Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/soc.c
Jon Hunter a8e38dd72d gpu: nvgpu: Fix OOT build for Linux v5.14
For building NVGPU as an out-of-tree we support Linux v5.14+ kernels.
NVGPU is no longer building as an out-of-tree module for v5.14 because
the tegra-ivc.h header is not found. Update the driver for use the
appropriate header for Linux v5.14.

Bug 3812973

Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Change-Id: I268ca8a56d04f1801200ff7fb6838b670a0c48d5
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2828088
Reviewed-by: Dinesh T <dt@nvidia.com>
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
2022-12-16 03:34:42 -08:00

159 lines
4.1 KiB
C

/*
* Copyright (c) 2017-2022, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/version.h>
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0)
#include <soc/tegra/chip-id.h>
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 14, 0)
#include <soc/tegra/fuse.h>
#else
#include <soc/tegra/virt/hv-ivc.h>
#include <soc/tegra/fuse-helper.h>
#endif
#include <soc/tegra/virt/syscalls.h>
#include <nvgpu/ipa_pa_cache.h>
#include <nvgpu/soc.h>
#include "os_linux.h"
#include "platform_gk20a.h"
bool nvgpu_platform_is_silicon(struct gk20a *g)
{
return tegra_platform_is_silicon();
}
bool nvgpu_platform_is_simulation(struct gk20a *g)
{
return tegra_platform_is_vdk();
}
bool nvgpu_platform_is_fpga(struct gk20a *g)
{
return tegra_platform_is_fpga();
}
bool nvgpu_is_hypervisor_mode(struct gk20a *g)
{
return is_tegra_hypervisor_mode();
}
bool nvgpu_is_soc_t194_a01(struct gk20a *g)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 14, 0)
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
return ((platform->platform_chip_id == TEGRA_194 &&
tegra_chip_get_revision() == TEGRA_REVISION_A01) ?
true : false);
#else
const struct soc_device_attribute tegra_soc_attrs[] = {
{
.soc_id = "TEGRA194",
.revision = "*A01*"
},
{/* sentinel */}
};
if (soc_device_match(tegra_soc_attrs)) {
return true;
}
return false;
#endif
}
/* When nvlink is enabled on dGPU, we need to use physical memory addresses.
* There is no SMMU translation. However, the device initially enumerates as a
* PCIe device. As such, when allocation memory for this PCIe device, the DMA
* framework ends up allocating memory using SMMU (if enabled in device tree).
* As a result, when we switch to nvlink, we need to use underlying physical
* addresses, even if memory mappings exist in SMMU.
* In addition, when stage-2 SMMU translation is enabled (for instance when HV
* is enabled), the addresses we get from dma_alloc are IPAs. We need to
* convert them to PA.
*/
static u64 nvgpu_tegra_hv_ipa_pa(struct gk20a *g, u64 ipa, u64 *pa_len)
{
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
struct hyp_ipa_pa_info info;
struct nvgpu_hyp_ipa_pa_info nvgpu_ipapainfo;
int err;
u64 pa = 0ULL;
pa = nvgpu_ipa_to_pa_cache_lookup_locked(g, ipa, pa_len);
if (pa != 0UL) {
return pa;
}
err = hyp_read_ipa_pa_info(&info, platform->vmid, ipa);
if (err < 0) {
nvgpu_err(g, "ipa=%llx translation failed vmid=%u err=%d",
ipa, platform->vmid, err);
} else {
pa = info.base + info.offset;
if (pa_len != NULL) {
/*
* Update the size of physical memory chunk after the
* specified offset.
*/
*pa_len = info.size - info.offset;
}
nvgpu_log(g, gpu_dbg_map_v,
"ipa=%llx vmid=%d -> pa=%llx "
"base=%llx offset=%llx size=%llx\n",
ipa, platform->vmid, pa, info.base,
info.offset, info.size);
}
if (pa != 0U) {
nvgpu_ipapainfo.base = info.base;
nvgpu_ipapainfo.offset = info.offset;
nvgpu_ipapainfo.size = info.size;
nvgpu_ipa_to_pa_add_to_cache(g, ipa, pa,
&nvgpu_ipapainfo);
}
return pa;
}
int nvgpu_init_soc_vars(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err;
if (nvgpu_is_hypervisor_mode(g)) {
err = hyp_read_gid(&platform->vmid);
if (err) {
nvgpu_err(g, "failed to read vmid");
return err;
}
platform->phys_addr = nvgpu_tegra_hv_ipa_pa;
}
return 0;
}
u64 nvgpu_get_pa_from_ipa(struct gk20a *g, u64 ipa)
{
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
u64 pa_len = 0U;
if (platform->phys_addr) {
return platform->phys_addr(g, ipa, &pa_len);
}
return ipa;
}