Currently the vGPU engine management rewrites a lot of the common
device agnostic engine management code.
With the new top HAL parsing one device at a time, it is now more
easily possible to tie the vGPU into the new common device framework
by implementing the top HAL but with the vGPU engine list backend.
This lets the vGPU inherit all the common engine and device
management code. By doing so the vGPU HAL need only implement a
trivial and simple HAL.
This also gets us a step closer to merging all of the CE init
code: logically it just iterates through all CE engines whatever
they may be. The only reason this differs between chips is because
of the swap from CE0-2 to LCEs in the Pascal generation. This could
be abstracted by the unit code easily enough.
Also, the pbdma_id for each engine has to be added to the device
struct. Eventually this was going to happen anyway, since the
device struct will soon replace the nvgpu_engine_info struct.
It's a little bit of an abuse but might be worth it long term. If
not, it should not be difficult to replace uses of dev->pbdma_id
with a proper lookup of PBDMA ID based on the device info.
JIRA NVGPU-5421
Change-Id: Ie8dcd3b0150184d58ca0f78940c2e7ca72994e64
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2351877
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
On simulation platforms the netlist data is fetched from fmodel chiplib.
The chiplib has been updated to include certain pm, perf registers which
were already present in the netimage.
Update sim netlist parsing to fetch the following list of registers:
- LIST_pm_ctx_reg_PPC
- LIST_nv_perf_ctx_reg_SYS
- LIST_nv_perf_sysrouter_ctx_regs
- LIST_nv_perf_pma_ctx_regs
- LIST_nv_perf_fbp_ctx_regs
- LIST_nv_perf_fbprouter_ctx_regs
- LIST_nv_perf_ctx_reg_GPC
- LIST_nv_perf_gpcrouter_ctx_regs
- LIST_pm_ltc_ctx_regs
Bug 2916121
Change-Id: Ida8e02f97f9ae3fc3d89ee6c9e890fe5e441aaa0
Signed-off-by: Antony Clince Alex <aalex@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2369866
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Add tu104 specific HAL tu104_gr_falcon_ctrl_ctxsw() that processes below
CTXSW methods to start/stop SMPC global mode :
NVGPU_GR_FALCON_METHOD_START_SMPC_GLOBAL_MODE
NVGPU_GR_FALCON_METHOD_STOP_SMPC_GLOBAL_MODE
Add new tu104 specific HAL tu104_gr_update_smpc_global_mode() to trigger
SMPC global mode start/stop using gops.gr.falcon.ctrl_ctxsw().
Update nvgpu_dbg_gpu_ioctl_smpc_ctxsw_mode() to enable/disable SMPC
global mode if channel is not bound to debug session.
Bug 2510974
Bug 2257799
Jira NVGPU-5360
Change-Id: I1f9d8f2a2d30a4738f291db3fc72c400d24f4048
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2368696
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Current PM resource reservation system is limited to HWPM resources
only. And reservation tracking is done using boolean variables.
New upcoming profiler support requires reservation for all the PM
resources like SMPC and PMA stream. Using boolean variables is
not scalable and confusing. Plus the variables have to be replicated
on gpu server in case of virtualization.
Remove flag tracking mechanism and use list based approach to track
all PM reservations. Also, current HALs are defined on debugger object.
Implement new HALs in new pm_reservation object since it is really an
independent functionality.
Add new source file common/profiler/pm_reservation.c which implements
functions to reserve/release resources and to check if any resource
is reserved or not.
Add common/vgpu/pm_reservation_vgpu.c for vGPU which simply forwards
the request to gpu server.
Define new HAL object gops.pm_reservation and assign above functions
to below respective HALs :
g->ops.pm_reservation.acquire()
g->ops.pm_reservation.release()
g->ops.pm_reservation.release_all_per_vmid()
Last HAL above is only used for gpu server cleanup of guest OS.
Add below new common profiler functions that act as APIs to reserve/
release resources for rest of the units in nvgpu.
nvgpu_profiler_pm_resource_reserve()
nvgpu_profiler_pm_resource_release()
Initialize the meta data required for reservtion system in
nvgpu_pm_reservation_init() and call it during nvgpu_finalize_poweron.
Clean up the meta data before releasing struct gk20a.
Delete below HALs :
g->ops.debugger.check_and_set_global_reservation()
g->ops.debugger.check_and_set_context_reservation()
g->ops.debugger.release_profiler_reservation()
Bug 2510974
Jira NVGPU-5360
Change-Id: I4d9f89c58c791b3b2e63099a8a603462e5319222
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2367224
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
1) In MIG mode, 2D, 3D, I2M and ZBC classes are not supported by
GR engine. NvGpu shall expose the HWCaps through
"struct nvgpu_gpu_characteristics".
2) NvGpu shall expose the following MIG related new caps through
"struct nvgpu_gpu_characteristics".
* mig_enabled - Flag to indicate whether MIG is enabled/disabled.
* gpu_instance_id - GPU instaces Id.
* gr_instance_id - graphics execution unit id.
* gr_sys_pipe_id - Sys pipe id of GR engine.
3) populate num_ppc_per_gpc - Pixel Processing cluster per GPC
4) populate max_veid_count_per_tsg - Maximum veid count per TSG
5) populate num_sub_partition_per_fbpa - Sub partition per FBPA.
JIRA NVGPU-5762
Change-Id: I06b5bcd3f568eb0b9c78c8fc6ce155b39aaeaba5
Signed-off-by: lm <lm@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2352100
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Automatic_Commit_Validation_User
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
TEGRA_VGPU_CMD_GET_ATTRIBUTE
TEGRA_VGPU_CMD_CHANNEL_FREE_GR_PATCH_CTX
TEGRA_VGPU_CMD_CHANNEL_UNMAP_GR_GLOBAL_CTX
TEGRA_VGPU_CMD_CHANNEL_SET_PRIORITY
TEGRA_VGPU_CMD_CHANNEL_SET_RUNLIST_INTERLEAVE
TEGRA_VGPU_CMD_CHANNEL_SET_TIMESLICE
TEGRA_VGPU_CMD_CHANNEL_FREE_HWPM_CTX
The above commands which are not used by clients anymore are being
removed.
Jira GVSCI-5155
Signed-off-by: Richard Zhao <rizhao@nvidia.com>
Change-Id: If5eef090308e6471a0e7aadf78878f1ad798ee9a
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2367556
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Automatic_Commit_Validation_User
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Remove an ancient piece of code that morphed from a hard coded fault ID
lookup in the original gk20a driver. In the old days there was no top
parsing code, so converting between engine ID and fault ID was done
by a simle function.
This code derived from that function for some reason. However, given
that the HW top table is not actually broken, this code never executes.
The only way this code would execute is if the HW top table reported
that the fault ID for a GRCE engine is 0. But this never happens.
JIRA NVGPU-5420
Change-Id: If8483faa9878f752c29ef6eadc1a56ce1de81942
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2362865
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Unify the job metadata handling by deleting the parts that have handled
dynamically allocated job structs and fences. Now a channel can be in
one less mode than before which reduces branching in tricky places and
makes the submit/cleanup sequence easier to understand.
While preallocating all the resources upfront may increase average
memory consumption by some kilobytes, users of channels have to supply
the worst case numbers anyway and this preallocation has been already
done on deterministic channels.
Flip the channel_joblist_delete() call in nvgpu_channel_clean_up_jobs()
to be done after nvgpu_channel_free_job(). Deleting from the list (which
is a ringbuffer) makes it possible to reuse the job again, so the job
must be freed before that. The comment about using post_fence is no
longer valid; nvgpu_channel_abort() does not use fences.
This inverse order has not posed problems before because it's been buggy
only for deterministic channels, and such channels do not do the cleanup
asynchronously so no races are possible. With preallocated job list for
all channels, this would have become a problem.
Jira NVGPU-5492
Change-Id: I085066b0c9c2475e38be885a275d7be629725d64
Signed-off-by: Konsta Hölttä <kholtta@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2346064
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Debarshi Dutta <ddutta@nvidia.com>
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Commit bd1ae5c9e1 ("gpu: nvgpu: fix MISRA 17.7 violations in mm") did
a seemingly harmless looking change in the cmpxchg() wrapper macro to
convert from atomic_compare_exchange_strong() to nvgpu_atomic_cmpxchg().
The latter is ultimately a wrapper for the former but the semantics are
different: the former takes old as a pointer and updates it for the read
value, while the latter takes it as a value and returns the read value.
The commit caused cmpxchg() to always return the old value, so a failing
compare has never been detected in a year and half.
This cmpxchg() is used only in the lockless allocator which is used only
in the fence code in deterministic kernel submits which hasn't been part
of safe code, so the broken code has been basically not used. (The
typecast from an integer pointer to an atomic pointer is a separate
concern.)
Jira NVGPU-5493
Change-Id: I932a69c6c185783c0e514e848e0ee6057ce74888
Signed-off-by: Konsta Hölttä <kholtta@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2368118
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Do the internal job synchronization semaphore and syncpt shim
comparisons with ACQ_CIRC_GEQ instead of ACQ_STRICT_GEQ. The semas and
syncpts naturally wrap, and this matches the ACQ_GEQ of pre-gv11b chips
that the driver assumes.
With the strict comparison that does not use wraparound, waits for
semas/syncpts that have just wrapped back to zero would hang because a
small value is not strictly greater than equal to a value near U32_MAX.
Change-Id: I427bb205a960d5ba3426f228364d96c30278dcaf
Signed-off-by: Konsta Hölttä <kholtta@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2366823
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Automatic_Commit_Validation_User
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: Seshendra Gadagottu <sgadagottu@nvidia.com>
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
On Linux, nvgpu mapping ioctl provides option to specify the access
type flags for the mapping. This support is not implemented for
other OS. For nvrm_gpu to know when to set these flags add new
enabled flag *_MAP_ACCESS_TYPE that is enabled only for Linux.
Bug 200621157
Change-Id: If1397bb0d5fdc5589458d92f24647afa586af1c2
Signed-off-by: Sagar Kamble <skamble@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2363829
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Automatic_Commit_Validation_User
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Until now, all userspace buffers were mapped in the GMMU as Read & Write
(RW) by default. In order to enable the use cases which require the GPU
to only read the SYSMEM buffers and not inadvertently write to those,
map buffer ioctls need to provide interface to set the mapping access
type from the userspace.
Some of the use cases are:
1. A third party server process exposes shared memory that is
read-only to the client process, which does the GPU processing.
Registering this memory using cudaHostRegister API as read-only
in the client process will restict the access to Read Only type
from the GPU.
2. IO devices exposing streaming read-only data for processing by
the GPU.
3. For marking semantically read-only data as actually read-only
for the purposes of debugging data corruption.
This patch introduces new AS buffer mapping bitmask flag and
corresponding core VM mapping bitmask flag for representing
Read Only (RO) access type. By default, the access is set
as Read Write (RW).
Bug 200621157
Change-Id: I5ec9dec3ce089e577b86c43003d92b61eee4a90b
Signed-off-by: Sagar Kamble <skamble@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2361750
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Automatic_Commit_Validation_User
Reviewed-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
For gv11b, priv ring interrupts were not triggered for PLM L2
registers. So, read back was implemented to confirm data written
to L2 registers.
Verified that LTC registers are not PLM protected, and read back
implemented after write is not necessary.
Replace nvgpu_writel_check with nvgpu_writel.
Bug 200625897
Bug 2989973
Jira NVGPU-5490
Change-Id: Ie0815899589c506e13ab2f9342657cb4d68b8fc8
Signed-off-by: Vedashree Vidwans <vvidwans@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2363384
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Below APIs to update hwpm/smpc ctxsw mode take a channel pointer as a
parameter. APIs then extract corresponding TSG from channel and perform
various operations on context stored in TSG.
g->ops.gr.update_smpc_ctxsw_mode()
g->ops.gr.update_hwpm_ctxsw_mode()
Update both above APIs to accept TSG pointer instead of a channel.
This is a refactor work to support new profiler design where a profiler
object is bound to TSG and keeps track of TSG only.
Bug 2510974
Jira NVGPU-5360
Change-Id: Ia4cefda503d8420f2bd32d07c57534924f0f557a
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2366122
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Move profiler object allocation/free APIs to separate profiler
specific file common/profiler.c.
Store struct gk20a pointer in struct dbg_profiler_object_data for
convenience of accessing global struct pointer.
Update profiler object to store TSG pointer instead of channel
pointer. Since expectations is to have one profiler object
per context/TSG.
nvgpu_profiler_reserve_acquire() has a case to check if resource
reservation is acquired by some other channel in TSG.
But now since we keep track of TSG itself, this case becomes
redundant and can be removed.
All the support is compiled out of safety build with compile
flag CONFIG_NVGPU_PROFILER.
Linux will always compile the support.
Bug 2510974
Change-Id: I197bbd67a9cdd1fbea42f1effd1b74b15a6068e5
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2365674
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
quad type reg_ops were only needed on Kepler, and not for any other chip
beginning Maxweel.
HAL g->ops.gr.access_smpc_reg() was incorrectly set for Volta and Turing
whereas it was only applicable to Kepler. Delete it.
There is no register in the quad type whitelist since the type itself is
not supported anymore. Remove the empty whitelists for all chips and
also delete below HALs:
g->ops.regops.get_qctl_whitelist()
g->ops.regops.get_qctl_whitelist_count()
hal/regops/regops_gv100.* files are not used anymore. Delete the files
instead of just deleting quad HALs in these files.
Bug 200628391
Change-Id: I4dcc04bef5c24eb4d63d913f492a8c00543163a2
Signed-off-by: Deepak Nibade <dnibade@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2366035
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
In preparation for making nvgpu more aligned to upstream kernel, the
dependency on the downstream exported _flush_dcache_area is removed.
Nvgpu instead uses dma_buf_begin_cpu_access/dma_buf_end_cpu_access to
correctly flush the dirty writes and ensure coherency for
combits_scatter_buffer.
For kernel versions below 4.19, nvgpu calls the modified
APIs provided by Nvmap. Going forward Nvmap will be maintaining
compatibility with the existing APIs.
Change-Id: I5f4e01e45e61000693182392eadf05f197517a81
Signed-off-by: Debarshi Dutta <ddutta@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2358937
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Konsta Holtta <kholtta@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
This patch updates nvgpu_assert as macro to print the information
about the calling function. Specifically, to print the function
name and the line number details.
This patch introduces misra violations (misra_c_2012_rule_10_1_violation)
in nvgpu_assert(). However, leaving misra violations unfixed has low
safety impact since misra violations are coming after fatal error is
hit where GPU driver is not expected to be serviceable thereafter.
Further, this patch provides debug benefit in quickly finding the
function that lead to the exit of NvGPU process.
Bug 2964898
Change-Id: Iba85f4a9226742a0bb08b045bcbfa26949bbe746
Signed-off-by: Rajesh Devaraj <rdevaraj@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2342086
Reviewed-by: automaticguardword <automaticguardword@nvidia.com>
Reviewed-by: Ankur Kishore <ankkishore@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>