Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/ce2_gk20a.c
Deepak Nibade c7b7dbe39a gpu: nvgpu: return error code in failure cases
In gk20a_ce_create_context(), if gk20a_tsg_open() or gk20a_open_new_channel()
fails, we bail out from the function without setting the error code
This could mislead the caller and report incorrect success

Fix this by setting error code explicitly in failure cases

Bug 200374011

Change-Id: Idf6cba4a57740107bada698295745352f7b5d5ac
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1631506
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-01-04 08:46:07 -08:00

576 lines
15 KiB
C

/*
* GK20A Graphics Copy Engine (gr host)
*
* Copyright (c) 2011-2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/kmem.h>
#include <nvgpu/dma.h>
#include "gk20a.h"
#include <nvgpu/log.h>
#include <nvgpu/enabled.h>
#include <nvgpu/hw/gk20a/hw_ce2_gk20a.h>
#include <nvgpu/hw/gk20a/hw_pbdma_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ccsr_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ram_gk20a.h>
#include <nvgpu/hw/gk20a/hw_top_gk20a.h>
#include <nvgpu/hw/gk20a/hw_mc_gk20a.h>
#include <nvgpu/hw/gk20a/hw_gr_gk20a.h>
#include <nvgpu/barrier.h>
/*
* Copy engine defines line size in pixels
*/
#define MAX_CE_SHIFT 31 /* 4Gpixels -1 */
#define MAX_CE_MASK ((u32) (~(~0 << MAX_CE_SHIFT)))
#define MAX_CE_ALIGN(a) (a & MAX_CE_MASK)
static u32 ce2_nonblockpipe_isr(struct gk20a *g, u32 fifo_intr)
{
gk20a_dbg(gpu_dbg_intr, "ce2 non-blocking pipe interrupt\n");
return ce2_intr_status_nonblockpipe_pending_f();
}
static u32 ce2_blockpipe_isr(struct gk20a *g, u32 fifo_intr)
{
gk20a_dbg(gpu_dbg_intr, "ce2 blocking pipe interrupt\n");
return ce2_intr_status_blockpipe_pending_f();
}
static u32 ce2_launcherr_isr(struct gk20a *g, u32 fifo_intr)
{
gk20a_dbg(gpu_dbg_intr, "ce2 launch error interrupt\n");
return ce2_intr_status_launcherr_pending_f();
}
void gk20a_ce2_isr(struct gk20a *g, u32 inst_id, u32 pri_base)
{
u32 ce2_intr = gk20a_readl(g, ce2_intr_status_r());
u32 clear_intr = 0;
gk20a_dbg(gpu_dbg_intr, "ce2 isr %08x\n", ce2_intr);
/* clear blocking interrupts: they exibit broken behavior */
if (ce2_intr & ce2_intr_status_blockpipe_pending_f())
clear_intr |= ce2_blockpipe_isr(g, ce2_intr);
if (ce2_intr & ce2_intr_status_launcherr_pending_f())
clear_intr |= ce2_launcherr_isr(g, ce2_intr);
gk20a_writel(g, ce2_intr_status_r(), clear_intr);
return;
}
int gk20a_ce2_nonstall_isr(struct gk20a *g, u32 inst_id, u32 pri_base)
{
int ops = 0;
u32 ce2_intr = gk20a_readl(g, ce2_intr_status_r());
gk20a_dbg(gpu_dbg_intr, "ce2 nonstall isr %08x\n", ce2_intr);
if (ce2_intr & ce2_intr_status_nonblockpipe_pending_f()) {
gk20a_writel(g, ce2_intr_status_r(),
ce2_nonblockpipe_isr(g, ce2_intr));
ops |= (gk20a_nonstall_ops_wakeup_semaphore |
gk20a_nonstall_ops_post_events);
}
return ops;
}
/* static CE app api */
static void gk20a_ce_free_command_buffer_stored_fence(struct gk20a_gpu_ctx *ce_ctx)
{
u32 cmd_buf_index;
u32 cmd_buf_read_offset;
u32 fence_index;
u32 *cmd_buf_cpu_va;
for (cmd_buf_index = 0;
cmd_buf_index < ce_ctx->cmd_buf_end_queue_offset;
cmd_buf_index++) {
cmd_buf_read_offset = (cmd_buf_index *
(NVGPU_CE_MAX_COMMAND_BUFF_SIZE_PER_KICKOFF / sizeof(u32)));
/* at end of command buffer has gk20a_fence for command buffer sync */
fence_index = (cmd_buf_read_offset +
((NVGPU_CE_MAX_COMMAND_BUFF_SIZE_PER_KICKOFF / sizeof(u32)) -
(NVGPU_CE_MAX_COMMAND_BUFF_SIZE_FOR_TRACING / sizeof(u32))));
cmd_buf_cpu_va = (u32 *)ce_ctx->cmd_buf_mem.cpu_va;
/* 0 is treated as invalid pre-sync */
if (cmd_buf_cpu_va[fence_index]) {
struct gk20a_fence * ce_cmd_buf_fence_in = NULL;
memcpy((void *)&ce_cmd_buf_fence_in,
(void *)(cmd_buf_cpu_va + fence_index),
sizeof(struct gk20a_fence *));
gk20a_fence_put(ce_cmd_buf_fence_in);
/* Reset the stored last pre-sync */
memset((void *)(cmd_buf_cpu_va + fence_index),
0,
NVGPU_CE_MAX_COMMAND_BUFF_SIZE_FOR_TRACING);
}
}
}
/* assume this api should need to call under nvgpu_mutex_acquire(&ce_app->app_mutex) */
static void gk20a_ce_delete_gpu_context(struct gk20a_gpu_ctx *ce_ctx)
{
struct nvgpu_list_node *list = &ce_ctx->list;
ce_ctx->gpu_ctx_state = NVGPU_CE_GPU_CTX_DELETED;
nvgpu_mutex_acquire(&ce_ctx->gpu_ctx_mutex);
if (ce_ctx->cmd_buf_mem.cpu_va) {
gk20a_ce_free_command_buffer_stored_fence(ce_ctx);
nvgpu_dma_unmap_free(ce_ctx->vm, &ce_ctx->cmd_buf_mem);
}
/*
* free the channel
* gk20a_channel_close() will also unbind the channel from TSG
*/
gk20a_channel_close(ce_ctx->ch);
nvgpu_ref_put(&ce_ctx->tsg->refcount, gk20a_tsg_release);
/* housekeeping on app */
if (list->prev && list->next)
nvgpu_list_del(list);
nvgpu_mutex_release(&ce_ctx->gpu_ctx_mutex);
nvgpu_mutex_destroy(&ce_ctx->gpu_ctx_mutex);
nvgpu_kfree(ce_ctx->g, ce_ctx);
}
static inline unsigned int gk20a_ce_get_method_size(int request_operation,
u64 size)
{
/* failure size */
unsigned int methodsize = UINT_MAX;
unsigned int iterations = 0;
u32 shift;
u64 chunk = size;
u32 height, width;
while (chunk) {
iterations++;
shift = MAX_CE_ALIGN(chunk) ? __ffs(MAX_CE_ALIGN(chunk)) :
MAX_CE_SHIFT;
width = chunk >> shift;
height = 1 << shift;
width = MAX_CE_ALIGN(width);
chunk -= (u64) height * width;
}
if (request_operation & NVGPU_CE_PHYS_MODE_TRANSFER)
methodsize = (2 + (16 * iterations)) * sizeof(u32);
else if (request_operation & NVGPU_CE_MEMSET)
methodsize = (2 + (15 * iterations)) * sizeof(u32);
return methodsize;
}
int gk20a_ce_prepare_submit(u64 src_buf,
u64 dst_buf,
u64 size,
u32 *cmd_buf_cpu_va,
u32 max_cmd_buf_size,
unsigned int payload,
int launch_flags,
int request_operation,
u32 dma_copy_class,
struct gk20a_fence *gk20a_fence_in)
{
u32 launch = 0;
u32 methodSize = 0;
u64 offset = 0;
u64 chunk_size = 0;
u64 chunk = size;
/* failure case handling */
if ((gk20a_ce_get_method_size(request_operation, size) >
max_cmd_buf_size) || (!size) ||
(request_operation > NVGPU_CE_MEMSET))
return 0;
/* set the channel object */
cmd_buf_cpu_va[methodSize++] = 0x20018000;
cmd_buf_cpu_va[methodSize++] = dma_copy_class;
/*
* The purpose clear the memory in 2D rectangles. We get the ffs to
* determine the number of lines to copy. The only constraint is that
* maximum number of pixels per line is 4Gpix - 1, which is awkward for
* calculation, so we settle to 2Gpix per line to make calculatione
* more agreable
*/
/* The copy engine in 2D mode can have (2^32 - 1) x (2^32 - 1) pixels in
* a single submit, we are going to try to clear a range of up to 2Gpix
* multiple lines. Because we want to copy byte aligned we will be
* setting 1 byte pixels */
/*
* per iteration
* <------------------------- 40 bits ------------------------------>
* 1 <------ ffs ------->
* <-----------up to 30 bits----------->
*/
while (chunk) {
u32 width, height, shift;
/*
* We will be aligning to bytes, making the maximum number of
* pix per line 2Gb
*/
shift = MAX_CE_ALIGN(chunk) ? __ffs(MAX_CE_ALIGN(chunk)) :
MAX_CE_SHIFT;
height = chunk >> shift;
width = 1 << shift;
height = MAX_CE_ALIGN(height);
chunk_size = (u64) height * width;
/* reset launch flag */
launch = 0;
if (request_operation & NVGPU_CE_PHYS_MODE_TRANSFER) {
/* setup the source */
cmd_buf_cpu_va[methodSize++] = 0x20028100;
cmd_buf_cpu_va[methodSize++] = (u64_hi32(src_buf +
offset) & NVGPU_CE_UPPER_ADDRESS_OFFSET_MASK);
cmd_buf_cpu_va[methodSize++] = (u64_lo32(src_buf +
offset) & NVGPU_CE_LOWER_ADDRESS_OFFSET_MASK);
cmd_buf_cpu_va[methodSize++] = 0x20018098;
if (launch_flags & NVGPU_CE_SRC_LOCATION_LOCAL_FB)
cmd_buf_cpu_va[methodSize++] = 0x00000000;
else if (launch_flags &
NVGPU_CE_SRC_LOCATION_NONCOHERENT_SYSMEM)
cmd_buf_cpu_va[methodSize++] = 0x00000002;
else
cmd_buf_cpu_va[methodSize++] = 0x00000001;
launch |= 0x00001000;
} else if (request_operation & NVGPU_CE_MEMSET) {
/* Remap from component A on 1 byte wide pixels */
cmd_buf_cpu_va[methodSize++] = 0x200181c2;
cmd_buf_cpu_va[methodSize++] = 0x00000004;
cmd_buf_cpu_va[methodSize++] = 0x200181c0;
cmd_buf_cpu_va[methodSize++] = payload;
launch |= 0x00000400;
} else {
/* Illegal size */
return 0;
}
/* setup the destination/output */
cmd_buf_cpu_va[methodSize++] = 0x20068102;
cmd_buf_cpu_va[methodSize++] = (u64_hi32(dst_buf +
offset) & NVGPU_CE_UPPER_ADDRESS_OFFSET_MASK);
cmd_buf_cpu_va[methodSize++] = (u64_lo32(dst_buf +
offset) & NVGPU_CE_LOWER_ADDRESS_OFFSET_MASK);
/* Pitch in/out */
cmd_buf_cpu_va[methodSize++] = width;
cmd_buf_cpu_va[methodSize++] = width;
/* width and line count */
cmd_buf_cpu_va[methodSize++] = width;
cmd_buf_cpu_va[methodSize++] = height;
cmd_buf_cpu_va[methodSize++] = 0x20018099;
if (launch_flags & NVGPU_CE_DST_LOCATION_LOCAL_FB)
cmd_buf_cpu_va[methodSize++] = 0x00000000;
else if (launch_flags &
NVGPU_CE_DST_LOCATION_NONCOHERENT_SYSMEM)
cmd_buf_cpu_va[methodSize++] = 0x00000002;
else
cmd_buf_cpu_va[methodSize++] = 0x00000001;
launch |= 0x00002005;
if (launch_flags & NVGPU_CE_SRC_MEMORY_LAYOUT_BLOCKLINEAR)
launch |= 0x00000000;
else
launch |= 0x00000080;
if (launch_flags & NVGPU_CE_DST_MEMORY_LAYOUT_BLOCKLINEAR)
launch |= 0x00000000;
else
launch |= 0x00000100;
cmd_buf_cpu_va[methodSize++] = 0x200180c0;
cmd_buf_cpu_va[methodSize++] = launch;
offset += chunk_size;
chunk -= chunk_size;
}
return methodSize;
}
/* global CE app related apis */
int gk20a_init_ce_support(struct gk20a *g)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
int err;
u32 ce_reset_mask;
ce_reset_mask = gk20a_fifo_get_all_ce_engine_reset_mask(g);
g->ops.mc.reset(g, ce_reset_mask);
if (g->ops.clock_gating.slcg_ce2_load_gating_prod)
g->ops.clock_gating.slcg_ce2_load_gating_prod(g,
g->slcg_enabled);
if (g->ops.clock_gating.blcg_ce_load_gating_prod)
g->ops.clock_gating.blcg_ce_load_gating_prod(g,
g->blcg_enabled);
if (ce_app->initialised) {
/* assume this happen during poweron/poweroff GPU sequence */
ce_app->app_state = NVGPU_CE_ACTIVE;
return 0;
}
gk20a_dbg(gpu_dbg_fn, "ce: init");
err = nvgpu_mutex_init(&ce_app->app_mutex);
if (err)
return err;
nvgpu_mutex_acquire(&ce_app->app_mutex);
nvgpu_init_list_node(&ce_app->allocated_contexts);
ce_app->ctx_count = 0;
ce_app->next_ctx_id = 0;
ce_app->initialised = true;
ce_app->app_state = NVGPU_CE_ACTIVE;
nvgpu_mutex_release(&ce_app->app_mutex);
gk20a_dbg(gpu_dbg_cde_ctx, "ce: init finished");
return 0;
}
void gk20a_ce_destroy(struct gk20a *g)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
struct gk20a_gpu_ctx *ce_ctx, *ce_ctx_save;
if (!ce_app->initialised)
return;
ce_app->app_state = NVGPU_CE_SUSPEND;
ce_app->initialised = false;
nvgpu_mutex_acquire(&ce_app->app_mutex);
nvgpu_list_for_each_entry_safe(ce_ctx, ce_ctx_save,
&ce_app->allocated_contexts, gk20a_gpu_ctx, list) {
gk20a_ce_delete_gpu_context(ce_ctx);
}
nvgpu_init_list_node(&ce_app->allocated_contexts);
ce_app->ctx_count = 0;
ce_app->next_ctx_id = 0;
nvgpu_mutex_release(&ce_app->app_mutex);
nvgpu_mutex_destroy(&ce_app->app_mutex);
}
void gk20a_ce_suspend(struct gk20a *g)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
if (!ce_app->initialised)
return;
ce_app->app_state = NVGPU_CE_SUSPEND;
return;
}
/* CE app utility functions */
u32 gk20a_ce_create_context(struct gk20a *g,
int runlist_id,
int timeslice,
int runlist_level)
{
struct gk20a_gpu_ctx *ce_ctx;
struct gk20a_ce_app *ce_app = &g->ce_app;
u32 ctx_id = ~0;
int err = 0;
if (!ce_app->initialised || ce_app->app_state != NVGPU_CE_ACTIVE)
return ctx_id;
ce_ctx = nvgpu_kzalloc(g, sizeof(*ce_ctx));
if (!ce_ctx)
return ctx_id;
err = nvgpu_mutex_init(&ce_ctx->gpu_ctx_mutex);
if (err) {
nvgpu_kfree(g, ce_ctx);
return ctx_id;
}
ce_ctx->g = g;
ce_ctx->cmd_buf_read_queue_offset = 0;
ce_ctx->cmd_buf_end_queue_offset =
(NVGPU_CE_COMMAND_BUF_SIZE / NVGPU_CE_MAX_COMMAND_BUFF_SIZE_PER_KICKOFF);
ce_ctx->vm = g->mm.ce.vm;
/* allocate a tsg if needed */
ce_ctx->tsg = gk20a_tsg_open(g);
if (!ce_ctx->tsg) {
nvgpu_err(g, "ce: gk20a tsg not available");
err = -ENOMEM;
goto end;
}
/* always kernel client needs privileged channel */
ce_ctx->ch = gk20a_open_new_channel(g, runlist_id, true);
if (!ce_ctx->ch) {
nvgpu_err(g, "ce: gk20a channel not available");
err = -ENOMEM;
goto end;
}
ce_ctx->ch->wdt_enabled = false;
/* bind the channel to the vm */
err = __gk20a_vm_bind_channel(g->mm.ce.vm, ce_ctx->ch);
if (err) {
nvgpu_err(g, "ce: could not bind vm");
goto end;
}
err = gk20a_tsg_bind_channel(ce_ctx->tsg, ce_ctx->ch);
if (err) {
nvgpu_err(g, "ce: unable to bind to tsg");
goto end;
}
/* allocate gpfifo (1024 should be more than enough) */
err = gk20a_channel_alloc_gpfifo(ce_ctx->ch, 1024, 0, 0);
if (err) {
nvgpu_err(g, "ce: unable to allocate gpfifo");
goto end;
}
/* allocate command buffer (4096 should be more than enough) from sysmem*/
err = nvgpu_dma_alloc_map_sys(ce_ctx->vm, NVGPU_CE_COMMAND_BUF_SIZE, &ce_ctx->cmd_buf_mem);
if (err) {
nvgpu_err(g,
"ce: could not allocate command buffer for CE context");
goto end;
}
memset(ce_ctx->cmd_buf_mem.cpu_va, 0x00, ce_ctx->cmd_buf_mem.size);
/* -1 means default channel timeslice value */
if (timeslice != -1) {
err = gk20a_fifo_tsg_set_timeslice(ce_ctx->tsg, timeslice);
if (err) {
nvgpu_err(g,
"ce: could not set the channel timeslice value for CE context");
goto end;
}
}
/* -1 means default channel runlist level */
if (runlist_level != -1) {
err = gk20a_tsg_set_runlist_interleave(ce_ctx->tsg,
runlist_level);
if (err) {
nvgpu_err(g,
"ce: could not set the runlist interleave for CE context");
goto end;
}
}
nvgpu_mutex_acquire(&ce_app->app_mutex);
ctx_id = ce_ctx->ctx_id = ce_app->next_ctx_id;
nvgpu_list_add(&ce_ctx->list, &ce_app->allocated_contexts);
++ce_app->next_ctx_id;
++ce_app->ctx_count;
nvgpu_mutex_release(&ce_app->app_mutex);
ce_ctx->gpu_ctx_state = NVGPU_CE_GPU_CTX_ALLOCATED;
end:
if (ctx_id == (u32)~0) {
nvgpu_mutex_acquire(&ce_app->app_mutex);
gk20a_ce_delete_gpu_context(ce_ctx);
nvgpu_mutex_release(&ce_app->app_mutex);
}
return ctx_id;
}
EXPORT_SYMBOL(gk20a_ce_create_context);
void gk20a_ce_delete_context(struct gk20a *g,
u32 ce_ctx_id)
{
gk20a_ce_delete_context_priv(g, ce_ctx_id);
}
void gk20a_ce_delete_context_priv(struct gk20a *g,
u32 ce_ctx_id)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
struct gk20a_gpu_ctx *ce_ctx, *ce_ctx_save;
if (!ce_app->initialised ||ce_app->app_state != NVGPU_CE_ACTIVE)
return;
nvgpu_mutex_acquire(&ce_app->app_mutex);
nvgpu_list_for_each_entry_safe(ce_ctx, ce_ctx_save,
&ce_app->allocated_contexts, gk20a_gpu_ctx, list) {
if (ce_ctx->ctx_id == ce_ctx_id) {
gk20a_ce_delete_gpu_context(ce_ctx);
--ce_app->ctx_count;
break;
}
}
nvgpu_mutex_release(&ce_app->app_mutex);
return;
}
EXPORT_SYMBOL(gk20a_ce_delete_context);