Files
linux-nvgpu/drivers/gpu/nvgpu/common/grmgr/grmgr.c
2022-02-15 09:37:14 -08:00

721 lines
21 KiB
C

/*
* GR MANAGER
*
* Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/types.h>
#include <nvgpu/enabled.h>
#include <nvgpu/os_sched.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/grmgr.h>
#include <nvgpu/engines.h>
#include <nvgpu/device.h>
#include <nvgpu/fbp.h>
int nvgpu_init_gr_manager(struct gk20a *g)
{
u32 gpc_id;
struct nvgpu_gpu_instance *gpu_instance = &g->mig.gpu_instance[0];
struct nvgpu_gr_syspipe *gr_syspipe = &gpu_instance->gr_syspipe;
u32 local_gpc_mask;
u32 ffs_bit = 0U;
u32 index;
const struct nvgpu_device *gr_dev = NULL;
#ifdef CONFIG_NVGPU_NEXT
if (g->ops.grmgr.load_timestamp_prod != NULL) {
g->ops.grmgr.load_timestamp_prod(g);
}
#endif
/* Number of gpu instance is 1 for legacy mode */
g->mig.max_gpc_count = g->ops.top.get_max_gpc_count(g);
nvgpu_assert(g->mig.max_gpc_count > 0U);
g->mig.gpc_count = g->ops.priv_ring.get_gpc_count(g);
nvgpu_assert(g->mig.gpc_count > 0U);
g->mig.num_gpu_instances = 1U;
g->mig.is_nongr_engine_sharable = false;
g->mig.max_fbps_count = nvgpu_fbp_get_max_fbps_count(g->fbp);
gpu_instance->gpu_instance_id = 0U;
gpu_instance->is_memory_partition_supported = false;
gpu_instance->gpu_instance_type = NVGPU_MIG_TYPE_PHYSICAL;
gr_syspipe->gr_instance_id = 0U;
gr_syspipe->gr_syspipe_id = 0U;
gr_syspipe->num_gpc = g->mig.gpc_count;
gr_syspipe->gr_dev = nvgpu_device_get(g, NVGPU_DEVTYPE_GRAPHICS, 0U);
nvgpu_assert(gr_syspipe->gr_dev != NULL);
if (g->ops.gr.config.get_gpc_mask != NULL) {
gr_syspipe->gpc_mask = g->ops.gr.config.get_gpc_mask(g);
nvgpu_assert(gr_syspipe->gpc_mask != 0U);
} else {
gr_syspipe->gpc_mask = nvgpu_safe_sub_u32(
BIT32(gr_syspipe->num_gpc),
1U);
}
if (g->ops.grmgr.discover_gpc_ids != NULL) {
if (g->ops.grmgr.discover_gpc_ids(g,
gr_syspipe->num_gpc,
gr_syspipe->gpcs) != 0) {
nvgpu_err(g, "discover_gpc_ids -failed");
return -EINVAL;
}
} else {
/*
* For tu104 and before chips,
* Local GPC Id = physical GPC Id = Logical GPC Id for
* non-floorswept config else physical gpcs are assigned
* serially and floorswept gpcs are skipped.
*/
local_gpc_mask = gr_syspipe->gpc_mask;
for (gpc_id = 0U; gpc_id < gr_syspipe->num_gpc; gpc_id++) {
gr_syspipe->gpcs[gpc_id].logical_id = gpc_id;
nvgpu_assert(local_gpc_mask != 0U);
ffs_bit = nvgpu_ffs(local_gpc_mask) - 1U;
local_gpc_mask &= ~(1U << ffs_bit);
gr_syspipe->gpcs[gpc_id].physical_id = ffs_bit;
gr_syspipe->gpcs[gpc_id].gpcgrp_id = 0U;
}
nvgpu_assert(local_gpc_mask == 0U);
}
g->mig.usable_gr_syspipe_count =
nvgpu_device_count(g, NVGPU_DEVTYPE_GRAPHICS);
if ((g->mig.usable_gr_syspipe_count == 0U) ||
(g->mig.usable_gr_syspipe_count >=
NVGPU_MIG_MAX_ENGINES)) {
nvgpu_err(g, "Usable GR engine syspipe"
"count[%u] is more than[%u]! or "
"No GR engine available on the device!",
g->mig.usable_gr_syspipe_count,
NVGPU_MIG_MAX_ENGINES);
nvgpu_assert(g->mig.usable_gr_syspipe_count <
NVGPU_MIG_MAX_ENGINES);
return -EINVAL;
}
index = 0U;
nvgpu_device_for_each(g, gr_dev, NVGPU_DEVTYPE_GRAPHICS) {
g->mig.usable_gr_syspipe_instance_id[index] =
gr_dev->inst_id;
g->mig.usable_gr_syspipe_mask |=
BIT32(gr_dev->inst_id);
index = nvgpu_safe_add_u32(index, 1U);
}
if (g->ops.grmgr.get_gpcgrp_count != NULL) {
g->ops.grmgr.get_gpcgrp_count(g);
} else {
g->mig.gpcgrp_gpc_count[0] = gr_syspipe->num_gpc;
}
if (g->ops.gr.init.get_max_subctx_count != NULL) {
gr_syspipe->max_veid_count_per_tsg =
g->ops.gr.init.get_max_subctx_count();
nvgpu_assert(gr_syspipe->max_veid_count_per_tsg > 0U);
} else {
/*
* For vgpu, NvGpu has to rely on chip constant
* queried from nvgpu server.
* For legacy chips, g->fifo.max_subctx_count should be 0U.
*/
gr_syspipe->max_veid_count_per_tsg = g->fifo.max_subctx_count;
}
gr_syspipe->veid_start_offset = 0U;
gpu_instance->num_lce = nvgpu_device_get_copies(g, gpu_instance->lce_devs,
NVGPU_MIG_MAX_ENGINES);
nvgpu_assert(gpu_instance->num_lce > 0U);
g->mig.max_gr_sys_pipes_supported = 1U;
g->mig.gr_syspipe_en_mask = 1U;
g->mig.num_gr_sys_pipes_enabled = 1U;
g->mig.recursive_ref_count = 0U;
g->mig.cur_tid = -1;
gpu_instance->fbp_en_mask = nvgpu_fbp_get_fbp_en_mask(g->fbp);
#ifdef CONFIG_NVGPU_NON_FUSA
gpu_instance->num_fbp = nvgpu_fbp_get_num_fbps(g->fbp);
gpu_instance->fbp_rop_l2_en_mask = nvgpu_fbp_get_rop_l2_en_mask(g->fbp);
#endif
g->mig.current_gr_syspipe_id = NVGPU_MIG_INVALID_GR_SYSPIPE_ID;
nvgpu_log(g, gpu_dbg_mig,
"[Physical device] gpu_instance_id[%u] gr_instance_id[%u] "
"gr_syspipe_id[%u] max_gpc_count[%u] num_gpc[%u] "
"gr_engine_id[%u] max_veid_count_per_tsg[%u] "
"veid_start_offset[%u] is_memory_partition_support[%d] "
"num_lce[%u] max_fbps_count[%u] num_fbp[%u] "
"fbp_en_mask [0x%x] ",
gpu_instance->gpu_instance_id,
gr_syspipe->gr_instance_id,
gr_syspipe->gr_syspipe_id,
g->mig.max_gpc_count,
gr_syspipe->num_gpc,
gr_syspipe->gr_dev->engine_id,
gr_syspipe->max_veid_count_per_tsg,
gr_syspipe->veid_start_offset,
gpu_instance->is_memory_partition_supported,
gpu_instance->num_lce,
g->mig.max_fbps_count,
gpu_instance->num_fbp,
gpu_instance->fbp_en_mask);
return 0;
}
#if defined(CONFIG_NVGPU_NEXT) && defined(CONFIG_NVGPU_MIG)
static void nvgpu_grmgr_acquire_gr_syspipe(struct gk20a *g, u32 gr_syspipe_id)
{
g->mig.recursive_ref_count = nvgpu_safe_add_u32(
g->mig.recursive_ref_count, 1U);
if (g->mig.cur_tid == -1) {
g->mig.current_gr_syspipe_id = gr_syspipe_id;
g->mig.cur_tid = nvgpu_current_tid(g);
} else {
nvgpu_log(g, gpu_dbg_mig,
"Repeated gr remap window acquire call from same "
"thread tid[%d] requsted gr_syspipe_id[%u] "
"current_gr_syspipe_id[%u] "
"recursive_ref_count[%u]",
g->mig.cur_tid, gr_syspipe_id,
g->mig.current_gr_syspipe_id,
g->mig.recursive_ref_count);
nvgpu_assert((g->mig.cur_tid == nvgpu_current_tid(g)) &&
(g->mig.current_gr_syspipe_id == gr_syspipe_id));
}
}
static void nvgpu_grmgr_release_gr_syspipe(struct gk20a *g)
{
g->mig.recursive_ref_count = nvgpu_safe_sub_u32(
g->mig.recursive_ref_count, 1U);
if (g->mig.recursive_ref_count == 0U) {
g->mig.current_gr_syspipe_id = NVGPU_MIG_INVALID_GR_SYSPIPE_ID;
g->mig.cur_tid = -1;
nvgpu_mutex_release(&g->mig.gr_syspipe_lock);
} else {
nvgpu_log(g, gpu_dbg_mig,
"Repeated gr remap window release call from same "
"thread tid[%d] current_gr_syspipe_id[%u] "
"recursive_ref_count[%u]",
g->mig.cur_tid, g->mig.current_gr_syspipe_id,
g->mig.recursive_ref_count);
nvgpu_assert(g->mig.cur_tid == nvgpu_current_tid(g));
}
}
#endif
int nvgpu_grmgr_config_gr_remap_window(struct gk20a *g,
u32 gr_syspipe_id, bool enable)
{
int err = 0;
#if defined(CONFIG_NVGPU_NEXT) && defined(CONFIG_NVGPU_MIG)
if (nvgpu_grmgr_is_multi_gr_enabled(g)) {
/*
* GR remap window enable/disable sequence for a GR
* SYSPIPE PGRAPH programming:
* 1) Config_gr_remap_window (syspipe_index, enable).
* 2) Acquire gr_syspipe_lock.
* 3) HW write to enable the gr syspipe programming.
* 4) Return success.
* 5) Do GR programming belong to particular gr syspipe.
* 6) Config_gr_remap_window (syspipe_index, disable).
* 7) HW write to disable the gr syspipe programming.
* 8) Release the gr_syspipe_lock.
*
* GR remap window disable/enable request for legacy
* GR PGRAPH programming:
* 1) Config_gr_remap_window (invalid_syspipe_index, disable).
* 2) Acquire gr_syspipe_lock.
* 3) HW write to enable the legacy gr syspipe programming.
* 4) Return success.
* 5) Do legacy GR PGRAPH programming.
* 6) Config_gr_remap_window (invalid_syspipe_index, enable).
* 7) HW write to disable the legacy gr syspipe programming.
* 8) Release the gr_syspipe_lock.
*/
if ((gr_syspipe_id !=
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) &&
((g->mig.usable_gr_syspipe_mask & BIT32(
gr_syspipe_id)) == 0U)) {
nvgpu_err(g, "Invalid param syspipe_id[%x] en_mask[%x]",
gr_syspipe_id,
g->mig.usable_gr_syspipe_mask);
return -EINVAL;
}
if (enable && (g->mig.current_gr_syspipe_id ==
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) &&
(gr_syspipe_id ==
NVGPU_MIG_INVALID_GR_SYSPIPE_ID)) {
nvgpu_warn(g,
"Legacy GR PGRAPH window enable called before "
"disable sequence call ");
return -EPERM;
}
if (enable) {
if ((gr_syspipe_id !=
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) &&
(g->mig.cur_tid != nvgpu_current_tid(g))) {
nvgpu_mutex_acquire(&g->mig.gr_syspipe_lock);
}
} else {
if ((gr_syspipe_id ==
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) &&
(g->mig.cur_tid != nvgpu_current_tid(g))) {
nvgpu_mutex_acquire(&g->mig.gr_syspipe_lock);
} else {
gr_syspipe_id = 0U;
}
}
nvgpu_log(g, gpu_dbg_mig,
"[start]tid[%d] current_gr_syspipe_id[%u] "
"requested_gr_syspipe_id[%u] enable[%d] "
"recursive_ref_count[%u] ",
g->mig.cur_tid, g->mig.current_gr_syspipe_id,
gr_syspipe_id, enable, g->mig.recursive_ref_count);
if (gr_syspipe_id != NVGPU_MIG_INVALID_GR_SYSPIPE_ID) {
if (((g->mig.current_gr_syspipe_id ==
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) &&
(g->mig.recursive_ref_count == 0U)) ||
(!enable &&
(g->mig.recursive_ref_count == 1U))) {
err = g->ops.priv_ring.config_gr_remap_window(g,
gr_syspipe_id, enable);
}
} else {
nvgpu_log(g, gpu_dbg_mig,
"Legacy GR PGRAPH window enable[%d] ",
enable);
}
if (err != 0) {
nvgpu_mutex_release(&g->mig.gr_syspipe_lock);
nvgpu_err(g, "Failed [%d]", err);
return err;
}
if (enable) {
if ((gr_syspipe_id ==
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) &&
(g->mig.current_gr_syspipe_id == 0U)) {
nvgpu_grmgr_release_gr_syspipe(g);
} else {
nvgpu_grmgr_acquire_gr_syspipe(g,
gr_syspipe_id);
}
} else {
if (g->mig.current_gr_syspipe_id !=
NVGPU_MIG_INVALID_GR_SYSPIPE_ID) {
nvgpu_grmgr_release_gr_syspipe(g);
} else {
nvgpu_grmgr_acquire_gr_syspipe(g, 0U);
}
}
nvgpu_log(g, gpu_dbg_mig,
"[end]tid[%d] current_gr_syspipe_id[%u] "
"requested_gr_syspipe_id[%u] enable[%d] "
"recursive_ref_count[%u] ",
g->mig.cur_tid, g->mig.current_gr_syspipe_id,
gr_syspipe_id, enable, g->mig.recursive_ref_count);
}
#endif
return err;
}
u32 nvgpu_grmgr_get_num_gr_instances(struct gk20a *g)
{
/*
* There is only one gr engine instance per syspipe.
* Hence just return number of syspipes here.
*/
return g->mig.num_gr_sys_pipes_enabled;
}
static inline u32 nvgpu_grmgr_get_gpu_instance_id(struct gk20a *g,
u32 gr_instance_id)
{
u32 gpu_instance_id = 0U;
if (nvgpu_grmgr_is_multi_gr_enabled(g)) {
/* 0th entry is physical device gpu instance */
gpu_instance_id = nvgpu_safe_add_u32(gr_instance_id, 1U);
if (gpu_instance_id >= g->mig.num_gpu_instances) {
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
nvgpu_assert(
gpu_instance_id < g->mig.num_gpu_instances);
gpu_instance_id = 0U;
}
}
nvgpu_log(g, gpu_dbg_mig, "gr_instance_id[%u] gpu_instance_id[%u]",
gr_instance_id, gpu_instance_id);
return gpu_instance_id;
}
u32 nvgpu_grmgr_get_gr_syspipe_id(struct gk20a *g, u32 gr_instance_id)
{
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
return gr_syspipe->gr_syspipe_id;
}
u32 nvgpu_grmgr_get_gr_num_gpcs(struct gk20a *g, u32 gr_instance_id)
{
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
return gr_syspipe->num_gpc;
}
u32 nvgpu_grmgr_get_gr_gpc_phys_id(struct gk20a *g, u32 gr_instance_id,
u32 gpc_local_id)
{
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
nvgpu_assert(gpc_local_id < gr_syspipe->num_gpc);
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] gpc_local_id[%u] physical_id[%u]",
gpu_instance_id, gpc_local_id,
gr_syspipe->gpcs[gpc_local_id].physical_id);
return gr_syspipe->gpcs[gpc_local_id].physical_id;
}
u32 nvgpu_grmgr_get_gr_gpc_logical_id(struct gk20a *g, u32 gr_instance_id,
u32 gpc_local_id)
{
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
nvgpu_assert(gpc_local_id < gr_syspipe->num_gpc);
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] gpc_local_id[%u] logical_id[%u]",
gpu_instance_id, gpc_local_id,
gr_syspipe->gpcs[gpc_local_id].logical_id);
return gr_syspipe->gpcs[gpc_local_id].logical_id;
}
u32 nvgpu_grmgr_get_gr_instance_id(struct gk20a *g, u32 gpu_instance_id)
{
u32 gr_instance_id = 0U;
/* TODO : Add gr_instance_id for physical device when MIG is enabled. */
if ((nvgpu_grmgr_is_multi_gr_enabled(g)) &&
(gpu_instance_id != 0U)) {
if (gpu_instance_id < g->mig.num_gpu_instances) {
/* 0th entry is physical device gpu instance */
gr_instance_id = nvgpu_safe_sub_u32(
gpu_instance_id, 1U);
} else {
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
nvgpu_assert(
gpu_instance_id < g->mig.num_gpu_instances);
}
}
nvgpu_log(g, gpu_dbg_mig, "gpu_instance_id[%u] gr_instance_id[%u]",
gpu_instance_id, gr_instance_id);
return gr_instance_id;
}
bool nvgpu_grmgr_is_valid_runlist_id(struct gk20a *g,
u32 gpu_instance_id, u32 runlist_id)
{
if (gpu_instance_id < g->mig.num_gpu_instances) {
struct nvgpu_gpu_instance *gpu_instance =
&g->mig.gpu_instance[gpu_instance_id];
struct nvgpu_gr_syspipe *gr_syspipe =
&gpu_instance->gr_syspipe;
const struct nvgpu_device *gr_dev = gr_syspipe->gr_dev;
u32 id;
if (gr_dev->runlist_id == runlist_id) {
nvgpu_log(g, gpu_dbg_mig, "gr runlist found[%u]",
runlist_id);
return true;
}
for (id = 0U; id < gpu_instance->num_lce; id++) {
const struct nvgpu_device *lce_dev =
gpu_instance->lce_devs[id];
if (lce_dev->runlist_id == runlist_id) {
nvgpu_log(g, gpu_dbg_mig,
"lce/ce runlist found[%u]",
runlist_id);
return true;
}
}
}
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
return false;
}
u32 nvgpu_grmgr_get_gpu_instance_runlist_id(struct gk20a *g,
u32 gpu_instance_id)
{
if (gpu_instance_id < g->mig.num_gpu_instances) {
struct nvgpu_gpu_instance *gpu_instance =
&g->mig.gpu_instance[gpu_instance_id];
struct nvgpu_gr_syspipe *gr_syspipe =
&gpu_instance->gr_syspipe;
const struct nvgpu_device *gr_dev = gr_syspipe->gr_dev;
return gr_dev->runlist_id;
}
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
return U32_MAX;
}
u32 nvgpu_grmgr_get_gr_instance_id_for_syspipe(struct gk20a *g,
u32 gr_syspipe_id)
{
if (nvgpu_grmgr_is_multi_gr_enabled(g)) {
u32 gr_instance_id = 0U;
u32 index;
/* 0th entry is physical device gpu instance. */
for (index = 1U; index < g->mig.num_gpu_instances; ++index) {
struct nvgpu_gpu_instance *gpu_instance =
&g->mig.gpu_instance[index];
struct nvgpu_gr_syspipe *gr_syspipe =
&gpu_instance->gr_syspipe;
if (gr_syspipe->gr_syspipe_id == gr_syspipe_id) {
nvgpu_log(g, gpu_dbg_mig,
"gr_instance_id[%u] gr_syspipe_id[%u]",
gr_instance_id, gr_syspipe_id);
return gr_instance_id;
}
++gr_instance_id;
}
}
/* Default gr_instance_id is 0U for legacy mode. */
return 0U;
}
static u32 nvgpu_grmgr_get_max_veid_count(struct gk20a *g, u32 gpu_instance_id)
{
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
if (gpu_instance_id < g->mig.num_gpu_instances) {
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] max_veid_count_per_tsg[%u]",
gpu_instance_id, gr_syspipe->max_veid_count_per_tsg);
return gr_syspipe->max_veid_count_per_tsg;
}
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
return U32_MAX;
}
u32 nvgpu_grmgr_get_gpu_instance_max_veid_count(struct gk20a *g,
u32 gpu_instance_id)
{
return nvgpu_grmgr_get_max_veid_count(g, gpu_instance_id);
}
u32 nvgpu_grmgr_get_gr_max_veid_count(struct gk20a *g, u32 gr_instance_id)
{
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
return nvgpu_grmgr_get_max_veid_count(g, gpu_instance_id);
}
u32 nvgpu_grmgr_get_gr_logical_gpc_mask(struct gk20a *g, u32 gr_instance_id)
{
u32 logical_gpc_mask = 0U;
u32 gpc_indx;
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
for (gpc_indx = 0U; gpc_indx < gr_syspipe->num_gpc; gpc_indx++) {
logical_gpc_mask |= BIT32(
gr_syspipe->gpcs[gpc_indx].logical_id);
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] gr_instance_id[%u] gpc_indx[%u] "
"logical_gpc_id[%u] logical_gpc_mask[%x]",
gpu_instance_id, gr_instance_id, gpc_indx,
gr_syspipe->gpcs[gpc_indx].logical_id,
logical_gpc_mask);
}
return logical_gpc_mask;
}
u32 nvgpu_grmgr_get_gr_physical_gpc_mask(struct gk20a *g, u32 gr_instance_id)
{
u32 physical_gpc_mask = 0U;
u32 gpc_indx;
struct nvgpu_gpu_instance *gpu_instance;
struct nvgpu_gr_syspipe *gr_syspipe;
u32 gpu_instance_id = nvgpu_grmgr_get_gpu_instance_id(
g, gr_instance_id);
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
gr_syspipe = &gpu_instance->gr_syspipe;
for (gpc_indx = 0U; gpc_indx < gr_syspipe->num_gpc; gpc_indx++) {
physical_gpc_mask |= BIT32(
gr_syspipe->gpcs[gpc_indx].physical_id);
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] gr_instance_id[%u] gpc_indx[%u] "
"physical_id[%u] physical_gpc_mask[%x]",
gpu_instance_id, gr_instance_id, gpc_indx,
gr_syspipe->gpcs[gpc_indx].physical_id,
physical_gpc_mask);
}
return physical_gpc_mask;
}
u32 nvgpu_grmgr_get_num_fbps(struct gk20a *g, u32 gpu_instance_id)
{
struct nvgpu_gpu_instance *gpu_instance;
if (gpu_instance_id < g->mig.num_gpu_instances) {
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] num_fbp[%u]",
gpu_instance_id, gpu_instance->num_fbp);
return gpu_instance->num_fbp;
}
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
nvgpu_assert(gpu_instance_id < g->mig.num_gpu_instances);
return U32_MAX;
}
u32 nvgpu_grmgr_get_fbp_en_mask(struct gk20a *g, u32 gpu_instance_id)
{
struct nvgpu_gpu_instance *gpu_instance;
if (gpu_instance_id < g->mig.num_gpu_instances) {
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
nvgpu_log(g, gpu_dbg_mig,
"gpu_instance_id[%u] fbp_en_mask[0x%x]",
gpu_instance_id, gpu_instance->fbp_en_mask);
return gpu_instance->fbp_en_mask;
}
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
nvgpu_assert(gpu_instance_id < g->mig.num_gpu_instances);
return U32_MAX;
}
u32 *nvgpu_grmgr_get_fbp_rop_l2_en_mask(struct gk20a *g, u32 gpu_instance_id)
{
struct nvgpu_gpu_instance *gpu_instance;
if (gpu_instance_id < g->mig.num_gpu_instances) {
gpu_instance = &g->mig.gpu_instance[gpu_instance_id];
return gpu_instance->fbp_rop_l2_en_mask;
}
nvgpu_err(g,
"gpu_instance_id[%u] >= num_gpu_instances[%u]",
gpu_instance_id, g->mig.num_gpu_instances);
nvgpu_assert(gpu_instance_id < g->mig.num_gpu_instances);
return NULL;
}