Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/fifo_gk20a.c
Debarshi Dutta eaab8ad1f2 gpu: nvgpu: move some fifo based HAL ops to hal.channel unit
a) free_channel_ctx_header is used to free the channel's underlying subctx
and belongs to the hal.channel unit instead of fifo. Moved the same and
renamed the HAL ops to free_ctx_header. The function
gv11b_free_subctx_header is moved to channel_gv11b.* files and also
renamed to gv11b_channel_free_subctx_header.

b) ch_abort_clean_up is moved to hal.channel unit

c) channel_resume and channel_suspend are used to resume and suspend all
the serviceable channels. This belongs to hal.channel unit and are
moved from the hal.fifo unit.

The HAL ops channel_resume and channel_suspend are renamed to
resume_all_serviceable_ch and suspend_all_serviceable_ch respectively.

gk20a_channel_resume and gk20a_channel_suspend are also renamed to
nvgpu_channel_resume_all_serviceable_ch and
nvgpu_channel_suspend_all_serviceable_ch respectively.

d) set_error_notifier HAL ops belongs to hal.channel and is moved
accordingly.

Jira NVGPU-2978

Change-Id: Icb52245cacba3004e2fd32519029a1acff60c23c
Signed-off-by: Debarshi Dutta <ddutta@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2083593
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-04-09 01:48:16 -07:00

1309 lines
33 KiB
C

/*
* GK20A Graphics FIFO (gr host)
*
* Copyright (c) 2011-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/mm.h>
#include <nvgpu/dma.h>
#include <nvgpu/timers.h>
#include <nvgpu/enabled.h>
#include <nvgpu/semaphore.h>
#include <nvgpu/kmem.h>
#include <nvgpu/log.h>
#include <nvgpu/soc.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/log2.h>
#include <nvgpu/debug.h>
#include <nvgpu/nvhost.h>
#include <nvgpu/barrier.h>
#include <nvgpu/error_notifier.h>
#include <nvgpu/ptimer.h>
#include <nvgpu/io.h>
#include <nvgpu/utils.h>
#include <nvgpu/fifo.h>
#include <nvgpu/runlist.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/channel.h>
#include <nvgpu/unit.h>
#include <nvgpu/types.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/top.h>
#include <nvgpu/nvgpu_err.h>
#include <nvgpu/pbdma_status.h>
#include <nvgpu/engine_status.h>
#include <nvgpu/engines.h>
#include <nvgpu/power_features/cg.h>
#include <nvgpu/power_features/pg.h>
#include <nvgpu/power_features/power_features.h>
#include <nvgpu/gr/fecs_trace.h>
#include "mm_gk20a.h"
#include <hal/fifo/mmu_fault_gk20a.h>
#include <nvgpu/hw/gk20a/hw_fifo_gk20a.h>
#include <nvgpu/hw/gk20a/hw_pbdma_gk20a.h>
#include <nvgpu/hw/gk20a/hw_gr_gk20a.h>
#define FECS_METHOD_WFI_RESTORE 0x80000U
void nvgpu_report_host_error(struct gk20a *g, u32 inst,
u32 err_id, u32 intr_info)
{
int ret;
if (g->ops.fifo.err_ops.report_host_err == NULL) {
return;
}
ret = g->ops.fifo.err_ops.report_host_err(g,
NVGPU_ERR_MODULE_HOST, inst, err_id, intr_info);
if (ret != 0) {
nvgpu_err(g, "Failed to report HOST error: \
inst=%u, err_id=%u, intr_info=%u, ret=%d",
inst, err_id, intr_info, ret);
}
}
int gk20a_init_fifo_reset_enable_hw(struct gk20a *g)
{
u32 timeout;
unsigned int i;
u32 host_num_pbdma = nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_PBDMA);
nvgpu_log_fn(g, " ");
/* enable pmc pfifo */
g->ops.mc.reset(g, g->ops.mc.reset_mask(g, NVGPU_UNIT_FIFO));
nvgpu_cg_slcg_fifo_load_enable(g);
nvgpu_cg_blcg_fifo_load_enable(g);
timeout = gk20a_readl(g, fifo_fb_timeout_r());
timeout = set_field(timeout, fifo_fb_timeout_period_m(),
fifo_fb_timeout_period_max_f());
nvgpu_log_info(g, "fifo_fb_timeout reg val = 0x%08x", timeout);
gk20a_writel(g, fifo_fb_timeout_r(), timeout);
/* write pbdma timeout value */
for (i = 0; i < host_num_pbdma; i++) {
timeout = gk20a_readl(g, pbdma_timeout_r(i));
timeout = set_field(timeout, pbdma_timeout_period_m(),
pbdma_timeout_period_max_f());
nvgpu_log_info(g, "pbdma_timeout reg val = 0x%08x", timeout);
gk20a_writel(g, pbdma_timeout_r(i), timeout);
}
if (g->ops.fifo.apply_pb_timeout != NULL) {
g->ops.fifo.apply_pb_timeout(g);
}
g->ops.fifo.intr_0_enable(g, true);
g->ops.fifo.intr_1_enable(g, true);
nvgpu_log_fn(g, "done");
return 0;
}
int gk20a_init_fifo_setup_hw(struct gk20a *g)
{
struct fifo_gk20a *f = &g->fifo;
u64 shifted_addr;
nvgpu_log_fn(g, " ");
/* set the base for the userd region now */
shifted_addr = f->userd_gpu_va >> 12;
if ((shifted_addr >> 32) != 0U) {
nvgpu_err(g, "GPU VA > 32 bits %016llx\n", f->userd_gpu_va);
return -EFAULT;
}
gk20a_writel(g, fifo_bar1_base_r(),
fifo_bar1_base_ptr_f(u64_lo32(shifted_addr)) |
fifo_bar1_base_valid_true_f());
nvgpu_log_fn(g, "done");
return 0;
}
bool gk20a_fifo_should_defer_engine_reset(struct gk20a *g, u32 engine_id,
u32 engine_subid, bool fake_fault)
{
enum nvgpu_fifo_engine engine_enum = NVGPU_ENGINE_INVAL_GK20A;
struct fifo_engine_info_gk20a *engine_info;
if (g == NULL) {
return false;
}
engine_info = nvgpu_engine_get_active_eng_info(g, engine_id);
if (engine_info != NULL) {
engine_enum = engine_info->engine_enum;
}
if (engine_enum == NVGPU_ENGINE_INVAL_GK20A) {
return false;
}
/* channel recovery is only deferred if an sm debugger
is attached and has MMU debug mode is enabled */
if (!g->ops.gr.sm_debugger_attached(g) ||
!g->ops.fb.is_debug_mode_enabled(g)) {
return false;
}
/* if this fault is fake (due to RC recovery), don't defer recovery */
if (fake_fault) {
return false;
}
if (engine_enum != NVGPU_ENGINE_GR_GK20A) {
return false;
}
return g->ops.engine.is_fault_engine_subid_gpc(g, engine_subid);
}
void gk20a_fifo_abort_tsg(struct gk20a *g, struct tsg_gk20a *tsg, bool preempt)
{
struct channel_gk20a *ch = NULL;
nvgpu_log_fn(g, " ");
WARN_ON(tsg->abortable == false);
g->ops.tsg.disable(tsg);
if (preempt) {
g->ops.fifo.preempt_tsg(g, tsg);
}
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) != NULL) {
gk20a_channel_set_unserviceable(ch);
if (ch->g->ops.channel.abort_clean_up != NULL) {
ch->g->ops.channel.abort_clean_up(ch);
}
gk20a_channel_put(ch);
}
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
}
int gk20a_fifo_deferred_reset(struct gk20a *g, struct channel_gk20a *ch)
{
unsigned long engine_id, engines = 0U;
struct tsg_gk20a *tsg;
bool deferred_reset_pending;
struct fifo_gk20a *f = &g->fifo;
int err = 0;
nvgpu_mutex_acquire(&g->dbg_sessions_lock);
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
deferred_reset_pending = g->fifo.deferred_reset_pending;
nvgpu_mutex_release(&f->deferred_reset_mutex);
if (!deferred_reset_pending) {
nvgpu_mutex_release(&g->dbg_sessions_lock);
return 0;
}
err = g->ops.gr.falcon.disable_ctxsw(g);
if (err != 0) {
nvgpu_err(g, "failed to disable ctxsw");
goto fail;
}
tsg = tsg_gk20a_from_ch(ch);
if (tsg != NULL) {
engines = g->ops.engine.get_mask_on_id(g,
tsg->tsgid, true);
} else {
nvgpu_err(g, "chid: %d is not bound to tsg", ch->chid);
}
if (engines == 0U) {
goto clean_up;
}
/*
* If deferred reset is set for an engine, and channel is running
* on that engine, reset it
*/
for_each_set_bit(engine_id, &g->fifo.deferred_fault_engines, 32UL) {
if ((BIT64(engine_id) & engines) != 0ULL) {
nvgpu_engine_reset(g, (u32)engine_id);
}
}
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
g->fifo.deferred_fault_engines = 0;
g->fifo.deferred_reset_pending = false;
nvgpu_mutex_release(&f->deferred_reset_mutex);
clean_up:
err = g->ops.gr.falcon.enable_ctxsw(g);
if (err != 0) {
nvgpu_err(g, "failed to enable ctxsw");
}
fail:
nvgpu_mutex_release(&g->dbg_sessions_lock);
return err;
}
static bool gk20a_fifo_handle_mmu_fault_locked(
struct gk20a *g,
u32 mmu_fault_engines, /* queried from HW if 0 */
u32 hw_id, /* queried from HW if ~(u32)0 OR mmu_fault_engines == 0*/
bool id_is_tsg)
{
bool fake_fault;
unsigned long fault_id;
unsigned long engine_mmu_fault_id;
bool verbose = true;
struct nvgpu_engine_status_info engine_status;
bool deferred_reset_pending = false;
struct fifo_gk20a *f = &g->fifo;
nvgpu_log_fn(g, " ");
if (nvgpu_cg_pg_disable(g) != 0) {
nvgpu_warn(g, "fail to disable power mgmt");
}
/* Disable fifo access */
g->ops.gr.init.fifo_access(g, false);
if (mmu_fault_engines != 0U) {
fault_id = mmu_fault_engines;
fake_fault = true;
} else {
fault_id = gk20a_readl(g, fifo_intr_mmu_fault_id_r());
fake_fault = false;
}
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
g->fifo.deferred_reset_pending = false;
nvgpu_mutex_release(&f->deferred_reset_mutex);
/* go through all faulted engines */
for_each_set_bit(engine_mmu_fault_id, &fault_id, 32U) {
/* bits in fifo_intr_mmu_fault_id_r do not correspond 1:1 to
* engines. Convert engine_mmu_id to engine_id */
u32 engine_id = nvgpu_engine_mmu_fault_id_to_engine_id(g,
(u32)engine_mmu_fault_id);
struct mmu_fault_info mmfault_info;
struct channel_gk20a *ch = NULL;
struct tsg_gk20a *tsg = NULL;
struct channel_gk20a *refch = NULL;
bool ctxsw;
/* read and parse engine status */
g->ops.engine_status.read_engine_status_info(g, engine_id,
&engine_status);
ctxsw = nvgpu_engine_status_is_ctxsw(&engine_status);
gk20a_fifo_mmu_fault_info_dump(g, engine_id,
(u32)engine_mmu_fault_id,
fake_fault, &mmfault_info);
if (ctxsw) {
g->ops.gr.falcon.dump_stats(g);
nvgpu_err(g, " gr_status_r: 0x%x",
gk20a_readl(g, gr_status_r()));
}
/* get the channel/TSG */
if (fake_fault) {
/* use next_id if context load is failing */
u32 id, type;
if (hw_id == ~(u32)0) {
if (nvgpu_engine_status_is_ctxsw_load(
&engine_status)) {
nvgpu_engine_status_get_next_ctx_id_type(
&engine_status, &id, &type);
} else {
nvgpu_engine_status_get_ctx_id_type(
&engine_status, &id, &type);
}
} else {
id = hw_id;
type = id_is_tsg ?
ENGINE_STATUS_CTX_ID_TYPE_TSGID :
ENGINE_STATUS_CTX_ID_TYPE_CHID;
}
if (type == ENGINE_STATUS_CTX_ID_TYPE_TSGID) {
tsg = &g->fifo.tsg[id];
} else if (type == ENGINE_STATUS_CTX_ID_TYPE_CHID) {
ch = &g->fifo.channel[id];
refch = gk20a_channel_get(ch);
if (refch != NULL) {
tsg = tsg_gk20a_from_ch(refch);
}
}
} else {
/* Look up channel from the inst block pointer. */
ch = nvgpu_channel_refch_from_inst_ptr(g,
mmfault_info.inst_ptr);
refch = ch;
if (refch != NULL) {
tsg = tsg_gk20a_from_ch(refch);
}
}
/* check if engine reset should be deferred */
if (engine_id != FIFO_INVAL_ENGINE_ID) {
bool defer = gk20a_fifo_should_defer_engine_reset(g,
engine_id, mmfault_info.client_type,
fake_fault);
if (((ch != NULL) || (tsg != NULL)) && defer) {
g->fifo.deferred_fault_engines |= BIT(engine_id);
/* handled during channel free */
nvgpu_mutex_acquire(&f->deferred_reset_mutex);
g->fifo.deferred_reset_pending = true;
nvgpu_mutex_release(&f->deferred_reset_mutex);
deferred_reset_pending = true;
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
"sm debugger attached,"
" deferring channel recovery to channel free");
} else {
nvgpu_engine_reset(g, engine_id);
}
}
#ifdef CONFIG_GK20A_CTXSW_TRACE
if (tsg != NULL) {
nvgpu_gr_fecs_trace_add_tsg_reset(g, tsg);
}
#endif
/*
* Disable the channel/TSG from hw and increment syncpoints.
*/
if (tsg != NULL) {
if (deferred_reset_pending) {
g->ops.tsg.disable(tsg);
} else {
if (!fake_fault) {
nvgpu_tsg_set_ctx_mmu_error(g, tsg);
}
verbose = nvgpu_tsg_mark_error(g, tsg);
gk20a_fifo_abort_tsg(g, tsg, false);
}
/* put back the ref taken early above */
if (refch != NULL) {
gk20a_channel_put(ch);
}
} else if (refch != NULL) {
nvgpu_err(g, "mmu error in unbound channel %d",
ch->chid);
gk20a_channel_put(ch);
} else if (mmfault_info.inst_ptr ==
nvgpu_inst_block_addr(g,
&g->mm.bar1.inst_block)) {
nvgpu_err(g, "mmu fault from bar1");
} else if (mmfault_info.inst_ptr ==
nvgpu_inst_block_addr(g,
&g->mm.pmu.inst_block)) {
nvgpu_err(g, "mmu fault from pmu");
} else {
nvgpu_err(g, "couldn't locate channel for mmu fault");
}
}
if (!fake_fault) {
gk20a_debug_dump(g);
}
/* clear interrupt */
gk20a_writel(g, fifo_intr_mmu_fault_id_r(), (u32)fault_id);
/* resume scheduler */
gk20a_writel(g, fifo_error_sched_disable_r(),
gk20a_readl(g, fifo_error_sched_disable_r()));
/* Re-enable fifo access */
g->ops.gr.init.fifo_access(g, true);
if (nvgpu_cg_pg_enable(g) != 0) {
nvgpu_warn(g, "fail to enable power mgmt");
}
return verbose;
}
bool gk20a_fifo_handle_mmu_fault(
struct gk20a *g,
u32 mmu_fault_engines, /* queried from HW if 0 */
u32 hw_id, /* queried from HW if ~(u32)0 OR mmu_fault_engines == 0*/
bool id_is_tsg)
{
bool verbose;
nvgpu_log_fn(g, " ");
nvgpu_log_info(g, "acquire engines_reset_mutex");
nvgpu_mutex_acquire(&g->fifo.engines_reset_mutex);
nvgpu_fifo_lock_active_runlists(g);
verbose = gk20a_fifo_handle_mmu_fault_locked(g, mmu_fault_engines,
hw_id, id_is_tsg);
nvgpu_fifo_unlock_active_runlists(g);
nvgpu_log_info(g, "release engines_reset_mutex");
nvgpu_mutex_release(&g->fifo.engines_reset_mutex);
return verbose;
}
static void gk20a_fifo_get_faulty_id_type(struct gk20a *g, u32 engine_id,
u32 *id, u32 *type)
{
struct nvgpu_engine_status_info engine_status;
g->ops.engine_status.read_engine_status_info(g, engine_id, &engine_status);
/* use next_id if context load is failing */
if (nvgpu_engine_status_is_ctxsw_load(
&engine_status)) {
nvgpu_engine_status_get_next_ctx_id_type(
&engine_status, id, type);
} else {
nvgpu_engine_status_get_ctx_id_type(
&engine_status, id, type);
}
}
void gk20a_fifo_teardown_mask_intr(struct gk20a *g)
{
u32 val;
val = gk20a_readl(g, fifo_intr_en_0_r());
val &= ~(fifo_intr_en_0_sched_error_m() |
fifo_intr_en_0_mmu_fault_m());
gk20a_writel(g, fifo_intr_en_0_r(), val);
gk20a_writel(g, fifo_intr_0_r(), fifo_intr_0_sched_error_reset_f());
}
void gk20a_fifo_teardown_unmask_intr(struct gk20a *g)
{
u32 val;
val = gk20a_readl(g, fifo_intr_en_0_r());
val |= fifo_intr_en_0_mmu_fault_f(1) | fifo_intr_en_0_sched_error_f(1);
gk20a_writel(g, fifo_intr_en_0_r(), val);
}
void gk20a_fifo_teardown_ch_tsg(struct gk20a *g, u32 __engine_ids,
u32 hw_id, unsigned int id_type, unsigned int rc_type,
struct mmu_fault_info *mmfault)
{
unsigned long engine_id, i;
unsigned long _engine_ids = __engine_ids;
unsigned long engine_ids = 0;
u32 mmu_fault_engines = 0;
u32 ref_type;
u32 ref_id;
bool ref_id_is_tsg = false;
bool id_is_known = (id_type != ID_TYPE_UNKNOWN) ? true : false;
bool id_is_tsg = (id_type == ID_TYPE_TSG) ? true : false;
nvgpu_log_info(g, "acquire engines_reset_mutex");
nvgpu_mutex_acquire(&g->fifo.engines_reset_mutex);
nvgpu_fifo_lock_active_runlists(g);
if (id_is_known) {
engine_ids = g->ops.engine.get_mask_on_id(g,
hw_id, id_is_tsg);
ref_id = hw_id;
ref_type = id_is_tsg ?
fifo_engine_status_id_type_tsgid_v() :
fifo_engine_status_id_type_chid_v();
ref_id_is_tsg = id_is_tsg;
/* atleast one engine will get passed during sched err*/
engine_ids |= __engine_ids;
for_each_set_bit(engine_id, &engine_ids, 32U) {
u32 mmu_id = nvgpu_engine_id_to_mmu_fault_id(g,
(u32)engine_id);
if (mmu_id != FIFO_INVAL_ENGINE_ID) {
mmu_fault_engines |= BIT(mmu_id);
}
}
} else {
/* store faulted engines in advance */
for_each_set_bit(engine_id, &_engine_ids, 32U) {
gk20a_fifo_get_faulty_id_type(g, (u32)engine_id,
&ref_id, &ref_type);
if (ref_type == fifo_engine_status_id_type_tsgid_v()) {
ref_id_is_tsg = true;
} else {
ref_id_is_tsg = false;
}
/* Reset *all* engines that use the
* same channel as faulty engine */
for (i = 0; i < g->fifo.num_engines; i++) {
u32 active_engine_id = g->fifo.active_engines_list[i];
u32 type;
u32 id;
gk20a_fifo_get_faulty_id_type(g,
active_engine_id, &id, &type);
if (ref_type == type && ref_id == id) {
u32 mmu_id = nvgpu_engine_id_to_mmu_fault_id(g,
active_engine_id);
engine_ids |= BIT(active_engine_id);
if (mmu_id != FIFO_INVAL_ENGINE_ID) {
mmu_fault_engines |= BIT(mmu_id);
}
}
}
}
}
if (mmu_fault_engines != 0U) {
g->ops.fifo.teardown_mask_intr(g);
g->ops.fifo.trigger_mmu_fault(g, engine_ids);
gk20a_fifo_handle_mmu_fault_locked(g, mmu_fault_engines, ref_id,
ref_id_is_tsg);
g->ops.fifo.teardown_unmask_intr(g);
}
nvgpu_fifo_unlock_active_runlists(g);
nvgpu_log_info(g, "release engines_reset_mutex");
nvgpu_mutex_release(&g->fifo.engines_reset_mutex);
}
void gk20a_fifo_recover(struct gk20a *g, u32 engine_ids,
u32 hw_id, bool id_is_tsg,
bool id_is_known, bool verbose, u32 rc_type)
{
unsigned int id_type;
if (verbose) {
gk20a_debug_dump(g);
}
if (g->ops.ltc.flush != NULL) {
g->ops.ltc.flush(g);
}
if (id_is_known) {
id_type = id_is_tsg ? ID_TYPE_TSG : ID_TYPE_CHANNEL;
} else {
id_type = ID_TYPE_UNKNOWN;
}
g->ops.fifo.teardown_ch_tsg(g, engine_ids, hw_id, id_type,
rc_type, NULL);
}
/* force reset channel and tsg */
int gk20a_fifo_force_reset_ch(struct channel_gk20a *ch,
u32 err_code, bool verbose)
{
struct channel_gk20a *ch_tsg = NULL;
struct gk20a *g = ch->g;
struct tsg_gk20a *tsg = tsg_gk20a_from_ch(ch);
if (tsg != NULL) {
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch_tsg, &tsg->ch_list,
channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch_tsg) != NULL) {
g->ops.channel.set_error_notifier(ch_tsg,
err_code);
gk20a_channel_put(ch_tsg);
}
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
nvgpu_tsg_recover(g, tsg, verbose, RC_TYPE_FORCE_RESET);
} else {
nvgpu_err(g, "chid: %d is not bound to tsg", ch->chid);
}
return 0;
}
int gk20a_fifo_tsg_unbind_channel_verify_status(struct channel_gk20a *ch)
{
struct gk20a *g = ch->g;
struct nvgpu_channel_hw_state hw_state;
g->ops.channel.read_state(g, ch, &hw_state);
if (hw_state.next) {
nvgpu_err(g, "Channel %d to be removed from TSG %d has NEXT set!",
ch->chid, ch->tsgid);
return -EINVAL;
}
if (g->ops.fifo.tsg_verify_status_ctx_reload != NULL) {
g->ops.fifo.tsg_verify_status_ctx_reload(ch);
}
if (g->ops.fifo.tsg_verify_status_faulted != NULL) {
g->ops.fifo.tsg_verify_status_faulted(ch);
}
return 0;
}
int gk20a_fifo_tsg_unbind_channel(struct channel_gk20a *ch)
{
struct gk20a *g = ch->g;
struct tsg_gk20a *tsg = tsg_gk20a_from_ch(ch);
int err;
bool tsg_timedout = false;
if (tsg == NULL) {
nvgpu_err(g, "chid: %d is not bound to tsg", ch->chid);
return 0;
}
/* If one channel in TSG times out, we disable all channels */
nvgpu_rwsem_down_write(&tsg->ch_list_lock);
tsg_timedout = gk20a_channel_check_unserviceable(ch);
nvgpu_rwsem_up_write(&tsg->ch_list_lock);
/* Disable TSG and examine status before unbinding channel */
g->ops.tsg.disable(tsg);
err = g->ops.fifo.preempt_tsg(g, tsg);
if (err != 0) {
goto fail_enable_tsg;
}
if ((g->ops.fifo.tsg_verify_channel_status != NULL) && !tsg_timedout) {
err = g->ops.fifo.tsg_verify_channel_status(ch);
if (err != 0) {
goto fail_enable_tsg;
}
}
/* Channel should be seen as TSG channel while updating runlist */
err = channel_gk20a_update_runlist(ch, false);
if (err != 0) {
goto fail_enable_tsg;
}
/* Remove channel from TSG and re-enable rest of the channels */
nvgpu_rwsem_down_write(&tsg->ch_list_lock);
nvgpu_list_del(&ch->ch_entry);
ch->tsgid = NVGPU_INVALID_TSG_ID;
/* another thread could have re-enabled the channel because it was
* still on the list at that time, so make sure it's truly disabled
*/
g->ops.channel.disable(ch);
nvgpu_rwsem_up_write(&tsg->ch_list_lock);
/*
* Don't re-enable all channels if TSG has timed out already
*
* Note that we can skip disabling and preempting TSG too in case of
* time out, but we keep that to ensure TSG is kicked out
*/
if (!tsg_timedout) {
g->ops.tsg.enable(tsg);
}
if (ch->g->ops.channel.abort_clean_up != NULL) {
ch->g->ops.channel.abort_clean_up(ch);
}
return 0;
fail_enable_tsg:
if (!tsg_timedout) {
g->ops.tsg.enable(tsg);
}
return err;
}
u32 gk20a_fifo_get_failing_engine_data(struct gk20a *g,
u32 *__id, bool *__is_tsg)
{
u32 engine_id;
u32 id = U32_MAX;
bool is_tsg = false;
u32 mailbox2;
u32 active_engine_id = FIFO_INVAL_ENGINE_ID;
struct nvgpu_engine_status_info engine_status;
for (engine_id = 0; engine_id < g->fifo.num_engines; engine_id++) {
bool failing_engine;
active_engine_id = g->fifo.active_engines_list[engine_id];
g->ops.engine_status.read_engine_status_info(g, active_engine_id,
&engine_status);
/* we are interested in busy engines */
failing_engine = engine_status.is_busy;
/* ..that are doing context switch */
failing_engine = failing_engine &&
nvgpu_engine_status_is_ctxsw(&engine_status);
if (!failing_engine) {
active_engine_id = FIFO_INVAL_ENGINE_ID;
continue;
}
if (nvgpu_engine_status_is_ctxsw_load(&engine_status)) {
id = engine_status.ctx_next_id;
is_tsg = nvgpu_engine_status_is_next_ctx_type_tsg(
&engine_status);
} else if (nvgpu_engine_status_is_ctxsw_switch(&engine_status)) {
mailbox2 = gk20a_readl(g, gr_fecs_ctxsw_mailbox_r(2));
if ((mailbox2 & FECS_METHOD_WFI_RESTORE) != 0U) {
id = engine_status.ctx_next_id;
is_tsg = nvgpu_engine_status_is_next_ctx_type_tsg(
&engine_status);
} else {
id = engine_status.ctx_id;
is_tsg = nvgpu_engine_status_is_ctx_type_tsg(
&engine_status);
}
} else {
id = engine_status.ctx_id;
is_tsg = nvgpu_engine_status_is_ctx_type_tsg(
&engine_status);
}
break;
}
*__id = id;
*__is_tsg = is_tsg;
return active_engine_id;
}
void gk20a_fifo_issue_preempt(struct gk20a *g, u32 id, bool is_tsg)
{
if (is_tsg) {
gk20a_writel(g, fifo_preempt_r(),
fifo_preempt_id_f(id) |
fifo_preempt_type_tsg_f());
} else {
gk20a_writel(g, fifo_preempt_r(),
fifo_preempt_chid_f(id) |
fifo_preempt_type_channel_f());
}
}
static u32 gk20a_fifo_get_preempt_timeout(struct gk20a *g)
{
/* Use fifo_eng_timeout converted to ms for preempt
* polling. gr_idle_timeout i.e 3000 ms is and not appropriate
* for polling preempt done as context switch timeout gets
* triggered every ctxsw_timeout_period_ms.
*/
return g->ctxsw_timeout_period_ms;
}
int gk20a_fifo_is_preempt_pending(struct gk20a *g, u32 id,
unsigned int id_type)
{
struct nvgpu_timeout timeout;
u32 delay = POLL_DELAY_MIN_US;
int ret = -EBUSY;
nvgpu_timeout_init(g, &timeout, gk20a_fifo_get_preempt_timeout(g),
NVGPU_TIMER_CPU_TIMER);
do {
if ((gk20a_readl(g, fifo_preempt_r()) &
fifo_preempt_pending_true_f()) == 0U) {
ret = 0;
break;
}
nvgpu_usleep_range(delay, delay * 2U);
delay = min_t(u32, delay << 1, POLL_DELAY_MAX_US);
} while (nvgpu_timeout_expired(&timeout) == 0);
if (ret != 0) {
nvgpu_err(g, "preempt timeout: id: %u id_type: %d ",
id, id_type);
}
return ret;
}
void gk20a_fifo_preempt_timeout_rc_tsg(struct gk20a *g, struct tsg_gk20a *tsg)
{
struct channel_gk20a *ch = NULL;
nvgpu_err(g, "preempt TSG %d timeout", tsg->tsgid);
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
nvgpu_list_for_each_entry(ch, &tsg->ch_list,
channel_gk20a, ch_entry) {
if (gk20a_channel_get(ch) == NULL) {
continue;
}
g->ops.channel.set_error_notifier(ch,
NVGPU_ERR_NOTIFIER_FIFO_ERROR_IDLE_TIMEOUT);
gk20a_channel_put(ch);
}
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
nvgpu_tsg_recover(g, tsg, true, RC_TYPE_PREEMPT_TIMEOUT);
}
void gk20a_fifo_preempt_timeout_rc(struct gk20a *g, struct channel_gk20a *ch)
{
nvgpu_err(g, "preempt channel %d timeout", ch->chid);
g->ops.channel.set_error_notifier(ch,
NVGPU_ERR_NOTIFIER_FIFO_ERROR_IDLE_TIMEOUT);
nvgpu_channel_recover(g, ch, true, RC_TYPE_PREEMPT_TIMEOUT);
}
int __locked_fifo_preempt(struct gk20a *g, u32 id, bool is_tsg)
{
int ret;
unsigned int id_type;
nvgpu_log_fn(g, "id: %d is_tsg: %d", id, is_tsg);
/* issue preempt */
gk20a_fifo_issue_preempt(g, id, is_tsg);
id_type = is_tsg ? ID_TYPE_TSG : ID_TYPE_CHANNEL;
/* wait for preempt */
ret = g->ops.fifo.is_preempt_pending(g, id, id_type);
return ret;
}
int gk20a_fifo_preempt_channel(struct gk20a *g, struct channel_gk20a *ch)
{
int ret = 0;
u32 token = PMU_INVALID_MUTEX_OWNER_ID;
int mutex_ret = 0;
nvgpu_log_fn(g, "chid: %d", ch->chid);
/* we have no idea which runlist we are using. lock all */
nvgpu_fifo_lock_active_runlists(g);
mutex_ret = nvgpu_pmu_lock_acquire(g, &g->pmu,
PMU_MUTEX_ID_FIFO, &token);
ret = __locked_fifo_preempt(g, ch->chid, false);
if (mutex_ret == 0) {
nvgpu_pmu_lock_release(g, &g->pmu, PMU_MUTEX_ID_FIFO, &token);
}
nvgpu_fifo_unlock_active_runlists(g);
if (ret != 0) {
if (nvgpu_platform_is_silicon(g)) {
nvgpu_err(g, "preempt timed out for chid: %u, "
"ctxsw timeout will trigger recovery if needed",
ch->chid);
} else {
gk20a_fifo_preempt_timeout_rc(g, ch);
}
}
return ret;
}
int gk20a_fifo_preempt_tsg(struct gk20a *g, struct tsg_gk20a *tsg)
{
int ret = 0;
u32 token = PMU_INVALID_MUTEX_OWNER_ID;
int mutex_ret = 0;
nvgpu_log_fn(g, "tsgid: %d", tsg->tsgid);
/* we have no idea which runlist we are using. lock all */
nvgpu_fifo_lock_active_runlists(g);
mutex_ret = nvgpu_pmu_lock_acquire(g, &g->pmu,
PMU_MUTEX_ID_FIFO, &token);
ret = __locked_fifo_preempt(g, tsg->tsgid, true);
if (mutex_ret == 0) {
nvgpu_pmu_lock_release(g, &g->pmu, PMU_MUTEX_ID_FIFO, &token);
}
nvgpu_fifo_unlock_active_runlists(g);
if (ret != 0) {
if (nvgpu_platform_is_silicon(g)) {
nvgpu_err(g, "preempt timed out for tsgid: %u, "
"ctxsw timeout will trigger recovery if needed",
tsg->tsgid);
} else {
gk20a_fifo_preempt_timeout_rc_tsg(g, tsg);
}
}
return ret;
}
int gk20a_fifo_preempt(struct gk20a *g, struct channel_gk20a *ch)
{
int err;
struct tsg_gk20a *tsg = tsg_gk20a_from_ch(ch);
if (tsg != NULL) {
err = g->ops.fifo.preempt_tsg(ch->g, tsg);
} else {
err = g->ops.fifo.preempt_channel(ch->g, ch);
}
return err;
}
u32 gk20a_fifo_runlist_busy_engines(struct gk20a *g, u32 runlist_id)
{
struct fifo_gk20a *f = &g->fifo;
u32 engines = 0;
unsigned int i;
struct nvgpu_engine_status_info engine_status;
for (i = 0; i < f->num_engines; i++) {
u32 active_engine_id = f->active_engines_list[i];
u32 engine_runlist = f->engine_info[active_engine_id].runlist_id;
bool engine_busy;
g->ops.engine_status.read_engine_status_info(g, active_engine_id,
&engine_status);
engine_busy = engine_status.is_busy;
if (engine_busy && engine_runlist == runlist_id) {
engines |= BIT(active_engine_id);
}
}
return engines;
}
u32 gk20a_fifo_default_timeslice_us(struct gk20a *g)
{
u64 slice = (((u64)(NVGPU_FIFO_DEFAULT_TIMESLICE_TIMEOUT <<
NVGPU_FIFO_DEFAULT_TIMESLICE_SCALE) *
(u64)g->ptimer_src_freq) /
(u64)PTIMER_REF_FREQ_HZ);
BUG_ON(slice > U64(U32_MAX));
return (u32)slice;
}
int gk20a_fifo_tsg_set_timeslice(struct tsg_gk20a *tsg, u32 timeslice)
{
struct gk20a *g = tsg->g;
if (timeslice < g->min_timeslice_us ||
timeslice > g->max_timeslice_us) {
return -EINVAL;
}
gk20a_channel_get_timescale_from_timeslice(g, timeslice,
&tsg->timeslice_timeout, &tsg->timeslice_scale);
tsg->timeslice_us = timeslice;
return g->ops.runlist.reload(g, tsg->runlist_id, true, true);
}
int gk20a_fifo_suspend(struct gk20a *g)
{
nvgpu_log_fn(g, " ");
/* stop bar1 snooping */
if (g->ops.mm.is_bar1_supported(g)) {
gk20a_writel(g, fifo_bar1_base_r(),
fifo_bar1_base_valid_false_f());
}
/* disable fifo intr */
g->ops.fifo.intr_0_enable(g, false);
g->ops.fifo.intr_1_enable(g, false);
nvgpu_log_fn(g, "done");
return 0;
}
bool gk20a_fifo_mmu_fault_pending(struct gk20a *g)
{
if ((gk20a_readl(g, fifo_intr_0_r()) &
fifo_intr_0_mmu_fault_pending_f()) != 0U) {
return true;
} else {
return false;
}
}
static const char * const pbdma_chan_eng_ctx_status_str[] = {
"invalid",
"valid",
"NA",
"NA",
"NA",
"load",
"save",
"switch",
};
static const char * const not_found_str[] = {
"NOT FOUND"
};
const char *gk20a_decode_pbdma_chan_eng_ctx_status(u32 index)
{
if (index >= ARRAY_SIZE(pbdma_chan_eng_ctx_status_str)) {
return not_found_str[0];
} else {
return pbdma_chan_eng_ctx_status_str[index];
}
}
void gk20a_dump_channel_status_ramfc(struct gk20a *g,
struct gk20a_debug_output *o,
struct nvgpu_channel_dump_info *info)
{
u32 syncpointa, syncpointb;
syncpointa = info->inst.syncpointa;
syncpointb = info->inst.syncpointb;
gk20a_debug_output(o, "Channel ID: %d, TSG ID: %u, pid %d, refs %d; deterministic = %s",
info->chid,
info->tsgid,
info->pid,
info->refs,
info->deterministic ? "yes" : "no");
gk20a_debug_output(o, " In use: %-3s busy: %-3s status: %s",
info->hw_state.enabled ? "yes" : "no",
info->hw_state.busy ? "yes" : "no",
info->hw_state.status_string);
gk20a_debug_output(o,
" TOP %016llx"
" PUT %016llx GET %016llx",
info->inst.pb_top_level_get,
info->inst.pb_put,
info->inst.pb_get);
gk20a_debug_output(o,
" FETCH %016llx"
" HEADER %08x COUNT %08x",
info->inst.pb_fetch,
info->inst.pb_header,
info->inst.pb_count);
gk20a_debug_output(o,
" SYNCPOINT %08x %08x "
"SEMAPHORE %08x %08x %08x %08x",
syncpointa,
syncpointb,
info->inst.semaphorea,
info->inst.semaphoreb,
info->inst.semaphorec,
info->inst.semaphored);
if (info->sema.addr == 0ULL) {
gk20a_debug_output(o,
" SEMA STATE: val: %u next_val: %u addr: 0x%010llx",
info->sema.value,
info->sema.next,
info->sema.addr);
}
#ifdef CONFIG_TEGRA_GK20A_NVHOST
if ((pbdma_syncpointb_op_v(syncpointb) == pbdma_syncpointb_op_wait_v())
&& (pbdma_syncpointb_wait_switch_v(syncpointb) ==
pbdma_syncpointb_wait_switch_en_v())) {
gk20a_debug_output(o, "%s on syncpt %u (%s) val %u",
info->hw_state.pending_acquire ? "Waiting" : "Waited",
pbdma_syncpointb_syncpt_index_v(syncpointb),
nvgpu_nvhost_syncpt_get_name(g->nvhost_dev,
pbdma_syncpointb_syncpt_index_v(syncpointb)),
pbdma_syncpointa_payload_v(syncpointa));
}
#endif
gk20a_debug_output(o, " ");
}
void gk20a_debug_dump_all_channel_status_ramfc(struct gk20a *g,
struct gk20a_debug_output *o)
{
struct fifo_gk20a *f = &g->fifo;
u32 chid;
struct nvgpu_channel_dump_info **infos;
infos = nvgpu_kzalloc(g, sizeof(*infos) * f->num_channels);
if (infos == NULL) {
gk20a_debug_output(o, "cannot alloc memory for channels\n");
return;
}
for (chid = 0; chid < f->num_channels; chid++) {
struct channel_gk20a *ch = gk20a_channel_from_id(g, chid);
if (ch != NULL) {
struct nvgpu_channel_dump_info *info;
info = nvgpu_kzalloc(g, sizeof(*info));
/* ref taken stays to below loop with
* successful allocs */
if (info == NULL) {
gk20a_channel_put(ch);
} else {
infos[chid] = info;
}
}
}
for (chid = 0; chid < f->num_channels; chid++) {
struct channel_gk20a *ch = &f->channel[chid];
struct nvgpu_channel_dump_info *info = infos[chid];
struct nvgpu_hw_semaphore *hw_sema = ch->hw_sema;
/* if this info exists, the above loop took a channel ref */
if (info == NULL) {
continue;
}
info->chid = ch->chid;
info->tsgid = ch->tsgid;
info->pid = ch->pid;
info->refs = nvgpu_atomic_read(&ch->ref_count);
info->deterministic = ch->deterministic;
if (hw_sema != NULL) {
info->sema.value = nvgpu_hw_semaphore_read(hw_sema);
info->sema.next =
(u32)nvgpu_hw_semaphore_read_next(hw_sema);
info->sema.addr = nvgpu_hw_semaphore_addr(hw_sema);
}
g->ops.channel.read_state(g, ch, &info->hw_state);
g->ops.ramfc.capture_ram_dump(g, ch, info);
gk20a_channel_put(ch);
}
gk20a_debug_output(o, "Channel Status - chip %-5s", g->name);
gk20a_debug_output(o, "---------------------------");
for (chid = 0; chid < f->num_channels; chid++) {
struct nvgpu_channel_dump_info *info = infos[chid];
if (info != NULL) {
g->ops.fifo.dump_channel_status_ramfc(g, o, info);
nvgpu_kfree(g, info);
}
}
gk20a_debug_output(o, " ");
nvgpu_kfree(g, infos);
}
static void nvgpu_fifo_pbdma_init_intr_descs(struct fifo_gk20a *f)
{
struct gk20a *g = f->g;
if (g->ops.pbdma.device_fatal_0_intr_descs != NULL) {
f->intr.pbdma.device_fatal_0 =
g->ops.pbdma.device_fatal_0_intr_descs();
}
if (g->ops.pbdma.device_fatal_0_intr_descs != NULL) {
f->intr.pbdma.channel_fatal_0 =
g->ops.pbdma.channel_fatal_0_intr_descs();
}
if (g->ops.pbdma.restartable_0_intr_descs != NULL) {
f->intr.pbdma.restartable_0 =
g->ops.pbdma.restartable_0_intr_descs();
}
}
bool gk20a_fifo_find_pbdma_for_runlist(struct fifo_gk20a *f, u32 runlist_id,
u32 *pbdma_id)
{
struct gk20a *g = f->g;
bool found_pbdma_for_runlist = false;
u32 runlist_bit;
u32 id;
runlist_bit = BIT32(runlist_id);
for (id = 0; id < f->num_pbdma; id++) {
if ((f->pbdma_map[id] & runlist_bit) != 0U) {
nvgpu_log_info(g, "gr info: pbdma_map[%d]=%d", id,
f->pbdma_map[id]);
found_pbdma_for_runlist = true;
break;
}
}
*pbdma_id = id;
return found_pbdma_for_runlist;
}
int gk20a_fifo_init_pbdma_info(struct fifo_gk20a *f)
{
struct gk20a *g = f->g;
u32 id;
f->num_pbdma = nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_PBDMA);
f->pbdma_map = nvgpu_kzalloc(g, f->num_pbdma * sizeof(*f->pbdma_map));
if (f->pbdma_map == NULL) {
return -ENOMEM;
}
for (id = 0; id < f->num_pbdma; ++id) {
f->pbdma_map[id] = gk20a_readl(g, fifo_pbdma_map_r(id));
}
nvgpu_fifo_pbdma_init_intr_descs(f);
return 0;
}