* IOMMU we know that this DMA address is contiguous.
|
|
*/
|
|
if (nvgpu_iommuable(g) &&
|
|
nvgpu_sgt_iommuable(g, sgt) &&
|
|
nvgpu_sgt_get_dma(sgt, sgt->sgl) != 0ULL) {
|
|
return 1ULL << __ffs(nvgpu_sgt_get_dma(sgt, sgt->sgl));
|
|
}
|
|
|
|
/*
|
|
* Otherwise the buffer is not iommuable (VIDMEM, for example) or we are
|
|
* bypassing the IOMMU and need to use the underlying physical entries
|
|
* of the SGT.
|
|
*/
|
|
nvgpu_sgt_for_each_sgl(sgl, sgt) {
|
|
chunk_align = 1ULL << __ffs(nvgpu_sgt_get_phys(g, sgt, sgl) |
|
|
nvgpu_sgt_get_length(sgt, sgl));
|
|
|
|
if (align) {
|
|
align = min(align, chunk_align);
|
|
} else {
|
|
align = chunk_align;
|
|
}
|
|
}
|
|
|
|
return align;
|
|
}
|
|
|
|
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
|
|
{
|
|
u32 data = 0;
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM) {
|
|
u32 *ptr = mem->cpu_va;
|
|
|
|
WARN_ON(ptr == NULL);
|
|
data = ptr[w];
|
|
} else if (mem->aperture == APERTURE_VIDMEM) {
|
|
nvgpu_pramin_rd_n(g, mem, w * sizeof(u32), sizeof(u32), &data);
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
|
|
{
|
|
WARN_ON((offset & 3U) != 0U);
|
|
return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
|
|
}
|
|
|
|
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
|
|
u32 offset, void *dest, u32 size)
|
|
{
|
|
WARN_ON((offset & 3U) != 0U);
|
|
WARN_ON((size & 3U) != 0U);
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM) {
|
|
u8 *src = (u8 *)mem->cpu_va + offset;
|
|
|
|
WARN_ON(mem->cpu_va == NULL);
|
|
memcpy(dest, src, size);
|
|
} else if (mem->aperture == APERTURE_VIDMEM) {
|
|
nvgpu_pramin_rd_n(g, mem, offset, size, dest);
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
|
|
{
|
|
if (mem->aperture == APERTURE_SYSMEM) {
|
|
u32 *ptr = mem->cpu_va;
|
|
|
|
WARN_ON(ptr == NULL);
|
|
ptr[w] = data;
|
|
} else if (mem->aperture == APERTURE_VIDMEM) {
|
|
nvgpu_pramin_wr_n(g, mem, w * sizeof(u32), sizeof(u32), &data);
|
|
if (!mem->skip_wmb) {
|
|
nvgpu_wmb();
|
|
}
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
|
|
{
|
|
WARN_ON((offset & 3U) != 0U);
|
|
nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
|
|
}
|
|
|
|
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
|
|
void *src, u32 size)
|
|
{
|
|
WARN_ON((offset & 3U) != 0U);
|
|
WARN_ON((size & 3U) != 0U);
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM) {
|
|
u8 *dest = (u8 *)mem->cpu_va + offset;
|
|
|
|
WARN_ON(mem->cpu_va == NULL);
|
|
memcpy(dest, src, size);
|
|
} else if (mem->aperture == APERTURE_VIDMEM) {
|
|
nvgpu_pramin_wr_n(g, mem, offset, size, src);
|
|
if (!mem->skip_wmb) {
|
|
nvgpu_wmb();
|
|
}
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|
|
|
|
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
|
|
u32 c, u32 size)
|
|
{
|
|
WARN_ON((offset & 3U) != 0U);
|
|
WARN_ON((size & 3U) != 0U);
|
|
WARN_ON((c & ~0xffU) != 0U);
|
|
|
|
c &= 0xffU;
|
|
|
|
if (mem->aperture == APERTURE_SYSMEM) {
|
|
u8 *dest = (u8 *)mem->cpu_va + offset;
|
|
|
|
WARN_ON(mem->cpu_va == NULL);
|
|
memset(dest, c, size);
|
|
} else if (mem->aperture == APERTURE_VIDMEM) {
|
|
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
|
|
|
|
nvgpu_pramin_memset(g, mem, offset, size, repeat_value);
|
|
if (!mem->skip_wmb) {
|
|
nvgpu_wmb();
|
|
}
|
|
} else {
|
|
WARN_ON("Accessing unallocated nvgpu_mem");
|
|
}
|
|
}
|